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Abstract

We give a purely algebraic algorithm to calculate the ideal of a semigroup with
torsion. As application and using Grobner bases, we provide an algorithm to determine
whether a linear system of equations with integer coefficients having some of the
equations in congruences admits non-negative integer solutions. © 1999 Elsevier
Science Inc. All rights reserved.
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1. Introduction

Let S be a finitely generated commutative cancelative semigroup with zero
element, 0 € S. Assume that S is a subsemigroup of an abelian group

Sc2"®Z/aiZ&®---®Z/aZ,

where ay,...,a, are non-zero and non-unit integers. Let {n,...,n.} C S be a
set of generators for S.

Let k be a field, let £[S] be the semigroup k-algebra associated to S, and let
R =k[Xi,...,X] be the polynomial ring in r indeterminates. We denote by X*,
where o = (a1, ...,9,) € N’, the monomial X{" --- X™.
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Then k[S] is an S-graded ring,
k[S] = @ k{m},

mes
with {m} being the symbol of m € S in k[S]. We also consider R as an S-graded
ring, assigning the degree n; to X;.
The k-algebra epimorphism,

¢ R — k[S],

defined by ¢(X;) =n; is a graded homomorphism of degree zero, and
I = ker(¢) is a homogeneous ideal, which we shall call the ideal of S.
It is well known [8] that

r r
Z oin; = Zﬁinh 0, ﬁz‘ = O}
i=1 i=1

is a set of generators for /.

If S is torsion free, i.e. S C Z”" (toric case), then there are many algorithms to
find a subset of Z which is a finite set of generators for /. In [14] there is a good
work about these techniques. However, the case S has non-trivial torsion is not
considered by these methods.

On the other hand, if the semigroup S is such that SN (=S) = {0} (Naka-
yama case), then one has the Nakayama lemma for S-graded modules.
Therefore, in this case it is possible to consider minimal systems of generators
for 7. Besides in this case it is possible to assign a positive degree to X;, 1 <i<r.
For more details see [5], where an algorithm method of computing minimal
systems of generators for [ is provided.

An algorithm to find a subset of % which is a finite set of generators for 7,
where S has non-trivial torsion appears in [11]. In this paper we provide a faster
algorithm than [11] connecting the semigroup ideals with the lattice ideals.

Let % be a lattice in Z", we denote

Iy=X"-X":u,veN, u—ve ).

B = {X“ — X7

The ideal I is called a lattice ideal. We shall see Lemma 9 that the set of the
lattice ideals is equal to the set of ideals of finitely generated commutative
cancelative semigroups with zero element. Besides, we reduce the problem of
computing the ideal of S to the problem of computing the ideal of the lattice
ker(S) (Note 10).

We shall expose different methods of computing lattice ideals. In par-
ticular, we shall see how the techniques in [2] become generalized to com-
pute lattice ideals. We wuse these techniques in our final algorithm
(Algorithm 15).

As application of the above algorithm and using Grobner bases, we solve
the classical problem of Integer Linear Programming of knowing if a linear
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system of equations with integer coefficients admits non-negative integer
solutions. The theorem of Papadimitrious [10, p. 321] solves this problem, and
also it is studied in [3,4,13], but the methods presented in these papers are not
efficient. In [12] it is treated as homogeneous case.

Our solution is based on the following idea: We associate a semigroup S to a
system such that if the system admits non-negative integer solutions then there
is a special kind of binomial in 7 (ideal of S) (Proposition 16). To determine
whether such binomial lies in 7/, it is enough to compute a generating set for / by
using Algorithm 15 and a Grobner base respect to a suitable monomial order
Lemma 17. Since S with torsion is allowed in Algorithm 15, the linear diop-
hantine equations can be congruences.

In Section 2, we expose the different methods of computing lattice ideals and
generalize the techniques in [2].

In Section 3, we give the algorithm to calculate the ideal of a semigroup
finitely generated commutative cancelative semigroup with zero element.

In Section 4, we use the algorithm above to determine whether a linear
system with integer coefficient equations having some equations in congruences
admits non-negative integer solutions.

2. Lattice ideals

Fix a field £, let R = k[Xi, ..., X,] be the polynomial ring in r indeterminates
and ¥ C Z" a lattice. The problem we want to solve is how can you compute a
set of generators for 1y if you have a set of generators C for £?

Let u € 7", one can write u uniquely as u = u* — u~, where u™, u~ € N" and
supp(u™) Nsupp(u~) = 0. For any subset C C ¥ we associate an ideal

Jo=X" =X" cu=ut —u €C).

First at all, let / C R be a ideal, and f € R a polynomial, then the following
are ideals:

J:={geklX,....X]: fgeJ},

(J:f)={gecklX,....X]: fP’geJ, se N}

As R is noetherian one knows that there is s € N verifying (J : /) = (J : f*).
We use the above definitions in Lemma 1.

