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Abstract

In this Letter we make a full analysis of the symmetry reductions of the family of Cahn—Hilliard equations by using the
classica Lie method of infinitesimals, the functional forms of the diffusion coefficients for which the Cahn—Hilliard
equations can be fully reduced to ordinary differential equations by classical Lie symmetries are derived.

We prove that by using the nonclassical method, we obtain several solutions which are not invariant under any Lie group
admitted by the equation and consequently which are not obtainable through the Lie classica method.

For this Cahn—Hilliard equation, we obtain nonclassical symmetries that reduce the original equation to ordinary
differential equations with the Painlevé property. We remark that these symmetries have not been derived elsewhere by the
singular manifold method. © 1999 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The Cahn—Hilliard equation was introduced to
study phase separation in binary aloys glasses and
polymers [4] and is a good approach to spinodal
decomposition. Based in numerical version of the
Fourier transformation approach to the nonlinear
Cahn—Hilliard diffusion equation, computer simula-
tions of the spinodal decomposition for a model
alloy were carried out by Liu and Haasen [14]. The
Cahn—Hilliard diffusion equation is also an equation
that serves as amodel for many problemsin physical
chemistry, developmental biology [2], as well as
population movement [8]. The existence of a weak
solution for the Cahn—Hilliard equation with degen-
erate mobility was proved in [9].

* Corresponding author.

The Cahn—Hilliard flux equation describing diffu-
sion for decomposition of a one-dimensiona binary
solution can be written as

ut+(kuxxx_f(u)ux)x=0’ (1)

which is appropriate to cases where the motion is
isotropic. Here u is the solute concentration at point
X, t isthetime, f'(u) is the interdiffusion coefficient
of solute, which is concentration dependent and k /2
is the gradient energy coefficient describing the con-
tribution of the diffuse interface to the decomposi-
tion. In [8] bifurcations of the equilibrium to nonuni-
form states have been discussed for f(u) =D, +
D,u? and in [15] severa nonlinear results were
derived.

Although the direct method of Clarkson and
Kruska is found to more to be more powerful than
the classical method [5]), similarity reductions for the
Cahn—Hilliard equation with f(u) = uand f(u) = u?,
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have been obtained in [17,18], by using classical Lie
symmetries as well as the direct method. In [17,18],
the direct method did not yield any reduction that
could not be obtained by Lie classical symmetries.

In this Letter we solve a complete group classifi-
cation problem for Eq. (1), by studying those diffu-
sion coefficients f(u) which admit the classical sym-
metry group. Both the symmetry group and the
diffusion coefficients will be found through consis-
tent application of the Lie-group formalism.

Motivated by the fact that symmetry reductions
for many partial differential equations (PDE's) are
known that are not obtained by using the classical
Lie group method, there have been several general-
izations of the classical Lie group method for sym-
metry reductions. The notion of nonclassical symme-
tries was firstly introduced by Bluman and Cole [3]
to study the symmetry reductions of the heat equa-
tion. Since then, a great number of papers have been
devoted to the study of nonclassical symmetries of
nonlinear partial differential equations in both one
and several dimensions (see, i.e. [6,12,13]). Clarkson
and Mansfield [7] presented an agorithm for calcu-
lating the determining equations associated with the
nonclassical method.

Recently Zhdanov and Lahno [20] have applied
the nonclassical (or conditional) method to the one-
dimensional porous medium equation

U= (uu,) ,=0. (2)
According to these authors the nonclassical method
for (2) as well as for the parabolic type PDE's is
inefficient. Once obtained new nonclassical symme-
tries performing the symmetry reductions gives rise
to invariant solutions corresponding to the Lie sym-
metries of (2).

The aim of this Letter is to prove that the nonclas-
sical method applied to the Cahn—Hilliard equation
gives rise to new solutions of (1) which are not
group-invariant and consequently cannot be obtained
by Lie classical symmetries. Some of these solutions
(the characteristic solutions) are solutions of (2)
which are not invariant under any Lie group admit-
ted by (2) and consequently cannot been obtained by
Lie classical symmetries this result is a counterexam-
ple of the statement done in [20] because according
to them all the solutions of (2) derived by the
nonclassical method are group-invariant.

