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Abstract

We give a purely algebraic algorithm to calculate the ideal of a semigroup with

torsion. As application and using Gr�obner bases, we provide an algorithm to determine

whether a linear system of equations with integer coe�cients having some of the

equations in congruences admits non-negative integer solutions. Ó 1999 Elsevier

Science Inc. All rights reserved.
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1. Introduction

Let S be a ®nitely generated commutative cancelative semigroup with zero
element, 0 2 S: Assume that S is a subsemigroup of an abelian group

S � Zn � Z=a1Z� � � � � Z=asZ;

where a1; . . . ; as are non-zero and non-unit integers. Let fn1; . . . ; nrg � S be a
set of generators for S.

Let k be a ®eld, let k�S� be the semigroup k-algebra associated to S, and let
R � k�X1; . . . ;Xr� be the polynomial ring in r indeterminates. We denote by X a;
where a � �a1; . . . ; ar� 2 Nr; the monomial X a1

1 � � �X ar
r .
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Then k�S� is an S-graded ring,

k�S� � �
m2S

kfmg;

with fmg being the symbol of m 2 S in k�S�: We also consider R as an S-graded
ring, assigning the degree ni to Xi:

The k-algebra epimorphism,

u : R! k�S�;
de®ned by u�Xi� � ni is a graded homomorphism of degree zero, and
I � ker�u� is a homogeneous ideal, which we shall call the ideal of S.

It is well known [8] that

B � X a

(
ÿ X b

Xr

i�1

aini

����� �
Xr

i�1

bini; ai; bi P 0

)
is a set of generators for I .

If S is torsion free, i.e. S � Zn (toric case), then there are many algorithms to
®nd a subset of B which is a ®nite set of generators for I : In [14] there is a good
work about these techniques. However, the case S has non-trivial torsion is not
considered by these methods.

On the other hand, if the semigroup S is such that S \ �ÿS� � f0g (Naka-
yama case), then one has the Nakayama lemma for S-graded modules.
Therefore, in this case it is possible to consider minimal systems of generators
for I : Besides in this case it is possible to assign a positive degree to Xi; 16 i6 r:
For more details see [5], where an algorithm method of computing minimal
systems of generators for I is provided.

An algorithm to ®nd a subset of B which is a ®nite set of generators for I ;
where S has non-trivial torsion appears in [11]. In this paper we provide a faster
algorithm than [11] connecting the semigroup ideals with the lattice ideals.

Let L be a lattice in Zr; we denote

IL � hX u ÿ X v : u; v 2 Nr; uÿ v 2Li:
The ideal IL is called a lattice ideal. We shall see Lemma 9 that the set of the
lattice ideals is equal to the set of ideals of ®nitely generated commutative
cancelative semigroups with zero element. Besides, we reduce the problem of
computing the ideal of S to the problem of computing the ideal of the lattice
ker�S� (Note 10).

We shall expose di�erent methods of computing lattice ideals. In par-
ticular, we shall see how the techniques in [2] become generalized to com-
pute lattice ideals. We use these techniques in our ®nal algorithm
(Algorithm 15).

As application of the above algorithm and using Gr�obner bases, we solve
the classical problem of Integer Linear Programming of knowing if a linear
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system of equations with integer coe�cients admits non-negative integer
solutions. The theorem of Papadimitrious [10, p. 321] solves this problem, and
also it is studied in [3,4,13], but the methods presented in these papers are not
e�cient. In [12] it is treated as homogeneous case.

Our solution is based on the following idea: We associate a semigroup S to a
system such that if the system admits non-negative integer solutions then there
is a special kind of binomial in I (ideal of S) (Proposition 16). To determine
whether such binomial lies in I, it is enough to compute a generating set for I by
using Algorithm 15 and a Gr�obner base respect to a suitable monomial order
Lemma 17. Since S with torsion is allowed in Algorithm 15, the linear diop-
hantine equations can be congruences.

In Section 2, we expose the di�erent methods of computing lattice ideals and
generalize the techniques in [2].

In Section 3, we give the algorithm to calculate the ideal of a semigroup
®nitely generated commutative cancelative semigroup with zero element.

In Section 4, we use the algorithm above to determine whether a linear
system with integer coe�cient equations having some equations in congruences
admits non-negative integer solutions.