Lemma 1. If C is a set of generators for the lattice &, then

Proof. See [14, p. 114]. O
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There are many algorithms to compute (Jeo: (X;...X,)). Our study is

based on elimination.

Proposition 2 [1]. Let I = (fi,...,f;) be an ideal in R, let 0 # f € R be a poly-
nomial, and let J = (fi,...,fi,1 = Yf) be an ideal in k[Xi,...,X,,Y]. Then
(I : ) is the elimination ideal for Jy = J N R. Besides, if {gi,...,gn} is a basis
for Jy with

1
g =m(1=Y)+> hyf; (1<i<m, by, hy €KXy,....X,, Y]),
j=1

then

s = max{degy (h;)|1 <i<m, 1<j< I}
satisfies (I : f°°) = (I : f*).
Proof. See [1, p. 266]. O

Then, let £ = (f1,...,f;,1 —X;---X.Y), where {f1,...,f;} is a set of gen-
erators for J¢, to compute (Je : (X ...X,)™) we shall compute the elimination
ideal for E. One can compute it using Grobner bases [1]. Note that with these
methods we compute in k[Xj,..., X, Y].

There are other algorithms which operate in R. The first we study appears in
[14] but can only use it in special cases. For the lattices, this case is

2NN = {0}.

Then algorithm above is based on the next lemma.

Lemma 3 [14]. Fix the graded reverse lexicographic term order induced by
X, >--->X, and let 4 be the Grobner basis of a homogeneous ideal
J CklXy, ..., X]. Then the set

9 ={f € 9| X, does not divide {} U{f/X, | f € 9,X, divides f}

is a Grobner basis of (J : X,). A Grobner basis of (J : X>°) is obtained by dividing
each element f € 4 by the highest power of X, that divides f.

Proof. See [14, p. 113]. O

Then by applying the above lemma, one can compute (J¢ : (X ...X.)™):
U (X X)) = (- (X)X - ) £ X,

and we have the following algorithm.



A. Vigneron-Tenorio | Linear Algebra and its Applications 295 (1999) 133-144 137

Algorithm 4. With the above notations.
Input: A set of generators C for a lattice ¥ verifying ¥ N N" = {0}.
Output: A sect of generators for /4.

1. (Optional) Replace C by a reduced lattice basis (see [7, p. 85]).
2. Let Jo = (X" — X" :ueC).

3. Fori=1,...,r, compute J; = (J;_; : X*°) using Lemma 3.

4. J. =1g.

The last method we expose is obtained from [2], and it is based on the
following lemma about lattices.

Lemma 5. Let C be a set of generators for the lattice . If C C N’ then
Ig = Jc.

Proof. Analogously to [2, p. 230]. O

The algorithm is based on two steps:
1.P. Compute recursively any lattices

L =L, P

such that %, verify Lemma 5.
2.P. Compute using Grobner basis the ideal /¢, from /¢, ,.
For 1.P. we use the following lemma.

Lemma 6. Let C be a set of generators for £, then there is another set of
generators C'  having the property that for all u,ve C': either
supp(u~) = supp(v™), or if iy is in supp(u~) but not in supp(v™), then v,y = 0.

Proof. See [2, p. 231]. O

The above lemma guarantees that by changing the signs of some coordinates
of any elements in C’, one can obtain a lattice satisfying Lemma 5. This
changes will be done using the map

b : 7 -~ 7

(al7"'7ar) = (al,...,—a,-,...,a,.)

and the lattices and their basis will be defined by C; = ¢, (Ci_1) and &, will be
the lattice generated by C;.

Using the definitions above and denoting by X the monomials which do not
contain the variable X, then Xy X" — X" lies in /4, if and only if X* — X"X;
lies in /¢, ,.

The step 2.P. is based on the following proposition.
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Proposition 7 [14, p. 115]. Fix an order which eliminates X;. Let

Gy = (XX =X j=1,....m}
be a Grobner basis for 1y4,. Then

G = {X¥ —X”/’Xj(fi) j=1,...,m}
is a set of generators for Iy, .

To move the indeterminates and construct a set of generators for the lattice

ideal /4,, we will use the map 7;

E(X'irxu _ XL‘) — Xu _ XUX'i)'.

We now expose the algorithm.

Algorithm 8. With the above notations.

Input: A set of generators C &Z.

Output: A set of generators for /.
1. Find a set of generators C’ for & verifying six.
2. Let

A=Aay,...,a;} = {supp(v’) | v e C'},

Ci = ¢, (Ba, (- (84,(C)))),
and let
Gy={X" —X" :ve ).

