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Abstract

In this Letter we make a full analysis of the symmetry reductions of the family of Cahn–Hilliard equations by using the
classical Lie method of infinitesimals, the functional forms of the diffusion coefficients for which the Cahn–Hilliard
equations can be fully reduced to ordinary differential equations by classical Lie symmetries are derived.

We prove that by using the nonclassical method, we obtain several solutions which are not invariant under any Lie group
admitted by the equation and consequently which are not obtainable through the Lie classical method.

For this Cahn–Hilliard equation, we obtain nonclassical symmetries that reduce the original equation to ordinary
differential equations with the Painleve property. We remark that these symmetries have not been derived elsewhere by the´
singular manifold method. q 1999 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The Cahn–Hilliard equation was introduced to
study phase separation in binary alloys glasses and

w xpolymers 4 and is a good approach to spinodal
decomposition. Based in numerical version of the
Fourier transformation approach to the nonlinear
Cahn–Hilliard diffusion equation, computer simula-
tions of the spinodal decomposition for a model

w xalloy were carried out by Liu and Haasen 14 . The
Cahn–Hilliard diffusion equation is also an equation
that serves as a model for many problems in physical

w xchemistry, developmental biology 2 , as well as
w xpopulation movement 8 . The existence of a weak

solution for the Cahn–Hilliard equation with degen-
w xerate mobility was proved in 9 .

) Corresponding author.

The Cahn–Hilliard flux equation describing diffu-
sion for decomposition of a one-dimensional binary
solution can be written as

u q ku y f u u s0, 1Ž . Ž .Ž .t x x x x x

which is appropriate to cases where the motion is
isotropic. Here u is the solute concentration at point

XŽ .x, t is the time, f u is the interdiffusion coefficient
of solute, which is concentration dependent and kr2
is the gradient energy coefficient describing the con-
tribution of the diffuse interface to the decomposi-

w xtion. In 8 bifurcations of the equilibrium to nonuni-
Ž .form states have been discussed for f u sD q0

2 w xD u and in 15 several nonlinear results were2

derived.
Although the direct method of Clarkson and

Kruskal is found to more to be more powerful than
w x.the classical method 5 , similarity reductions for the

Ž . Ž . 2Cahn–Hilliard equation with f u su and f u su ,
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w xhave been obtained in 17,18 , by using classical Lie
w xsymmetries as well as the direct method. In 17,18 ,

the direct method did not yield any reduction that
could not be obtained by Lie classical symmetries.

In this Letter we solve a complete group classifi-
Ž .cation problem for Eq. 1 , by studying those diffu-

Ž .sion coefficients f u which admit the classical sym-
metry group. Both the symmetry group and the
diffusion coefficients will be found through consis-
tent application of the Lie-group formalism.

Motivated by the fact that symmetry reductions
Ž .for many partial differential equations PDE’s are

known that are not obtained by using the classical
Lie group method, there have been several general-
izations of the classical Lie group method for sym-
metry reductions. The notion of nonclassical symme-

w xtries was firstly introduced by Bluman and Cole 3
to study the symmetry reductions of the heat equa-
tion. Since then, a great number of papers have been
devoted to the study of nonclassical symmetries of
nonlinear partial differential equations in both one

Ž w x.and several dimensions see, i.e. 6,12,13 . Clarkson
w xand Mansfield 7 presented an algorithm for calcu-

lating the determining equations associated with the
nonclassical method.

w xRecently Zhdanov and Lahno 20 have applied
Ž .the nonclassical or conditional method to the one-

dimensional porous medium equation

u y uu s0. 2Ž . Ž .t x x

According to these authors the nonclassical method
Ž .for 2 as well as for the parabolic type PDE’s is

inefficient. Once obtained new nonclassical symme-
tries performing the symmetry reductions gives rise
to invariant solutions corresponding to the Lie sym-

Ž .metries of 2 .
The aim of this Letter is to prove that the nonclas-

sical method applied to the Cahn–Hilliard equation
Ž .gives rise to new solutions of 1 which are not

group-invariant and consequently cannot be obtained
by Lie classical symmetries. Some of these solutions
Ž . Ž .the characteristic solutions are solutions of 2
which are not invariant under any Lie group admit-

Ž .ted by 2 and consequently cannot been obtained by
Lie classical symmetries this result is a counterexam-

w xple of the statement done in 20 because according
Ž .to them all the solutions of 2 derived by the

nonclassical method are group-invariant.