2. Lattice ideals

Fix a ®eld k, let R � k�X1; . . . ;Xr� be the polynomial ring in r indeterminates
and L � Zr a lattice. The problem we want to solve is how can you compute a
set of generators for IL if you have a set of generators C for L?

Let u 2 Zr; one can write u uniquely as u � u� ÿ uÿ, where u�; uÿ 2 Nr and
supp�u�� \ supp�uÿ� � ;: For any subset C �L we associate an ideal

JC � hX u� ÿ X uÿ : u � u� ÿ uÿ 2 Ci:
First at all, let J � R be a ideal, and f 2 R a polynomial, then the following

are ideals:

�J : f � � fg 2 k�X1; . . . ;Xr� : fg 2 Jg;

�J : f1� � fg 2 k�X1; . . . ;Xr� : f sg 2 J ; s 2 Ng:
As R is noetherian one knows that there is s 2 N verifying �J : f1� � �J : f s�.

We use the above de®nitions in Lemma 1.

Lemma 1. If C is a set of generators for the lattice L; then

�JC : �X1 . . . Xr�1� � IL:

Proof. See [14, p. 114]. �
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There are many algorithms to compute �JC : �X1 . . . Xr�1�: Our study is
based on elimination.

Proposition 2 [1]. Let I � hf1; . . . ; fli be an ideal in R, let 0 6� f 2 R be a poly-
nomial, and let J � hf1; . . . ; fl; 1ÿ Yf i be an ideal in k�X1; . . . ;Xr; Y �: Then
�I : f1� is the elimination ideal for JX � J \ R: Besides, if fg1; . . . ; gmg is a basis
for JX with

gi � hi�1ÿ Yf � �
Xl

j�1

hijfj �16 i6m; hi; hij 2 k�X1; . . . ;Xr; Y ��;

then

s � maxfdegY �hij�j16 i6m; 16 j6 lg
satisfies �I : f1� � �I : f s�:

Proof. See [1, p. 266]. �

Then, let E � hf1; . . . ; fl; 1ÿ X1 � � �XrY i; where ff1; . . . ; flg is a set of gen-
erators for JC; to compute �JC : �X1 . . . Xr�1� we shall compute the elimination
ideal for E: One can compute it using Gr�obner bases [1]. Note that with these
methods we compute in k�X1; . . . ;Xr; Y �.

There are other algorithms which operate in R. The ®rst we study appears in
[14] but can only use it in special cases. For the lattices, this case is

L \Nr � f0g:
Then algorithm above is based on the next lemma.

Lemma 3 [14]. Fix the graded reverse lexicographic term order induced by
X1 > � � � > Xr; and let G be the Gr�obner basis of a homogeneous ideal
J � k�X1; . . . ;Xr�: Then the set

G0 � ff 2 G j Xr does not divide f g [ ff =Xr j f 2 G;Xr divides f g
is a Gr�obner basis of �J : Xr�. A Gr�obner basis of �J : X1r � is obtained by dividing
each element f 2 G by the highest power of Xr that divides f .

Proof. See [14, p. 113]. �

Then by applying the above lemma, one can compute �JC : �X1 . . . Xr�1�:
�J : �X1 . . . Xr�1� � ���� � � �J : X11 � : X12 � � � �� : X1r �;

and we have the following algorithm.
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Algorithm 4. With the above notations.
Input: A set of generators C for a lattice L verifying L \Nr � f0g.
Output: A set of generators for IL.

1. (Optional) Replace C by a reduced lattice basis (see [7, p. 85]).
2. Let J0 � hX u� ÿ X uÿ : u 2 Ci:
3. For i � 1; . . . ; r; compute Ji � �Jiÿ1 : X1i � using Lemma 3.
4. Jr � IL:

The last method we expose is obtained from [2], and it is based on the
following lemma about lattices.

Lemma 5. Let C be a set of generators for the lattice L: If C � Nr; then
IL � JC:

Proof. Analogously to [2, p. 230]. �

The algorithm is based on two steps:
1.P. Compute recursively any lattices

L �L1; . . . ;Lt

such that Lt verify Lemma 5.
2.P. Compute using Gr�obner basis the ideal ILi from ILi�1

:
For 1.P. we use the following lemma.