Recently, the family of Cahn—Hilliard equations
has arisen a great interest because of an apparent
contradiction between the scope of the singular man-
ifold method (SMM) and the nonclassical symmetry
reductions [19,11].

In [10] Estevez and Gordoa developed a method
for identifying the nonclassical symmetries of PDE’s
using the SMM based on the Painleve property (PP)
as a tool. They propose the following conjecture:
“*The singular manifold method allows us to identify
the nonclassical symmetries that reduce the original
equation to an ODE with the Painleve property’.

The combination of this statement with the
Ablowitz, Ramani and Segur conjecture [1] means
that for equations with the PP, the SMM should
identify all the nonclassica symmetries. Neverthe-
less, for equations with the conditional PP, the SMM
is only able to identify the symmetries for which the
associated reduced ODE’s are of the Painleve type.

In[11] the authors claim that, for (1) with f(u) =u
an= d f(u)=u?, besides a trivial symmetry, the
SMM allows them to determine two different sym-
metries and that these symmetries are the only ones
in which the associated similarity reduction leads to
an ODE of Painlevé type. Nevertheless, for (1) with
f(u) =u and f(u) = u?, besides the symmetries de-
rived in [11], we have derived three new nonclassical
symmetries for which the corresponding associated
similarity reductions leads to three different ODE’s
of Painlevé type.

Consequently, for (1) with f(u)=u and f(u) =
u?, the nonclassical method is more general than the
SMM and that this latter method does not alow usto
identify all the nonclassica symmetries that reduce
Eq. (1), with f(u) = u and f(u) = u?, to ODE’s with
the PP.

2. Lie classical classification.

To apply the classical method to (1) we consider
the one-parameter Lie group of infinitesimal trans-
formations in (x,t,u) given by

X" =X+ e£(x,t,u) + O(€?),
t* =t+er(x,t,u) +0O(e?),
U* = u+ ep( x.t,u) + O(e?), (3)
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where € is the group parameter. Then one requires
that this transformation leaves invariant the set of
solutions of (1). This yields to an overdetermined,
linear system of equations for the infinitessimals
E(x,t,u), 7(x,t,u) and ¢(x,t,u). The associated Lie
algebra of infinitesimal symmetries is the set of
vector fields of the form

a d d
V= g(x,t,u)a—x + T(X,t,U)a_t + &( x,t,u)a—u.
(4

Having determined the infinitesimals, the symmetry
variables are found by solving the invariant surface
condition
B au au 0. 5
—_ + —_
b T = 5

We consider the classical Lie group symmetry
analysis of Eq. (1). Invariance of Eq. (1) under aLie
group of point transformations with infinitesimal
generator (4) leads to a set of forty determining
equations for the infinitesimals £(x,t,u), 7(x,t,u)
and ¢(x,t,u). Solving this system we obtain

x dr
(1), £= 22 (D,

b= d(DU+ dp(x,1),

where 7, &;, ¢, and ¢, are related by the following
conditions:

df df 1de 0
_¢1UE_¢ZE PP T
d? f df 1 df dr 0
— + PR — R —
(AU d2) 4z = dqu ™ 2 du d '
x d?7 df o d
——— -2 (bz_ﬁ =0,
4 dt du adx dt
d 9% 93 0
o K b, P, ﬁ —0

u - +
dt ax* Ix? at

The solutions of this system depends of f(u). For
f(u) arbitrary, the only symmetries admitted by (1)
are the group of space and time trandations, which
are defined by the infinitesimal generators

d d

V,=—, V,=—.
L ax 2 5t

In this case, we obtain travelling wave reductions

z=X—At, u=h(z),
where h(z), after integrating once with respect to z,
satisfies

k" —f(h)yh — Ah=k,. (6)

