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Classical point symmetries of a porous medium equation
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Abstract. The Lie-group formalism is applied to deduce symmetries of the porous medium
equationu; = (u")y +gx)u™+ f (x)u*u,. We study those spatial forms that admit the classical
symmetry group. The reduction obtained from the optimal system of subalgebras are derived.
Some new exact solutions can be obtained.

1. Introduction

The quasi-linear parabolic equation
up = [®u, x)]x + F(u, uy, x) 1)

serves as a simple mathematical model for various physical problems. Perhaps its most
common use, at the present time, is to describe the flow of liquids in porous media, or the
transport of thermal energy in plasma. In both cases the most commonly employed form
for F is

Fu,ug, x) = f)u'u, +gxu™. (2)

The first term on the right-hand side of (2) is of a convective nature. In the theory of an
unsaturated porous medium, the convective part represents the effect of gravity. The second
term on the right-hand side describes volumetric absorption, that in the case of plasma is
caused by radiation, to which plasma is transparent.

While more often that not the spatial-dependent factors in (2) are assumed to be constant,
there is no fundamental reason to assume so. Actually, allowing for their spatial dependence
enables one to incorporate additional factors into the study which may play an important
role. For instance, in a porous medium this may account for intrinsic factors, like medium
contamination with another material, or in a plasma, this may express the impact that solid
impurities arising from the walls have on the enhancement of the radiation channel.

The importance of the effect of space-dependent parts on the overall dynamics of (1) is
well known. Thus, the model equation to be considered here is

up = U")ex + g™ + f)u'u, 3)
with n#£ 0.
When f(x) = 0 andg(x) = 0 equation (3) becomes
Uy = (un)xx . (4)

A complete group classification for the nonlinear heat equation (4) was derived by
Ovsiannikov [47-49] by considering throE as a system ofDEs and by Bluman [8, 11].
A classification for Lie—Backlund symmetries was obtained by Bluman and Kumei [9].
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The basic idea of any similarity solution is that an assumed functional form of the
solution enables abE to be reduced to apbDE. The majority of known exact solutions of
(4) turn out to be similarity solutions, even though originally they might have been derived,
say by the separation of variables technique, or as travelling wave solutions. The main
known exact solutions of nonlinear diffusion (4) are summarized by Hill [28]. In [28-30],
Hill et al have deduced a number of first integrals for stretching similarity solutions of the
nonlinear diffusion equation, and of general high-order nonlinear evolution equations, by
two different integration procedures.

King [37] obtained approximate solutions to the porous medium equation (4), integral
results for the multi-dimensional nonlinear diffusion equation [38], and determined [36] new
results by generalizing known instantaneous source and dipole solutiovisdlohensional
radially nonlinear diffusion equations. He also applied generalized Backlund transformations
and obtained a number of equivalence transformations, that derive links between a large
number of different types of nonlinear diffusion equations [39, 42]. By using local and
non-local symmetries, some exact solutions, which are not similarity solutions of (4) for
special values of [40], were obtained [41].

Nonlinear diffusion with absorption arises in many areas of science and engineering.
It occurs in the spatial diffusion processes where the physical structure of the medium
changes with concentration. The samee also arises in the context of nonlinear heat
conduction with a source term. For example, materials undergoing heating by microwave
radiation exhibit thermal conductivities and body heating which are strongly dependent on
temperature. Here, we suppose that the diffusivity and absorption term have a power-law
dependence on concentratiofx, t) such that the basic equation is

= U")x + g(x)um (5)

wheren andm are constants. Fog(x) = constant exact solutions and first integrals are
obtained by Hill in [31], with the technique of separation of variables and the use of invariant
one-parameter group transformations to reduce the govepmnagp variousobDEs For two

of the equations so obtained, first integrals were deduced which subsequently give rise to a
number of explicit, simple solutions. Nonlinear diffusion with absorption is characterized
by phenomena such as ‘blow-up’, ‘extinction’, and ‘waiting time’ behaviour. The indices

n andm encompasses a wide range of this physical behaviour. For example, Kalashnikov
[33] has shown that(x,?) = 0 for all x, after a finite time, provided that > 1 and

0 < m < 1, a phenomenon referred to as ‘extinction’.