Recently, the family of Cahn–Hilliard equations
has arisen a great interest because of an apparent
contradiction between the scope of the singular man-

Ž .ifold method SMM and the nonclassical symmetry
w xreductions 19,11 .

w xIn 10 Estevez and Gordoa developed a method´
for identifying the nonclassical symmetries of PDE’s

Ž .using the SMM based on the Painleve property PP´
as a tool. They propose the following conjecture:
‘‘The singular manifold method allows us to identify
the nonclassical symmetries that reduce the original
equation to an ODE with the Painleve property’’.´

The combination of this statement with the
w xAblowitz, Ramani and Segur conjecture 1 means

that for equations with the PP, the SMM should
identify all the nonclassical symmetries. Neverthe-
less, for equations with the conditional PP, the SMM
is only able to identify the symmetries for which the
associated reduced ODE’s are of the Painleve type.´

w x Ž . Ž .In 11 the authors claim that, for 1 with f u su
Ž . 2ans d f u su , besides a trivial symmetry, the

SMM allows them to determine two different sym-
metries and that these symmetries are the only ones
in which the associated similarity reduction leads to

Ž .an ODE of Painleve type. Nevertheless, for 1 with´
Ž . Ž . 2f u su and f u su , besides the symmetries de-

w xrived in 11 , we have derived three new nonclassical
symmetries for which the corresponding associated
similarity reductions leads to three different ODE’s
of Painleve type.´

Ž . Ž . Ž .Consequently, for 1 with f u su and f u s
u2, the nonclassical method is more general than the
SMM and that this latter method does not allow us to
identify all the nonclassical symmetries that reduce

Ž . Ž . Ž . 2Eq. 1 , with f u su and f u su , to ODE’s with
the PP.

2. Lie classical classification.

Ž .To apply the classical method to 1 we consider
the one-parameter Lie group of infinitesimal trans-

Ž .formations in x,t,u given by

x ) sxqej x ,t ,u qO e 2 ,Ž . Ž .
t ) s tqet x ,t ,u qO e 2 ,Ž . Ž .
u) suqef x ,t ,u qO e 2 , 3Ž . Ž . Ž .
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where e is the group parameter. Then one requires
that this transformation leaves invariant the set of

Ž .solutions of 1 . This yields to an overdetermined,
linear system of equations for the infinitesimals
Ž . Ž . Ž .j x,t,u , t x,t,u and f x,t,u . The associated Lie

algebra of infinitesimal symmetries is the set of
vector fields of the form

E E E
Vsj x ,t ,u qt x ,t ,u qf x ,t ,u .Ž . Ž . Ž .

E x E t E u
4Ž .

Having determined the infinitesimals, the symmetry
variables are found by solving the invariant surface
condition

E u E u
F'j qt yfs0. 5Ž .

E x E t

We consider the classical Lie group symmetry
Ž . Ž .analysis of Eq. 1 . Invariance of Eq. 1 under a Lie

group of point transformations with infinitesimal
Ž .generator 4 leads to a set of forty determining

Ž . Ž .equations for the infinitesimals j x,t,u , t x,t,u
Ž .and f x,t,u . Solving this system we obtain

x dt
tst t , js qj t ,Ž . Ž .14 dt

fsf t uqf x ,t ,Ž . Ž .1 2

where t , j , f and f are related by the following1 1 2

conditions:

d f d f 1 d t
yf u yf y f s0,1 2d u d u 2 d t

2d f d f 1 d f dt
y f uqf yf y s0,Ž .1 2 12 d u 2 d u d ,td u

2x d t d f Ef d j2 1
y y2 y s0,24 d u E x d td t

4 2d f E f E f Ef1 2 2 2
uqk y f q s0.4 2d t E tE x E x

Ž .The solutions of this system depends of f u . For
Ž . Ž .f u arbitrary, the only symmetries admitted by 1

are the group of space and time translations, which
are defined by the infinitesimal generators

E E
V s , V s .1 2E x E t

In this case, we obtain travelling wave reductions

zsxylt , ush z ,Ž .

