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This paper seeks to complete the models that have been introduced over the last few
years to quantify the uncertainty in Dempster-Shafer Theory. We examine Ichihashi
and Maeda's model and we try to extend it with a correction factor. The factor dis­
criminates between situations that having a clear difference from an intuitive point of
view, the Ichihashi and Maeda's measure assigns identical values to them.

Keywords: Theory of evidence; imprecise probabilities; uncertainty; entropy;
randomness; specificity

I INTRODUCTION

It is well known that Shannon's measure of entropy plays an impor­
tant role in the field of Information Theory. Over the last few years
several researchers have been looking for another measure within
Dempster-Shafer's Theory of Evidence (DSTE) to play the role of
Shannon's entropy for probabilities. Most researchers think a basic
probability assignment, b.p.a., involves two parts of uncertainty to
quantify, "randomness" and "non-specificity". Furthermore, it should
satisfy, Maeda and Ichihashi (1993), the following fundamental prop­
erties: it coincides with the Shannon's entropy for probabilities, it

• Corresponding author.
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300 J. ABELLAN AND S. MORAL

attains its maximum for the total ignorance and it is monotonous with
respect to the inclusion of b.p.a.

Some people have proposed that it should have a range between 0
and InlXI as in Shannon's entropy and Hartley measure, Hartley
(1928), with IXI being the cardinal of Universal X (Harmanec and
Klir, 1994; Vejnarova and Klir, 1993). But, if we consider that the
ignorance has a greater degree of uncertainty than .the uniform dis­
tribution, then this range must be amplified. Other important proper­
ties have been also proposed such as additivity and subadditivity.

Dubois and Prade (1984) proposed a measure of non-specificity well
accepted until now. Lamata and Moral (1987) proposed a composition
of two uncertainty measures to obtain a global one. Other researchers
such as Klir and Ramer (1993), Klir and Folger (1993), Vejnarova and
Klir (1993), etc. introduce other measures of Total Uncertainty. All of
them are based on Dubois and Prade's definition for measuring the
non-specificity. Finally, Maeda and Ichihashi (1993) introduce a mea­
sure that seems to satisfy all the proposed properties. However, in this
paper we identify a concrete situation in which it does not have a very
intuitive behaviour. The goal of this paper is to introduce a factor to
be added to Maeda and Ichihashi's measure to correct this problem.

This paper begins with a section on definitions in the Dempster­
Shafer Theory. In Section 3 we give an example in which Maeda and
Ichihashi's function does not discriminate between two situations
which are clearly different from an informational point of view. The
Section 4 introduces a function to correct Maeda and Ichihashi's
measure. Its properties are studied. Finally, Section 5 is devoted to the
conclusions.

2 BASIC DEFINITIONS

Let X be a finite set considered as a set of possible situations, IX] = n,
p(X) the power set of X, and x any element in X.

The Dempster-Shafer Theory, Dempster (1967) and Shafer (1976),
is based on an application:

m: p(X) ...... [0,1]

such that m(0) = 0 and LA c xm(A) = I.
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TOTAL UNCERTAINTY 301

This function is called a basic probability assignment (b.p.a.). The
value m(A) represents the degree of belief that a specific element of X
belongs to set A, but not to any particular subset of A.

The elements A of X such that m(A) # 0 are called focal elements.
There are two functions associated with each b.p.a., a belief func­

tion, Bel, and a plausibility function, PI:

Bel(A) = L m(B)
n(;A

PI(A) = L m(B)
Annf0

We note that beliefand plausibility are interrelated for all A E p(X), by

Pl(A) = I - Bel(A)

where A denotes the complement of A. Furthermore,

Bel(A) :S PI(A).

Measurement of uncertainty was first conceived in terms of classical
set theory. When a b.p.a.m. focuses on a single set, i.e. m(A) = I and
m(B) =0 if B # A, then the uncertainty contained in m must collapse to
the Hartley measure of set theory uncertainty, Hartley (\928), and its
value is In IAI.

The classical measure of entropy, Shannon (\ 948), is defined by the
following continuous function:

a

H(p) = - L Piloga(Pi),
;=1

where P (Ph ... ,Pal is a probability distribution.
The non-specificity function, introduced by Dubois and Prade

(1984), represents a measure of imprecision associated with a b.p.a.
and has the following expression:

I(m) = L m(A) In IAI·
A(;X
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302 J. ABELLA.N AND S. MORAL

I(m) attains its minimum, zero, when m is a probability distribution.
The maximum, In lXI, is obtained for a b.p.a., m, with m(X) = I and
m(A)=O,VAcX.