A well known exact solution of (5) applying forn = 2 — n is due to Kersner [35].

For m = 1, Gurtin and MacCamy [26] proposed a transformation that reduces (5),
with g(x) = constant andn = 1, to (4). However, in general, the background details
necessary to obtain solutions of (5), with= 1, via this transformation and (4) are about
the same as those required to obtain the solutions directly from (5). In [23] Galaktionov
presented a technique of ‘separation of variables’ for constructing new exact solutions of
the nonlinear heat conduction equations with a source, which are reduced to equations
with guadratic nonlinearities. Most of the solutions thus constructed are not invariant
under point-transformation groups and Lie—Backlund groups. The proposed method was
first implemented in [6] to construct an exact solution of equation (3) with) = O,

g(x) =C > 0 andm = n. In [24] a method is proposed to obtain exact blow-up solutions
for nonlinear heat conduction equations with source.

Several references for the classification of Lie and Lie—Backlund symmetries for heat
equations in homogeneous and non-homogeneous medium, are also listed in [32].
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Equation (3) forg(x) = 0 adopts the following form:
= " )yx + f(x)usux . (6)

For s = 1 we obtain a particular case of the generalized Hopf equation. Lie symmetries
for this equation were obtained by Katkov [34]. Whenr= 1 in (6) we obtain the Burgers
equation. Non-local symmetries and Lie—Backlund symmetries for this equation are well
known [34, 45, 2, 32].

The generalized diffusion equation

T, = (D1(T)T)x + a(D2(T))x + b(x, 1) D3(T)

where T (x, t) denotes the temperature at a poimtan arbitrary constantD; D, and D3
are arbitrary functions of temperatufeand b(x, t) is another arbitrary function of and
t, which has been analysed via an isovector approach, and some new exact solutions have
been obtained by Bhutani [7]. We recover some of the results obtained by him Byken
i=123..., have a power-law dependence.

The one-dimensional reaction—diffusion process, governed by a system of nonlinear
differential equations with arbitrary source functions,

a; = Diay + A(a, b, x, 1) by = Dby + B(a, b, x, 1)

wherex andr are space and time coordinatesandb are the reaction—diffusion variables,
A(a, b, x,t) and B(a, b, x, t) are arbitrary nonlinear functions describing the kinetics of
the process, and; # 0 and D, # 0 are diffusion constants, is studied with an isovector
method. Similarity solutions and nonlineabEts are provided for fairly general forms of
the source functions by Suhubi [56].

Classical and non-classical symmetries of the nonlinear equation (5)xwithl, are
considered by Clarkson and Mansfield [18] by using the method of differential Grobner
bases, and by Arriget al [4] in constructing several new exact solutions.

In this paper we solve a group-classification problem for (3), by studying those spatial
forms which admit the classical symmetry group. Both the symmetry group and the spatial
dependence will be found through consistent application of the Lie-group formalism.

The fundamental basis of the technique is that, when a differential equation is invariant
under a Lie group of transformations, a reduction transformation exists. The machinery of
Lie-group theory provides a systematic method to search for these special group-invariant
solutions. ForpPDEs with two independent variables, as in equation (3), a single group
reduction transforms theDE into ODEs which are generally easier to solve than the
original PDE. Most of the required theory and description of the method can be found
in [10, 27, 55, 45, 49].

In general, if a differential equation admits a Lie gro@pand its Lie algebreaC, is of
dimensionr > 1, one could, in principle, consider invariant solutions based on one-, two-,
etc, dimensional subalgebras 6f. However, there are an infinite number of subalgebras,
e.g. one-dimensional subalgebras. This problem becomes manageable by recognizing that if
two subalgebras are similar, i.e. they are connected to each other by a transformation from
the symmetry group (with Lie algebid,), then their corresponding invariant solutions are
connected to each other by the same transformation. Therefore, it is sufficient to put all
similar subalgebras of a given dimension, saynto one class and select a representative
from each class. The set of all these representatives, of all these classes, is cafjdthah
system of order §Ovsiannikov [48, 49]). In order to find all invariant solutions with respect
to s-dimensional subalgebras, it is sufficient to construct invariant solutions for the optimal
system of ordes. The set of invariant solutions obtained in this way is callecbptimal
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system of invariant solutiongOf course, the form of these invariant solutions depends on
the choice of the representatives.