Eq. (6) is invariant under trandations, this allow us
to reduce the order by one. The only functiona
forms of f(u), with f(u) # const. for which Eq. (1)
have extra symmetries are f(u)=(au+b)" and
f(u) = de®, and these symmetries are, respectively
defined, by the following infinitesimal generators:

ad ad 2 ad
Vi =x— +4t— — —(au+b)—,
aX it an au
d d 2 9
Vi=x— +4t— — ——
d at adu

Without loss of generality we can consider b =0
and a=d=1. For the sake of completeness, we
provide next, the generators of the nontrivial one-di-
mensional optimal system which are:

For f(u) = u", the set

{<Vi>, <AV +V, >, <Vi>]

- For f(u) = e", the set

{<Vi>, <AV +V, >, <VZ>].

In both sets, A € R is arbitrary.

Since Eg. (1), with f(u) =u" and f(u)=¢€" has
additional symmetries and the reductions that corre-
spond to V; and V, have aready been derived, we
must only determine the similarity variables and
similarity solutions corresponding to V3 and V7
which are:

- For V-

z=xt"* u=t"1?"n(2),

where h(z) satisfies the ODE
kW”—WW“—EH—nW*%Hf——£h=O
4 2n ’
(7)
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Eq. (7) does not admit Lie symmetries. Neverthe-
less, for n= 2 this equation can be easily inte-
grated once respect to z yielding

K" — h?H — zh =k,.
- For V{:
z=xt"'* u= —In(t"?h(z)),
where h(z) satisfies the ODE
Akn®N" — 4] h?h — 2h( 17|
— 4kh?[4nn” + 3(h")?| — zndh
+48kh(W)*h — 24k(H)* +2h*=0. (8)

Eg. (8) does not admit Lie symmetries.

Due to the fact that (1) is only invariant under
time and space trandlations and under a scaling
group we have considered nonclassical symmetries.

3. Nonclassical symmetries

The basic idea of the method is that the PDE (1)
is augmented with the invariance surface condition
(5) which is associated with the vector field (4). By
requiring that both (1) and (5) are invariant under the
transformation with infinitesimal generator (4) one
obtains an overdetermined, nonlinear system of equa
tions for the infinitesimals £(x,t,u), 7(x,t,u) and
¢(x,t,u). The number of determining equations aris-
ing in the nonclassical method is smaller than for the
classical method, consequently the set of solutionsis
in general, larger than for the classical method as in
this method one requires only the subset of solutions
of (1) and (5) to be invariant under the infinitesimal
generator (4).

To obtain nonclassical symmetries of (1) we ap-
ply the algorithm described in [7] for calculating the
determining equations. We can distinguish two dif-
ferent cases:

- In the case 7+ 0, without loss of generality, we
may set 7(x,t,u) = 1. The nonclassica method
applied to (1) gives only rise to the classical
symmetries.

- In the case = 0, without loss of generality, we
may set £=1 and the determining equation for
the infinitessimal ¢ is
k¢XXXX + 4k¢¢uu¢xx + 4k¢ux¢xx - f‘;bxx

+ 3Ky ) ° + 6k By by
+ 12k¢¢uux¢x + 10k¢¢)u¢'uu¢x
+ 6k¢UXX¢X + 4k¢U¢UX¢X
- 3f,¢¢)x + k¢4¢uuuu + 4k¢3¢uuux
+ 6k¢3¢u¢uuu + 6k¢2¢UUXX
+ 12K b, duu + 4k (buy)’
+ 12Ky by + TkS? () by
- f¢2¢uu + 4k¢¢uxxx + 6k¢¢u¢uxx
+ 8k¢)( d)ux)z + 4k¢(¢u)2¢ux - 2f¢)¢ux
—2f'p%, + ¢, —f"p>=0 (9)
The complexity of this equation is the reason why
we cannot solve (9) in general. Thus we proceed, by
making ansatz on the form of ¢(x,t,u), to solve (9).
In this way we get the following functiona forms of
f(u) and the following similarity reductions which
are unobtainable by Lie classical symmetries. Due to
the invariance under temporal and spatial transla
tions, we take t;=0 and x,=0 without loss of
generality.
1. Choosing ¢ = ¢(x,t), we find that for any