Ž .where h z , after integrating once with respect to z,
satisfies

khXXX y f h hX ylhsk . 6Ž . Ž .1

Ž .Eq. 6 is invariant under translations, this allow us
to reduce the order by one. The only functional

Ž . Ž . Ž .forms of f u , with f u /const. for which Eq. 1
Ž . Ž .nhave extra symmetries are f u s auqb and

Ž . auf u sde , and these symmetries are, respectively
defined, by the following infinitesimal generators:

E E 2 E
1V sx q4 t y auqb ,Ž .3 E x E t an E u

E E 2 E
2V sx q4 t y .3 E x E t a E u

Without loss of generality we can consider bs0
and asds1. For the sake of completeness, we
provide next, the generators of the nontrivial one-di-
mensional optimal system which are:

Ž . nØ For f u su , the set

-V ) ,-lV qV ) ,-V 1 ) .� 41 1 2 3

Ž . uØ For f u se , the set

-V ) ,-lV qV ) ,-V 2 ) .� 41 1 2 3

In both sets, lgR is arbitrary.
Ž . Ž . n Ž . uSince Eq. 1 , with f u su and f u se has

additional symmetries and the reductions that corre-
spond to V and V have already been derived, we1 2

must only determine the similarity variables and
similarity solutions corresponding to V 1 and V 2

3 3

which are:
Ø For V 1:3

zsxty1r4 , us ty1r2 nh z ,Ž .

Ž .where h z satisfies the ODE

z 12XXXX XX X Xn ny1kh yh h y h ynh h y hs0.Ž .
4 2n

7Ž .
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Ž .Eq. 7 does not admit Lie symmetries. Neverthe-
less, for ns2 this equation can be easily inte-
grated once respect to z yielding

z
XXX X2kh yh h y hsk .14

Ø For V 2:3

zsxty1r4 , usyln t1r2 h z ,Ž .Ž .
Ž .where h z satisfies the ODE

2XXXX XX X3 24kh h y4 h h y2h hŽ .

2X XXX XX X2 3y4kh 4h h q3 h yzh hŽ .

2 4X XX X 4q48kh h h y24k h q2h s0. 8Ž . Ž . Ž .
Ž .Eq. 8 does not admit Lie symmetries.

Ž .Due to the fact that 1 is only invariant under
time and space translations and under a scaling
group we have considered nonclassical symmetries.

3. Nonclassical symmetries

Ž .The basic idea of the method is that the PDE 1
is augmented with the invariance surface condition
Ž . Ž .5 which is associated with the vector field 4 . By

Ž . Ž .requiring that both 1 and 5 are invariant under the
Ž .transformation with infinitesimal generator 4 one

obtains an overdetermined, nonlinear system of equa-
Ž . Ž .tions for the infinitesimals j x,t,u , t x,t,u and

Ž .f x,t,u . The number of determining equations aris-
ing in the nonclassical method is smaller than for the
classical method, consequently the set of solutions is
in general, larger than for the classical method as in
this method one requires only the subset of solutions

Ž . Ž .of 1 and 5 to be invariant under the infinitesimal
Ž .generator 4 .

Ž .To obtain nonclassical symmetries of 1 we ap-
w xply the algorithm described in 7 for calculating the

determining equations. We can distinguish two dif-
ferent cases:
Ø In the case t/0, without loss of generality, we

Ž .may set t x,t,u s1. The nonclassical method
Ž .applied to 1 gives only rise to the classical

symmetries.

Ø In the case ts0, without loss of generality, we
may set js1 and the determining equation for
the infinitesimal f is

kf q4kff f q4kf f y ffx x x x uu x x u x x x x x

2 2q3kf f q6kf f fŽ .uu x uuu x

q12kff f q10kff f fuu x x u uu x

q6kf f q4kf f fu x x x u u x x

y3 f X
ff qkf 4f q4kf 3fx uuuu uuu x

q6kf 3f f q6kf 2fu uuu uu x x

22 3q12kf f f q4kf fŽ .u uu x uu

22 2q12kf f f q7kf f fŽ .u x uu u uu

y ff 2f q4kff q6kff fuu u x x x u u x x

2 2q8kf f q4kf f f y2 fffŽ . Ž .u x u u x u x

y2 f X
f 2f qf y f XX

f 3 s0 9Ž .u t

The complexity of this equation is the reason why
Ž .we cannot solve 9 in general. Thus we proceed, by

Ž . Ž .making ansatz on the form of f x,t,u , to solve 9 .
In this way we get the following functional forms of
Ž .f u and the following similarity reductions which

are unobtainable by Lie classical symmetries. Due to
the invariance under temporal and spatial transla-
tions, we take t s0 and x s0 without loss of0 0

generality.
Ž .1. Choosing fsf x,t , we find that for any

Ž .function f u the infinitesimal generators take the
form

js1, ts0, fsf x ,t ,Ž .
Ž .where f x,t satisfies the following equation

kf yf 3 f XX u y3ff f X u qf s0. 10Ž . Ž . Ž .x x x x x t

Ž . n Ž .Setting f u su and solving 10 we obtain that
ns1 is the only value for which we obtain solutions

Ž .which are not group-invariant. For f u su we get
the infinitesimal generators

x
js1, ts0, f x ,t sy .Ž . 11Ž .