Lemma 6. Let C be a set of generators for L; then there is another set of
generators C0 having the property that for all u; v 2 C0: either
supp�uÿ� � supp�vÿ�; or if i0 is in supp�uÿ� but not in supp�vÿ�; then vi0 � 0:

Proof. See [2, p. 231]. �

The above lemma guarantees that by changing the signs of some coordinates
of any elements in C0, one can obtain a lattice satisfying Lemma 5. This
changes will be done using the map

/i : Zr ! Zr

�a1; . . . ; ar� 7! �a1; . . . ;ÿai; . . . ; ar�
and the lattices and their basis will be de®ned by Ci � /j�i��Ciÿ1� and Li will be
the lattice generated by Ci:

Using the de®nitions above and denoting by X the monomials which do not
contain the variable Xj�i�; then Xj�i�X

u ÿ Xv lies in ILi if and only if Xu ÿ XvXj�i�
lies in ILiÿ1

.
The step 2.P. is based on the following proposition.

A. Vigneron-Tenorio / Linear Algebra and its Applications 295 (1999) 133±144 137



Proposition 7 [14, p. 115]. Fix an order which eliminates Xi: Let

Gj�i� � fX rj

j�i�X
uj ÿ Xvj : j � 1; . . . ;mg

be a Gr�obner basis for ILi : Then

G � fXuj ÿ Xvj X rj

j�i� : j � 1; . . . ;mg

is a set of generators for ILiÿ1
:

To move the indeterminates and construct a set of generators for the lattice
ideal ILi ; we will use the map Ti

Ti�X r
i Xu ÿ Xv� � Xu ÿ XvX r

i :

We now expose the algorithm.

Algorithm 8. With the above notations.
Input: A set of generators C L.
Output: A set of generators for IL.

1. Find a set of generators C0 for L verifying six.
2. Let

A � fa1; . . . ; alg � fsupp�vÿ� j v 2 C0g;

CA � /a1
�/a2
�� � � �/al

�C0����;
and let

GA � fX v� ÿ X vÿ : v 2 CAg:
3. While A 6� ; : choose a 2 A and let GAnfag be the result to Ta operating on the

reduced Gr�obner basis for GA with respect to order Xa > � � � Now, let
A � A n fag:

4. At the end, GA is a set of generators for IL:

This algorithm is more general than Algorithm 4, because it can be used for
any lattice, but Algorithm 4 can be only used if the lattice satis®es

L \Nr � f0g:
A comparison between the last two algorithms appear in [9]. In Section 3 we
will use these techniques to compute semigroup ideals.

3. Algorithm to calculate the ideal of S

Let S be a ®nitely generated commutative cancelative semigroup with zero
element,
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S � Zn � Z=a1Z� � � � � Z=asZ;

where a1; . . . ; as are non-zero and non-unit integers. Let fn1; . . . ; nrg � S be a
set of generators for S and I � k�X1; . . . ;Xr� the ideal of S. Assume that S 6� �0�.

The following lemma connects the lattice ideals with the semigroup ideals.

Lemma 9. I is the ideal of a finitely generated commutative cancelative semi-
group with zero element, S, if and only if I is a lattice ideal.

Proof. Let S � hn1; . . . ; nri be a semigroup and I its ideal in k�X1; . . . ;Xr�. By [8,
p. 177] it is known that I is generated by

B � X a

(
ÿ X b

Xr

i�1

aini

����� �
Xr

i�1

bini; ai; bi P 0

)
:

Besides, since S is cancelative we know that I is generated by

B0 � X a� ÿ X aÿ
Xr

i�1

aini

����� � 0; ai 2 Z

( )
:

then, if we take the lattice L generated by a� ÿ aÿ in B0;

I � hX a� ÿ X aÿ ja� ÿ aÿ 2Li;
then I is a lattice ideal.

Conversely [6], let L � Zr be a lattice. We de®ne the map

p : Nr ! Zr

L
;

ei 7!ei �L;

where the ei are the unit vectors in Nr:
Let S be the semigroup he1 �L; . . . ; er �Li and I its ideal. It is easy to see

that I � IL. �

Note 10. We have proved that I � Iker�S�; where ker�S� � Zr is the lattice

�x1; . . . ; xr� 2 Zr : �x1; . . . ; xr�
n1

..