3. While 4 # () : choose a € 4 and let Gy, be the result to 7, operating on the
reduced Grobner basis for G, with respect to order X, > --- Now, let
A=A4\{a}.

4. At the end, G, is a set of generators for /4.

This algorithm is more general than Algorithm 4, because it can be used for
any lattice, but Algorithm 4 can be only used if the lattice satisfies
Z NN ={0}.

A comparison between the last two algorithms appear in [9]. In Section 3 we
will use these techniques to compute semigroup ideals.

3. Algorithm to calculate the ideal of .S

Let S be a finitely generated commutative cancelative semigroup with zero
element,
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Sc2'®Z/aZ®-- - dL/al,

where ay,...,a, are non-zero and non-unit integers. Let {n,...,n.} C S be a

set of generators for Sand 7 C k[X],...,X,] the ideal of S. Assume that S # (0).

The following lemma connects the lattice ideals with the semigroup ideals.

Lemma 9. [ is the ideal of a finitely generated commutative cancelative semi-
group with zero element, S, if and only if I is a lattice ideal.

Proof. Let S = (ny,...,n,) be a semigroup and 7 its ideal in k[X],...,X,]. By [8,
p. 177] it is known that [ is generated by

r r
E oin; = E Bini, a, B; = 0}'
i=1 i=1

Besides, since S is cancelative we know that [ is generated by

i:oc,-n,- =0, o € Z}.
i=1

then, if we take the lattice ¥ generated by ot — o~ in %',

B = {X“ —x*

B = {X“* -X*

I=X" X" |o" —a” € &),

then [/ is a lattice ideal.
Conversely [6], let & C Z" be a lattice. We define the map

ZV

N — —

i — 2
ei—e + %,

where the e; are the unit vectors in N".
Let S be the semigroup (e + %, ..., e, + %) and [ its ideal. It is easy to see
that 7 = Ig//. O

Note 10. We have proved that J = Ji(s), Where ker(S) C Z" is the lattice

ny
Xty %) EZ" : (x1,...,x)| ¢+ | =0

n,

To calculate the ideal of S we take a new torsion free semigroup S’ in Z"™*
associated to S.
Let n, =n; in 2", Vi € {1,...,r}, and let
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n,=(0,...,0,0,...,0,a;-,,0,...,0)
N——
forie{r+1,...,r+s}.

Now, let 8" = (n,...
the lattice

,n.) be a subsemigroup of 7Z"™, and ker(S") C 2"

m
(X1seeXpps) €2 0 (X1, X)) | =0

!/

n r+s

We have the following lemma concerning the lattices ker(S) and ker(S").

Lemma 11. Let C' be a set of generators for ker(S') C 7', then
C={(x1,...,%) €EZ": (X1, .., X, Xpi1, .. . Xpi5) € C'}
is a set of generators for ker(S) C 7.

Proof. Trivial. O

Then, to calculate /, we only need calculate the lattice ideal Jieys). This
computation can be done by using Algorithm 8.

The following example shows that the irreducible sets of generators for /
have not always the same cardinal.

Example 12. Let S be the semigroup
§= <(0767 T)v (27T7 T)v (1767 g)v (_27 _Ta §)> A Z/ZZ ® Z/4Z
Then we have that the ideal of S is generated by

2 2 3.8
I = (x3xy — x3,xy — xox5, xxd — 1)

8.4 12 _ 10,6
= (xgxs — 1,1 —x, x5 — x3x3, 032 — x°x5),

where both are irreducible systems.

But, when S satisfies
SN (=8) = {0},

one can affirm that all the irreducible systems of generators have the same
cardinality. In that case, we call an irreducible system of generators a minimal
generator system. We say that S is a Nakayama semigroup.

To detect if S is Nakayama, we can use the following lemma.
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Lemma 13. Let S be a semigroup and let I be its ideal in
kX, ..., X]X,...,X.]. Then S is not Nakayama semigroup if and only if there
is a polynomial of the form X* — 1 in I.

Proof. See [11, p. 148]. O

Note 14. As an application of the above lemma, we will be able to determine
whether a semigroup S is Nakayama or not: S is Nakayama if we can find a
binomial +(X” — 1) in a system of generators of I, otherwise it is not.

Now we have an algorithm to calculate the ideal of a finitely generated
commutative cancelative semigroup with zero element.

Algorithm 15. With the notations above:
Input: A set of generators {ny,...,n.} of S, n; #0 for any i.
Output: A set of generators for 7 and we know if S is (or not) Nakayama.
. Calculate the set §'.
2. Take a set of generators for the lattice ker(S"), C'.
3. Take C the C' C Z""* projection onto the first  coordinates. So, we have a
set of generators for the lattice ker(S).
4. Compute the lattice ideal Jiersy (I = Jier(s))-
5. Determine whether I contains a binomial X* — 1. If such a binomial is in 7,
then S is Nakayama. Otherwise, it is not.