3t

It is easy to check that these generators do not satisfy
Lie classical determining equations. Therefore we
obtain the nonclassical symmetry reduction

x 2

12Ž .zs t , usy qw t ,Ž .
6 t
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Ž .where w t satisfies the linear ODE

3twX qws0. 13Ž .
Ž .Consequently, an exact solution of 1 is

x 2 k1
usy q . 14Ž .1r36 t t

Ž .We remark that solution 14 is not a travelling wave
reduction and it is not inÕariant under the scaling

Ž . Ž .group. Solution 14 is a characteristic solution of 1
Ž . Ž .consequently 14 is a solution of 2 . This is in

w xcontradiction with the statement done in 20 :‘‘the
Ž .conditional symmetries of 2 with ts0 yield solu-

tions which are nothing else than group-invariant
solutions’’.

Ž .We point out that in 21 , the infinitesimals for
the independent variables are autonomous with re-
spect to the dependent variable, generating a group
of ‘ fibre-preserÕing transformations’. Consequently,

Ž .the solution 14 should also be obtained by the
w x w xdirect method 16 , this solution is missing in 17,18 .

cu2. Choosing fs besides the classical re-xq kŽ .1

ductions we obtain:
2.1. For

k2
f u sk uq , 15Ž . Ž .1 'u

we get the infinitesimal generators

2u
js1, ts0, f x ,u s 16Ž . Ž .

x

and we obtain the symmetry reduction

zs t , usx 2 w t , 17Ž . Ž .
Ž .where w t satisfies

wX y6k w2 s0. 18Ž .1

We can choose k s1 without loss of generality.1

Consequently an exact solution is

x 2

usy . 19Ž .
6 t

Ž .We must point out that, when f u adopts the the
Ž . Ž .functional form 15 , Eq. 1 does not admit any

classical symmetry but translations, consequently this
solution cannot be obtained by Lie classical symme-
tries. The scaling reduction can be used to reduce the

Ž .single PDE 1 to a system of ODE’s which has the
Ž .common solution 19 .

2.2. For

f u sk u2r3 qk uy2r3 20Ž . Ž .1 2

Ž .solving 9 we get the infinitesimal generators

3u
js1, ts0, f x ,u s . 21Ž . Ž .

x

The corresponding symmetry reduction is

zs t , usx 3 w t , 22Ž . Ž .
Ž .where w t satisfies

wX y12k w5r3 s0. 23Ž .1

Consequently, an exact solution is

x 3

us . 24Ž .3r2'16 2 yk tŽ .1

Ž . Ž .We remark that when f u adopts the form 20
Ž .Eq. 1 does not admit, besides translations, any

classical symmetry. Therefore, this solution cannot
be obtained by classical reduction. The scaling re-

Ž .duction can be used to reduce the single PDE 1 to a
system of ODE’s which has the common solution
Ž .24 .

Ž . Ž .3. Choosing fsh t u, solving 9 we obtain

k2
f u syk loguy1 q qk , 25Ž . Ž . Ž .1 3u

and we get the infinitesimal generators
u

js1, ts0, f t ,u sy . 26Ž . Ž .
2k t( 1

The corresponding symmetry reduction is

x
zs t , usw t exp y , 27Ž . Ž .ž /2k t( 1

Ž .where w t satisfies

4k 2 t 2 wX q2k tw k logwyk qkws0.Ž .1 1 1 3

We can choose k s1 and the integrating constant1

k s0 without loss of generality. Consequently, an4

exact solution is

x k
usexp y q qk . 28Ž .3ž /' 2 t2 t
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Ž . Ž . Ž .When f u adopts the functional form 25 , Eq. 1
does not admit any classical symmetries but transla-

Ž .tions, consequently solution 28 is unobtainable by
Lie classical symmetries, we observe that this is a
noncharacteristic solution. We remark that most of
the solutions obtained are characteristic solutions and
so they are new solutions of the diffusion equation
obtained when ks0 in these cases the solutions do
not feel the influence of the diffusive interface.