function f(u) the infinitesimal generators take the
form

E=1, =0, ¢=9¢(xt),
where ¢(x,t) satisfies the following equation

kd)xxxx_ ¢3f”(u) _Sd)d)xf’(u) + d’t:o' (10)
Setting f(u) =u" and solving (10) we obtain that
n = 1 isthe only value for which we obtain solutions
which are not group-invariant. For f(u) =u we get
the infinitesimal generators

X
£=1, 720, $(x) = - (11)

It is easy to check that these generators do not satisfy
Lie classical determining equations. Therefore we
obtain the nonclassical symmetry reduction

2

z=t, u=—a+w(t), (12)
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where w(t) satisfies the linear ODE

3tw +w=0. (13)
Consequently, an exact solution of (1) is

x? kK
u= — a + tj‘? . (14)

We remark that solution (14) is not atravelling wave
reduction and it is not invariant under the scaling
group. Solution (14) is a characteristic solution of (1)
consequently (14) is a solution of (2). This is in
contradiction with the statement done in [20]:'‘ the
conditional symmetries of (2) with =0 yield solu-
tions which are nothing else than group-invariant
solutions’”.

We point out that in (21), the infinitesimals for
the independent variables are autonomous with re-
spect to the dependent variable, generating a group
of ‘ fibre-preserving transformations'. Consequently,
the solution (14) should also be obtained by the
direct method [16], this solution is missing in [17,18].

2. Choosing ¢ = 5y besides the classical re-
ductions we obtain:

2.1. For
k2

f(u) =kt 7=, (15)
we get the infinitesimal generators
=1, =0, <j>(x,u)=2—xu (16)
and we obtain the symmetry reduction
z=t, u=x?w(t), (17)
where w(t) satisfies
W — 6k,w? = 0. (18)

We can choose k, =1 without loss of generdlity.
Consequently an exact solution is

X2

~ &
We must point out that, when f(u) adopts the the
functional form (15), Eg. (1) does not admit any
classical symmetry but translations, consequently this

solution cannot be obtained by Lie classica symme-
tries. The scaling reduction can be used to reduce the

u= (19)

single PDE (1) to a system of ODE’s which has the
common solution (19).

2.2. For
f(u) =k u¥3+k,u ?/3 (20)
solving (9) we get the infinitesimal generators
éE=1, =0, ¢(x,u)=3—;. (21)
The corresponding symmetry reduction is
z=t, u=x3w(t), (22)
where w(t) satisfies
w — 12k,w*3 = 0. (23)

Consequently, an exact solution is

X3

U= ————— -
16v2 (—k,t)¥?

We remark that when f(u) adopts the form (20)
Eg. (1) does not admit, besides trandations, any
classical symmetry. Therefore, this solution cannot
be obtained by classical reduction. The scaling re-
duction can be used to reduce the single PDE (1) to a
system of ODE’s which has the common solution
(24).

3. Choosing ¢ = n(t)u, solving (9) we obtain

(24)

k
f(u) = —kl(logu—1)+f+k3, (25)
and we get the infinitessmal generators

u
=0, ¢(tu)=—-— (26)

2kt

The corresponding symmetry reduction is

&=1,

z=t, u=w(t)exp(— (27)

X
J2k,t |
where w(t) satisfies
AK2t2W + 2k tw( k logw — k3) + kw = 0.

We can choose k, =1 and the integrating constant
k, = 0 without loss of generality. Consequently, an
exact solution is

7t 2t (28)

X k
u=exp|——= + - +kg|.
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When f(u) adopts the functional form (25), Eq. (1)
does not admit any classical symmetries but tranda-
tions, consequently solution (28) is unobtainable by
Lie classical symmetries, we observe that this is a
noncharacteristic solution. We remark that most of
the solutions obtained are characteristic solutions and
so they are new solutions of the diffusion equation
obtained when k= 0 in these cases the solutions do
not feel the influence of the diffusive interface.