Delgado and Moral (1987) defined a relationship order within the
set of b.p.a. on a finite universal, X:

DEFINITION I Let m and m' he two h.p.a. on X, m is said to be included
ill m' (m ~ m'] ifand only if there exists an application tA: peA) --> [0, I],
for every A ~ X, satisfying:

meA) = L tA(B), VA ~ X,
BIB~A

m'(B) = L tA(B), VB~ X.
AIA2B

We take the following definitions from Lamata and Moral (1987):

DEFINITION 2 Let m he a b.p.a. on the Cartesian product X x Y. The
projection ofm on X is defined as the b.p.a. mx given by

mx(A) = L m(B),
Px(B)=A

where Px(B) = {a E X 13 bEY, (a, b) E B}.

Similarly, we may define the projection my on Y.

DEFINITION 3 Let m be a b.p.a. on X x Y with projections m x and my.

Theil there is strong independence under miff

meA x C) = mx(A) . my(C); VA C X, VC c Y.

If m is a b.p.a. on X x Y and there is strong independence under m,
then the following properties can easily be checked:

PI(A x C) = Plx(A) . Ply(C),

Bel(A x C) = Belx(A)· Be1 y(C),

m(B) > 0 => 3A c X, C c Y such that B = A x C.

Let R be a total uncertainty measure, R: B --> [0, 00), with B being the
set of all belief measures on X x Y.
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TOTAL UNCERTAINTY

DEFINITION 4 We said R is subadditive iff.for every b.p.a. m,

R(m) :::: Rx(mx) + Ry(my),

303

where Rx and R yare uncertainty functions inducedfrom R on X and Y
respectively.

DEFINITION 5 R is additive iff, for strong independence under m, it
verifies that:

R(m) = Rx(mx) + Ry(my).

DEFINITION 6 Let A be a subset of the vectorial space R". We denote
by Fr(A) the frontier set ofA:

Fr(A) = {a E R"IB(a,8) n A f 0/\ B(a,8) nA f 0, \;f8 > 0, 8 E R},

where B(a, 8) = {b E R" Idia, b) :::: 8} and dta, b) is a distance function
on R".

3 MAEDA AND ICHJHASHI'S FUNCTION

Maeda and Ichihashi (1993) proposed an uncertainty function. It
quantified the randomness and non-specificity contained in a b.p.a. on
X. The function is:

UT(m) = f(m) + G(m),

where f(m) is Dubois and Prade's non-specificity function and G(m) is
the solution of the problem:

Max{- LPxlnpx},
xEX

where the maximum is taken over all the probability distributions on
Cm, and Cm a closed convex set on RIXl, Harmanec and Klir (1994),
that is defined as the set of probability distributions {(Px) Ix E X}
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304 J. ABELLAN AND S. MORAL

satisfying the constraints:

(a) PxE [0, I] for all xE Xand L.xEXPX= I;
(b) Bel(A)::; L.xEAPx::; 1- Bel(A)for all A ~ X.

It is easy to prove the UT(m) satisfies the following requirements:

(a) It coincides with the Shannon's entropy for probabilities.
(b) It reaches its maximum for the total ignorance.

And we can see in Dubois and Prade (1987) or Lamata and Moral
(1987):

(c) It is monotonous with respect to the inclusion of b.p.a.
(mz~ m, => UT(mJ) ::; UT(mz).

(d) It satisfies the additivity property.
(e) It satisfies the subadditivity property.

We can also see that G(m) satisfies the previous requirements and it
could be considered like a total uncertainty measure, Harmanec and
Klir (1994).

But, we think UT misses some aspect of uncertainty. In the follow­
ing example, we see what the problem is.

Example 1 Let the following b.p.a. be on the universal X =

{XI> Xz, X3}:

and

m

ml23 = 0.4

m, =0.2

m: = 0.2

m3 = 0.2

{

m;Z3 = 0.2

m' m;3 = (ml23 - m'123 ) In(3)/ In(2) ~ 0.317

m; = m; = m; = (I - m;Z3 - m;3)/3 ~ 0.161,

where m;= m({x;}), mij =m({x;, xA), i,j E {I, 2, 3} and ml23 =m({xl> Xz,
X3})' Similarly for mi.
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TOTAL UNCERTAINTY 305

If we observe these functions, it is reasonable to think that m should
represent more uncertainty than m', as m is completely symmetrical
and m' points to {X2' X3}:

PI({XI,X2}) = Pl({xl,x3}) = PI({x2,x3}) = 0.8,

PI({xt}) = Pl( {X2}) = PI({X3}) = 0.6,

Bel({XI,X2}) = Bel({xl,x3}) = Bel({x2,x3}) = 0.4,

Bel({xt}) = Bel({X2}) = Bel({X3}) = 0.2,

and

PI'({XI,X2}) = Pl'({xl,x3}) = Pl'({x2,x3}) = 0.839,

0.361 = PI'({xt})« PI'({X2}) = Pl'({x3}) = 0.839,

0.322 = Bel'({xl,x2})= Bel'({xl,x3})«BeI'({x2,x3})= 0.639,

Bel'({xt}) = Bel'({x2}) = Bel'({X3}) = 0.161.