.

nr

0B@
1CA

8><>: � 0

9>=>;:
To calculate the ideal of S we take a new torsion free semigroup S 0 in Zn�s

associated to S.
Let n0i � ni in Zn�s; 8i 2 f1; . . . ; rg; and let
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n0i � �0; . . . ; 0|����{z����}
n

; 0; . . . ; 0; aiÿr; 0; . . . ; 0|�����������������{z�����������������}
s

�

for i 2 fr � 1; . . . ; r � sg:
Now, let S0 � hn01; . . . ; n0r�si be a subsemigroup of Zn�s; and ker�S 0� � Zr�s

the lattice

�x1; . . . ; xr�s� 2 Zn�s : �x1; . . . ; xr�s�
n01
..
.

n0r�s

0B@
1CA

8><>: � 0

9>=>;:
We have the following lemma concerning the lattices ker�S� and ker�S0�:

Lemma 11. Let C0 be a set of generators for ker�S0� � Zr�s; then

C � �x1; . . . ; xr� 2 Zr : �x1; . . . ; xr; xr�1; . . . xr�s� 2 C0
� 	

is a set of generators for ker�S� � Zr.

Proof. Trivial. �

Then, to calculate I , we only need calculate the lattice ideal Iker�S�. This
computation can be done by using Algorithm 8.

The following example shows that the irreducible sets of generators for I
have not always the same cardinal.

Example 12. Let S be the semigroup

S � h�0; 0; 1�; �2; 1; 1�; �1; 0; 3�; �ÿ2;ÿ1; 3�i � Z� Z=2Z� Z=4Z:

Then we have that the ideal of S is generated by

I � hx2
4x4

3 ÿ x2
1; x2 ÿ x3

4x8
3; x

4
4x8

3 ÿ 1i
� hx4x2 ÿ 1; 1ÿ x4

1; x
8
3 ÿ x8

1x4
2; x

12
3 ÿ x10

1 x6
2i;

where both are irreducible systems.

But, when S satis®es

S \ �ÿS� � f0g;
one can a�rm that all the irreducible systems of generators have the same
cardinality. In that case, we call an irreducible system of generators a minimal
generator system. We say that S is a Nakayama semigroup.

To detect if S is Nakayama, we can use the following lemma.
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Lemma 13. Let S be a semigroup and let I be its ideal in
k�X1; . . . ;Xr��X1; . . . ;Xr�. Then S is not Nakayama semigroup if and only if there
is a polynomial of the form X a ÿ 1 in I .

Proof. See [11, p. 148]. �

Note 14. As an application of the above lemma, we will be able to determine
whether a semigroup S is Nakayama or not: S is Nakayama if we can ®nd a
binomial ��X a ÿ 1� in a system of generators of I, otherwise it is not.

Now we have an algorithm to calculate the ideal of a ®nitely generated
commutative cancelative semigroup with zero element.

Algorithm 15. With the notations above:
Input: A set of generators fn1; . . . ; nrg of S, ni 6� 0 for any i.
Output: A set of generators for I and we know if S is (or not) Nakayama.

1. Calculate the set S0:
2. Take a set of generators for the lattice ker�S0�; C0:
3. Take C the C0 � Zr�s projection onto the ®rst r coordinates. So, we have a

set of generators for the lattice ker�S�:
4. Compute the lattice ideal Iker�S� (I � Iker�S�).
5. Determine whether I contains a binomial X a ÿ 1: If such a binomial is in I ;

then S is Nakayama. Otherwise, it is not.

4. Application

Now, we want to determine whether a system of equations such as:

�Sist�

n11x1 � n12x2 � � � � � n1rxr � b1 �mod d1�
n21x1 � n22x2 � � � � � n2rxr � b2 �mod d2�

..

. ..
. ..

.

nl1x1 � nl2x2 � � � � � nlrxr � bl �mod dl�
n�l�1�1x1 � n�l�1�2x2 � � � � � n�l�1�rxr � bl�1

..

. ..
. ..

. ..
.

nm1x1 � nm2x2 � � � � � nmrxr � bm

8>>>>>>>>>><>>>>>>>>>>:
admits solutions in Nr:

We are going to transform the problem above into a problem about semi-
group ideals.
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We consider ni � �n1i; . . . ; nmi� with 16 i6 r and b � �b1; . . . ; bm� in
Z=d1Z� � � � � Z=dlZ� Zmÿl: We may assume, without loss of generality, that
ni 6� 0 for any i.

If (Sist) is a homogeneous system, then using Lemma 13 we only need to
take S � hn1; . . . ; nri, and ask if S is Nakayama, i.e. X a ÿ 1 2 IS (ideal of S). If
S is Nakayama, then the system admits a solution in Nr; and a is a solution.
Otherwise, (Sist) does not admit solutions in Nr.