4. Nonclassical symmetries and the singular mani-
fold method

The complexity of determining Eq. (9), appears
for many = 0 symmetries [6] and one advantage of
the SMM s that provides non trivial solutions for
(9). In a recent paper [11] Estévez and Gordoa have
studied the Cahn—Hilliard equation (1) with f(u) =u
and f(u) =u? by using the SMM. In the following
we compare these results with our results by using
the nonclassical method:

- In [11] they claim that besides the trivia genera-
tor

£=0, =1, ¢=0 (29)

(which corresponds to a classical symmetry). For
f(u) = u? the only infinitesimal generator of the
nonclassical symmetries that reduce (1) to an
ODE with the PP is

1
7=0, ¢=—ﬁu2 (30)

The generator (30) yields to the similarity reduc-
tion

£=1,

1
=—"Q, 31
y Ky X+ w(t) (31)

where w(t) satisfies the ODE
w =0,
which satisfies the PP.
Nevertheless, it is easy to check that the follow-
ing symmetry
it™1/2

b= , (32)

satisfies Eq. (9) for the nonclassical symmetries
with 7= 0 and yields the similarity reduction

iX
U=W+W(t), (33)
where w(t) satisfies the ODE
2tw +w=0,

which also satisfies the PP.
- In[11], for f(u) = u they have got the following
symmetry

2u
X+ Xg

éE=1, =0, o= (34)
They claim that, besides (29), the SMM dlows to
determine (34) and that these symmetries are the
only ones in which the associated similarity re-
duction leads to an ODE of Painlevée type= 2E
Nevertheless, it is easy to check that the follow-
ing symmetry
U2

=0, ¢=——, 35
satisfies Eq. (9) for the nonclassical symmetries
with 7= 0 and yields the similarity reduction

12k
U= ———,
(Xx+w(t))
where w(t) satisfies the ODE
w =0,

which also satisfies the PP.

It is aso easy to check that the infinitesimals (11)
satisfy Eqg. (9) for the nonclassical symmetries with
7= 0= 2E These infinitesimals lead to the similarity
reduction (12), where w(t) satisfies (13), which isan
ODE of Painlevé type.

Therefore, for the Cahn—Hilliard equation (1) with
f(u)=u and f(u)=u? by using the nonclassical
method we have obtained three different symmetries
that are respectively (32), (35) and (11) and that
were not obtained in [11] by using the SMM.

We remark that although the generators (30),(32),
(34), (35) do not satisfy the Lie classical determining
equations, the corresponding solutions are group-in-
variant and can be derived from Lie classical sym-
metries. However solution (14), derived from (11) is

£=1,

(36)
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not invariant under translations nor under the scaling
group.

5. Concluding remarks

In this Letter we have seen a classification of
symmetry reductions of a family of Cahn—Hilliard
equation (1) using the classical Lie method of in-
finitessmals.

We have proved that for the parabolic type equa-
tion (1) the nonclassical method yields to symmetry
reductions which are unobtainable by using the Lie
classical method and the exact solutions obtained are
not group invariant solutions. Conseguently, in con-
tradiction with the statement done in [20], we have
proved that the nonclassical method is efficient for
PDE's of the parabolic type.

We have obtained solutions by the nonclassical
method that should aso be obtainable by the direct
method, these solutions were missing in [17,18].

We have discussed the symmetry reductions of
this equation by using the nonclassical method with
those derived in [11] by using the SMM. For this
Cahn—Hilliard equation we have derived three non-
classical symmetries that reduce the eguation to
ODE's with the Painlevé property and were not
obtained in [11] by the SMM. Therefore for this
equation the nonclassical method is more general

than the SMM and the SMM does not identify all the
nonclassical symmetries that reduce the equation to
ODE’s with the PP.
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