—_—

4. Application

Now, we want to determine whether a system of equations such as:

nnxy + npxs + e + ny,x, = b (modd)

na1x1 + nox; + e +nyx, = by (modd,)

(Sist) npxi + npx; + o Fmx, = b (modd)
aeX1 + RgppXs + o0 FagpyX. = by
M1 X1+ RppX2 + e + Ay = b,

admits solutions in N,
We are going to transform the problem above into a problem about semi-
group ideals.
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We consider n; = (ny;,...,n,) with 1<i<r and b= (by,...,b,) in
Z/]dZ® - -DL/dZ D 7Z"'. We may assume, without loss of generality, that
n; # 0 for any i.

If (Sist) is a homogeneous system, then using Lemma 13 we only need to
take S = (ny,...,n,), and ask if S is Nakayama, i.e. X* — 1 € I5 (ideal of S). If
S is Nakayama, then the system admits a solution in N, and o is a solution.
Otherwise, (Sist) does not admit solutions in N".

With the above notations, assume b # 0. Let S be the semigroup

S={(ny,...,n,byCZ|/dZ S ---©Z)dZ DT,
and let Iy be its ideal.
Proposition 16. The system (Sist) admits solutions in N if and only if there is a
binomial like X,., — X" in Is C kX, ..., X1], where X does not contain the
variable X, .
Proof. Suppose (aj,...,a,)€N" is a solution for (Sist). Then

ogous. [J

To see if I satisfies the proposition above, we can use the following lemma.

Lemma 17. Fix a monomial order satisfying X,.1 > - -- Let Ig be the ideal above
and denote by % the reduced Grobner basis of Is. The following are equivalent:
1. There is a binomial X,.; — X* in I.

2. There is a binomial +(X,., — X" in .

Proof. Trivial by Grobner Bases Theory. O
If the semigroup S is Nakayama, to determine whether there is a binomial

X1 — X" in Ig, we do not need to use Lemma 17. We can use the following
lemma and so we do not need to find a Grobner basis for Is.

Lemma 18. Let S be Nakayama semigroup, and let € be any binomial set of
generators with coefficients £1 for Is. Then there is a binomial X,,, — X" in I if
and only if there is a binomial £(X,., — X" ) in .

Proof. Trivial. O

Then, we have an algorithm to determine whether the system (Sist) admits
solutions in N".
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Algorithm 19. With the above notations:

Input: A set of equations like (Sist) with n; # 0.

Output: We know if (Sist) admits, or not, solutions in N, In the affirmative

case, we have a solution.

1.

If6=0:

1.1. Take S = (ny,...,n,).

1.2. Compute Is by using Algorithm 15.

1.3. If S is not Nakayama, i.e. 3X* — 1 € I, then (Sist) admits solutions in
N" and o is a solution. Otherwise, (Sist) does not admit solutions in N".

Ifb#£0:

2.1. Take S = (ny,...,n,,b).

2.2. Compute I by using Algorithm 15.

2.3. If S is Nakayama, let % be a generating set of /5. Otherwise, fix a mo-
nomial order verifying X,,; > ---, and take a Grobner bases for /g, 4.

2.4. If there is a binomial +(X,,; — X?) in %, then (Sist) admits solutions in
N”, and f is a solution. Otherwise, (Sist) does not admit solutions in N”.

Example 20. Given the following system of equations

3x+2y+7z4+ 12t = 4 (mod 20),
x+y-—z = 1 (mod 3).

To use the algorithm above, we must take

§= <(§7 T)’ (za T)’ (7’ _T) (_2 6) ( )>

in Z/20Z ® Z/3Z. Fix the monomial order x5 > x; > x, > x3 > x4, then we
have the reduced Grobner bases of I

8.4 4.5 12 2 5
[x5 — X3Xy, X — XgX3, — x4x3 + X2, %77 —xy, — 1 +x4].

Since x5 — x$x} lies in Is, the system admits a solution in N*  for example,
(0,0,8,4).

Example 21. Next, consider the homogeneous system of equations:

x+y—z+t = 0,
—1lx+2y+2z4t = 0.

We take

S= <(1’ _11)’ (1’2)’ (_1’2)’ (1’ 1)>7

and then we have a set of generators for I

27 4
[ = xixixgx + Lxgx — 1],



144 A. Vigneron-Tenorio | Linear Algebra and its Applications 295 (1999) 133—144

We can see that the binomial x;xjx} — 1 lies in /s and then the system admits a
solution in N*, for example, (1,0,4,3).

All the algorithm above are implemented in MapleV, and are available by
ftp at
ftp.uca.es/pub/matematicas/semigroul. zip
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