Each probability distribution can be represented on an equilateral
triangle, De Campos (1986) and Dempster (1967), in which p(x;) is the
distance to the X; edge. The two convex sets associated to m and m' are
given in Figs. 1 and 2 respectively.

Graphically, if we ignore the common points of m and m', for each
point of m' representing a distribution of probabilities, there is a point
in m with more uncertainty when using the Shannon measure. But, in
the other way round it is not true. Intuitively, UT(m) should be greater
than UT(m').

.3

FIGURE I
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306 J. ABELLAN AND S. MORAL

FIGURE 2

Both, m' and m, have the same non-specificity value I(m) = I(m') =

0.439. And G(m) =G(m') =In(3), because Pu E Cm and Pu E Cm',
where Pu is the uniform distribution on X. Then m and m' have the
same Maeda and Ichihashi's uncertainty. ln the following section we
introduce the Kullback factor which will discriminate between these
two situations.

4 THE KULLBACK FACTOR

Here we introduce a factor with some interesting properties, which can
be used to improve Maeda and Ichihashi's measure. Our starting point
will be the cross entropy between two probability distributions as
introduced by Kullback (1968):

K(p, q) = L Px In (pX) ,
xEX qx

where p and q are two probability distributions on a finite set X. This
function is similar to an information measure and may be considered
as a measure of direct divergence, Kullback (1968). It does not have
all the properties of a distance.

We use this function in the following way. Let

R(m) = Min K(p, ij),
pEFr(C.)

where q is such that G(m) =- L-xEXijx In(ijx)' i.e., the probability dis­
tribution with maximum entropy inside Cm; where Cm is the convex
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TOTAL UNCERTAINTY 307

set of probabilities associated to m (De Campos, 1986; Dempster,
1967). We call R(m) the Kullbackfactor ofm.

It is useful to use this function in the previous example, where
ij =PU for m and m', and as we see in Figs. I and 2, R(m) > R(m'). It
is easy to prove MinpEFr(cm)K(p, ij) is attained in the point of minimum
distance to the frontier sets of Ci; and Cm' with R(m) =0.0437 and
R(m')=0.0017.

Then we define a measure of Total Uncertainty

UTR(m) = f(m) + G(m) + R(m).

Now, m has more entropy than m' as was intuitively expected.

4.1 Properties

With the preceding notation, we have the following properties.

LEMMA 1 IfpuEFr(Cm)thenR(m)=O.

Proof We assume that 0 In(O) = O.

Since Cm is a closed set, PuE Cm' Then R(m) = K(pu,Pu) =O.

LEMMA 2 IfPu f:Cm then R(m) =O.

Proof Let MaxpECmH(p) = H(p'). It IS only necessary to prove
r' E Fr(Cm) .

We suppose p' f: Fr(Cm ) . Then we choose a E R, a E (0, I) such that

p" = a· pu + (I - a) . p'

andp"ECm ·

For the continuity of H, H(p") > H(p'). Hence p' E Fr(Cm ) .

PROP I R(m) is well defined.

Proof If Pu f: Cm then, using Lemma 2, R(m) = O. If PUE Cm then
R(m) = In(n) - H(p'), for some p" E Fr(Cm ) .

PROP 2 R(m);:::: 0, "1m b.p.a. on X finite.
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308 J. ABELLAN AND S. MORAL

Proof Let R(m) = L,xE xPx1n(Pxlqx), for a distribution of prob­
abilities p E Cm' Now, using Gibbs' inequality, Klir and Folger (1993),
we have

- L PxIn(px) :s - L PxIn(qx)
xeX xeX

and R(m)?:: O.

PROP 3 If m is a probability distribution then R(m) = O.

PROP 4 R attains its maximum valuefor the total ignorance. Then

R(m) = In(n) -In(n - 1).

Proof With the above notation, let m be a b.p.a. representing the
total ignorance on X. Then mx= I.