4. Nonclassical symmetries and the singular mani-
fold method

Ž .The complexity of determining Eq. 9 , appears
w xfor many ts0 symmetries 6 and one advantage of

the SMM is that provides non trivial solutions for
Ž . w x9 . In a recent paper 11 Estevez and Gordoa have´

Ž . Ž .studied the Cahn–Hilliard equation 1 with f u su
Ž . 2and f u su by using the SMM. In the following

we compare these results with our results by using
the nonclassical method:

w xØ In 11 they claim that besides the trivial genera-
tor

js0, ts1, fs0 29Ž .
Ž .which corresponds to a classical symmetry . For
Ž . 2f u su the only infinitesimal generator of the

Ž .nonclassical symmetries that reduce 1 to an
ODE with the PP is

1
2js1, ts0, fsy u 30Ž .'6k

Ž .The generator 30 yields to the similarity reduc-
tion

1
us , 31Ž .

k xqw tŽ .1

Ž .where w t satisfies the ODE

wX s0,

which satisfies the PP.
Nevertheless, it is easy to check that the follow-
ing symmetry

ity1r2

js1, ts0, fs , 32Ž .
2

Ž .satisfies Eq. 9 for the nonclassical symmetries
with ts0 and yields the similarity reduction

ix
us qw t , 33Ž . Ž .1r22 t

Ž .where w t satisfies the ODE

2 twX qws0,

which also satisfies the PP.
w x Ž .Ø In 11 , for f u su they have got the following

symmetry

2u
js1, ts0, fs . 34Ž .

xqx0

Ž .They claim that, besides 29 , the SMM allows to
Ž .determine 34 and that these symmetries are the

only ones in which the associated similarity re-
duction leads to an ODE of Painleve types2E´
Nevertheless, it is easy to check that the follow-
ing symmetry

u3r2

js1, ts0, fsy , 35Ž .'3k

Ž .satisfies Eq. 9 for the nonclassical symmetries
with ts0 and yields the similarity reduction

12k
us , 36Ž .2

xqw tŽ .Ž .
Ž .where w t satisfies the ODE

wX s0,

which also satisfies the PP.
Ž .It is also easy to check that the infinitesimals 11

Ž .satisfy Eq. 9 for the nonclassical symmetries with
ts0s2E These infinitesimals lead to the similarity

Ž . Ž . Ž .reduction 12 , where w t satisfies 13 , which is an
ODE of Painleve type.´

Ž .Therefore, for the Cahn–Hilliard equation 1 with
Ž . Ž . 2f u su and f u su by using the nonclassical

method we have obtained three different symmetries
Ž . Ž . Ž .that are respectively 32 , 35 and 11 and that

w xwere not obtained in 11 by using the SMM.
Ž . Ž .We remark that although the generators 30 , 32 ,

Ž . Ž .34 , 35 do not satisfy the Lie classical determining
equations, the corresponding solutions are group-in-
variant and can be derived from Lie classical sym-

Ž . Ž .metries. However solution 14 , derived from 11 is
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not inÕariant under translations nor under the scaling
group.

5. Concluding remarks

In this Letter we have seen a classification of
symmetry reductions of a family of Cahn–Hilliard

Ž .equation 1 using the classical Lie method of in-
finitesimals.

We have proved that for the parabolic type equa-
Ž .tion 1 the nonclassical method yields to symmetry

reductions which are unobtainable by using the Lie
classical method and the exact solutions obtained are
not group invariant solutions. Consequently, in con-

w xtradiction with the statement done in 20 , we have
proved that the nonclassical method is efficient for
PDE’s of the parabolic type.

We have obtained solutions by the nonclassical
method that should also be obtainable by the direct

w xmethod, these solutions were missing in 17,18 .
We have discussed the symmetry reductions of

this equation by using the nonclassical method with
w xthose derived in 11 by using the SMM. For this

Cahn–Hilliard equation we have derived three non-
classical symmetries that reduce the equation to
ODE’s with the Painleve property and were not´

w xobtained in 11 by the SMM. Therefore for this
equation the nonclassical method is more general

than the SMM and the SMM does not identify all the
nonclassical symmetries that reduce the equation to
ODE’s with the PP.
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