With the above notations, assume b 6� 0. Let S be the semigroup

S � hn1; . . . ; nr; bi � Z=d1Z� � � � � Z=dlZ� Zmÿl;

and let IS be its ideal.

Proposition 16. The system (Sist) admits solutions in Nr if and only if there is a
binomial like Xr�1 ÿ Xb in IS � k�X1; . . . ;Xr�1�, where X does not contain the
variable Xr�1.

Proof. Suppose �a1; . . . ; ar� 2 Nr is a solution for (Sist). Then
a1n1 � � � � � arnr � b and trivially Xr�1 ÿ X�a1;...;ar� 2 IS: The reciprocal is anal-
ogous. �

To see if IS satis®es the proposition above, we can use the following lemma.

Lemma 17. Fix a monomial order satisfying Xr�1 > � � � Let IS be the ideal above
and denote by B the reduced Gr�obner basis of IS . The following are equivalent:
1. There is a binomial Xr�1 ÿ Xb in IS :
2. There is a binomial ��Xr�1 ÿ Xb0 � in B:

Proof. Trivial by Gr�obner Bases Theory. �

If the semigroup S is Nakayama, to determine whether there is a binomial
Xr�1 ÿ Xa in IS ; we do not need to use Lemma 17. We can use the following
lemma and so we do not need to ®nd a Gr�obner basis for IS .

Lemma 18. Let S be Nakayama semigroup, and let C be any binomial set of
generators with coefficients �1 for IS: Then there is a binomial Xr�1 ÿ Xb in IS if
and only if there is a binomial ��Xr�1 ÿ Xb0 � in C:

Proof. Trivial. �

Then, we have an algorithm to determine whether the system (Sist) admits
solutions in Nr.
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Algorithm 19. With the above notations:
Input: A set of equations like (Sist) with ni 6� 0:
Output: We know if (Sist) admits, or not, solutions in Nr. In the a�rmative

case, we have a solution.
1. If b � 0 :

1.1. Take S � hn1; . . . ; nri:
1.2. Compute IS by using Algorithm 15.
1.3. If S is not Nakayama, i.e. 9X a ÿ 1 2 IS ; then (Sist) admits solutions in

Nr and a is a solution. Otherwise, (Sist) does not admit solutions in Nr:
2. If b 6� 0 :

2.1. Take S � hn1; . . . ; nr; bi.
2.2. Compute IS by using Algorithm 15.
2.3. If S is Nakayama, let C be a generating set of IS : Otherwise, ®x a mo-

nomial order verifying Xr�1 > � � � ; and take a Gr�obner bases for IS ; C:
2.4. If there is a binomial ��Xr�1 ÿ Xb� in C; then (Sist) admits solutions in

Nr; and b is a solution. Otherwise, (Sist) does not admit solutions in Nr:

Example 20. Given the following system of equations

3x� 2y � 7z� 12t � 4 �mod 20�;
x� y ÿ z � 1 �mod 3�:

�
To use the algorithm above, we must take

S � h�3; 1�; �2; 1�; �7;ÿ1�; �12; 0�; �4; 1�i
in Z=20Z� Z=3Z: Fix the monomial order x5 > x1 > x2 > x3 > x4; then we
have the reduced Gr�obner bases of IS

x5

� ÿ x8
3x4

4; x1 ÿ x4
4x5

3;ÿ x4
4x2

3 � x2; x12
3 ÿ x2

4;ÿ 1� x5
4

�
:

Since x5 ÿ x8
3x4

4 lies in IS ; the system admits a solution in N4; for example,
�0; 0; 8; 4�:

Example 21. Next, consider the homogeneous system of equations:

x� y ÿ z� t � 0;
ÿ11x� 2y � 2z� t � 0:

�
We take

S � h�1;ÿ11�; �1; 2�; �ÿ1; 2�; �1; 1�i;
and then we have a set of generators for IS�ÿ x2

1x7
3x2

4x3
2 � 1; x1x3

4x4
3 ÿ 1

�
:
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We can see that the binomial x1x3
4x4

3 ÿ 1 lies in IS and then the system admits a
solution in N4; for example, �1; 0; 4; 3�:

All the algorithm above are implemented in MapleV, and are available by
ftp at
ftp.uca.es/pub/matematicas/semigrou1.zip
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