We know that MaxpEF,(Cm ) H(P) = In(n - I). Then

R(m) = Min K(p,pu) = In(n) - Max H(P) = In(n) -In(n - I).
peF,(Cm ) pEF,(Cm )

Now "1m' b.p.a. on X, R(m') :s R(m).
IfPu rf- Cm' then, using Lemma 2, R(m') = 0 :s R(m).
If PuE Cm' we consider p' E Fr(Cm') such that p' = apu+

(I - a)pu,_, with a E [0, I], where PU,_I is the uniform probability on
some set X' c Xwith IX'I =n -I.

Then, by the continuity of H

In(n) = H(pu) ?:: H(p')?:: H(pu,_,) = In(n - 1).

Now, R(m') = In(n) - H(p*), for some p* E Fr(Cm' ) and

R(m') = In(n) - H(p*) :s In(n) - H(p') :s In(n) -In(n - I) = R(m).

PROP 5 R is a monotonousfunction ofm.

Proof Let m and m' be two b.p.a. such that m' ~ rn in the Definition
1 sense. Then for p E Cm,distribution of probabilities, p E Cm"
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TOTAL UNCERTAINTY

Cases:

A. Pulf. Cnt => Pulf. Cm => R(m) = R(m') = O.
B C

Lemma 2
. PUE m':

B.\. pulf. c; => R(m) = 0 :::; R(m').
Lemma 2

B.2. Pu E Cm' Let p' E Cm' such that

R(m') = ~>: InU;~) = In(n) - H(p').

309

"Ix E X.

Since c'n I:::; Cm' there exists 0 E R, 0 E [0,1], such that p' =o· p' +
(I - 0)' Pu, and p' E Fr(Cm) · Then by the continuity of H, H(p'):::;
H(p') and

R(m)= Min [In(n)-H(p)]:::; In(n)-H(p'):::; In(n)-H(p')=R(m').
pEFr(Cm)

LEMMA 3 Let m be a b.p.a. on X x Y with projections mx and my.
Let PUx the uniform distribution for X and PUy the uniform distribution
for Y. Then

C {
pux E c.; and

PU Em=> CPUy E my·

Proof Let IXI=nx, Iy\=ny and n=nX-ny. Then PUx=
(I Inx, ... , I/nx) and PUy = (l [n», ... , l/ny).

We know if a probability distribution on X, p, such that
p(x) = L.vE YPu(x,y) thenp E Cm%' Now,

" 1 ny Ip(x) = L..Pu(x,y) = ny' - = -- = - = PUx(x),
yEY n nXny nx

Idem for my.

LEMMA 4 Let m be a b.p.a. on X x Y with projections my and my. such
that there is strong independence under m, Let PUx the uniform distri­
bution for X and PUy the uniform distribution for Y. Then

C {
pux E c.; and

PU E m {=
PUy E Cmy.
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310 J. ABELL.\N AND S. MORAL

Proof Using the independence hypothesis, let p''}' == PUx . PUy E Cm,
(Harmanec and Klir, 1994). But

pXY(x,y) =Pux(x) . PUy(y) =...!.- ....!.- =~ =pu(x,y), \I(x,y) E X x Y.
nx ny n

LEMMA 5 Let m be a b.p.a. on X x Y with projections mx and my, such
that there is strong independence under m. Let P E Fr(Cmx) and
q E Fr(Cmy). Then pq E Fr(Cm ) ·

Proof We take the distance on R": d(u,V)=MaxiE{I, .. ,nllui-Vil;
u, vERn. By hypothesis:

\101 > 0 3p' E R'" such that

3p" E R'" such that

Max IPx - p',1 :'0: 01 and p' E Cmxx .

Max IPx - p~1 :'0: 01 and p" E CmX,
x

\lEh. > 0 3q' E Rny such that Myax Iqy - q~1 :'0: Eh. and q' E c.;
3q" E Rny such that M,~x Iqy - q~1 :'0: Eh. and q" E Cm Y '

Now, \10> 0 we take 0, = 02= 0/2 and since p' q' E Cm (Harmanec
and Klir, 1994) and

, I ( ') '(' )pq-pq =q p-p -p q -q,

then

M.e~x IPxqy - i,q~1 = M.e~x Iqy(px - p~) - p~(q;, - qy)1
~Y ~Y

:'0: M.e~x[lqyll(px - p~)1 + 1P~II(q~ - qy)IJ
.l'EY ..

:'0: M.e~x[/(px - p~)1 + I(q~ - qy)ll
)'E)"

= Max I(px - p~)1 + Max I(q~ - qy)1
xEX yEY

o 0
< -+- < 0.-2 2-

Similarly for p" and q", since p"rj' E Cmx x Cm y ~ Cs;

PROP 6 R is subadditive.
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TOTAL UNCERTAINTY

Proof With the above notation, let m be a b.p.a. on X x Y, then

R(m) :::; Rx(mx) + Ry(my).

Cases:

o = R(m):::; Rx(mx) + Ry(my).
Lemma 2

B. IfPu E Cm' Let

R(m) = LP.lY In(;/~} p E c;
.l,Y

311

and using Lemma 3

Rx(mx) = ~p~lnC~~J; p' E Fr(Cmx),

Ry(my) = ~p;lnC~~y} p2 E Fr(Cmy).

We take m x x my b.p.a. on X x Y such that mx x my

(A x B) = mx(A)my(B), with A <:;; X and B <:;; Y. Then there is strong
independence under mx x my and Cmx x Cmy <:;; Cmxxmy (Harmanec
and Klir, 1994).

By Lemma 5,plpZ E Fr(Cmxxmy).
Since Cmx x Cmy <:;; Cmxxm,., a convex set, then the Convex Hull of

(Cmx x Cmy) is also contained in Cmxxmy. Hence, c, <:;; CH(Cmxx
Cm y ) ~ Cmxxmy.

Let q be a distribution of probabilities such that q E Fr(Cm) and
q = apu + (I - a)p'p2, with a E [0, I].

Now,

R(m) = Min [In(n) - H(p)] = In(n) - Max H(p):::; In(n) - H(q)
pEFr(Cm) pEFr(Cm)

By the continuity of H, H(Pu)?H(q)?H(p'pZ)=H(p')+
H(p2), and

R(m) :::; In(n) - H(q) :::; In(nx) + In(ny) - (H(p') + H(pZ))

=Rx(mx) + Ry(my).
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312 J. ABELLAN AND S. MORAL

Function R in general does not satisfy the additive property as we
can see in the following example.

Example 2 We choose mx a b.p.a. on X such that PUx rt mx and my

on Ywithpuy E my butpuyrt Fr(Cmy) . It results that Rx(mx) = 0 and

Ry(my) > O.

Let my be equals to m in Example I, then Ry(my) = 0.0437.
Let mx be a b.p.a. on X = {a, b, c} such that mx({a}) = I and 0 in

other case. Obviously puA1, 1, 1) rt mx and Rx(mx) = O.
Now

Bel({(a, In) = 0.2 >~.

This implies that pu(~,~, ... ,~) rt Cm because if PuE c'n then, by

Lemma 3, PUx E Cmx'
Now, by Lemma 2, R(m) = 0 and

R(m) < Rx(mx) + Ry(my).

The ampliation of Maeda and Ichihashi's uncertainty measure by R
function, satisfies the three indispensable properties within the frame
of belief functions (Maeda and Ichihashi, 1993):

- It is reduced to the Shannon entropy when a b.p.a. becomes a prob­

ability distribution,

R(p) = 0,

I(p) = 0,

G(p) = H(p).

- It is maximal for the total ignorance, represented by a b.p.a. m such

that m(X) = I and meA) =0, VA eX

UTR(m) = 3In(n) - In(n - I).

- It is monotonous with respect to random set inclusion (Prop 5).

We' also proved, it is a subadditive function by Prop 6, although,
generally it is not additive as we see in Example 2.
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5 CONCLUSIONS

TOTAL UNCERTAINTY 313

R(m) is not a measure of randomness or specificity but can be a good
complement for a total uncertainty measure.

The behaviour or R(m) depends on whether m is in the set
Su= {miPuE ml, i.e., the uniform distribution is in Cm. If mit' Su, then
R(m) = 0 and UTR(m) = UT(m), but, in this case we think that Maeda
and Ichihashi's measure has a correct behaviour. R(m) adds a positive
value to UT(m) when mE Suo In this case, for the same specificity,
R(m) takes into account whether the uniform distribution is really in
the centre of Cm or very close to the frontier set. In the former case
R(m) is greater than in the last. The uncertainty is greater when all
distributions are around the uniform distribution. UTR(m) takes this
fact into account, while it is missing in UT(m). However, the differ­
ences between UTR(m) and UT(m) are never big, being always lower
than In(n) -In(n - I).

If we want to quantify the uncertainty in a b.p.a., m, we think G(m)
could not be enough to quantify the part of randomness contained
in it.

This ampliation may not be the only possible one. A function of a
distance function on R" could play the same role.

Finally, another issue from R is its possible application to general
convex sets of probabilities. This is feasible because its definition is
based on the associated convex set of probabilities and therefore its
extension is immediate.
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