Since equation (3) has two independent variables, we only consider one-parameter
subgroups. We have already seen that the problem of finding an optimal system of subgroups
is equivalent to that of finding an optimal system of subalgebras. Although in general
this latter problem can still be quite complicated, for one-dimensional subalgebras, this
classification problem is essentially the same as the problem of classifying the orbits of the
adjoint representation. The construction of the one-dimensional optimal system appears in
Ovsiannikov [49] using a global matrix for the adjoint transformation. Olver [45], uses a
slightly different technique, which we will follow, that is: we construct a table showing
the separate adjoint actions of each elementinas it acts on all other elements, this
construction is done easily by summing the Lie series [49]. We then consider a general
elementyv in £, and ask whether it can be transformed into a new element of a simpler
form by subjecting it, iteratively, to various adjoint transformations. For further details and
proofs see Olver [45] and Coggeshall [20].

The structure of the work is as follows. In section 2 we study the Lie symmetries of
(3) for n # 1, and in section 3 for = 1. In each section we consider different cases
and subcases depending ¢x), g(x), n, m ands. For each subcase we list the functions
f(x) andg(x) for which we obtain the Lie group of point transformations admitted by the
corresponding equation, its Lie algebra as well as the corresponding optimal system. We
also report the reduction obtained from the optimal system of subalgebras. In the appendix
we list the commutator tables and adjoint tables corresponding to the ten different Lie
algebras obtained, as well as the different choices for functfgng, g(x) and constants
n, m, ands, for which (3) is invariant under a Lie group of point transformations, as well
as their infinitesimal generators.

2. Lie symmetries forn # 1

For n # 1, equation (3) is invariant under a Lie group of point transformations with
infinitesimal generator

d 0 P
X = p(x,t, u)a +q(x,t, u)5 +r(x, 1, u)ﬁ )
if and only if
2py — q:
p=px,1) qg=q() r(x,t,u) = ﬁu @8)

wherep, ¢, f andg are related by the following conditions:

p(L—nyu —nGn+ Dpeu” + g (s +1—n)+ pe(n — DIf + fipd— )™ =0
)
(2p1x — @)t — 2npyxtt” — 2fprut®™ ™+ [[go(m — n) + 2p, (1 — m)]g
+g.p1—n)]u™ =0. (20)

Solutions of this system depend in a fundamental way on the valuesnafs and on the
functions f(x) and g(x) so we can distinguish the following cases dependingfom),
g(x), n,m ands.
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2.1. Case l:if(x) =0,g(x) =0
The nonlinear diffusion equation (4)
up = (U")

arises in many areas in science and engineering, and the majority of the references cited
here contain numerous additional references to the various applications of (4). For example,
equation (4) describes the motion of a thin liquid film spreading under gravity, the flow
in thin-saturated regions in porous media and the percolation of gas through a porous
medium. A brief account of these particular applications and the original references can
be found in Laceyet al [43]. The evolution of the density = u(x,t) of an ideal gas
flowing isentropically in a homogeneous porous medium is governed by this equation,
which corresponds to the case of pure diffusion, a self-similar solution for this equation
has been obtained by Aronson and Gravelau [3]. Gilding [25] seeks solutions of (4) with
n > 1, in the formu(x,t) = a(@®) f(z), z = b@)[x + A(®)]. In [29], Hill summarizes the
main known exact solutions of this equation, and proposes a new integration procedure for
some of the second-order differential equations that (4) is reduced to.

In this case, we find that the most general Lie group of point transformations admitted
by (4) is forn arbitrary, a four-parameter groug,, and forn = —% a five-parameter group
Gs. Associated with these Lie groups are their Lie algebfasvhich can be respectively
represented by the set of all the generatofg;_, and{V;}>_,. These generators are:

V 9 9 \% 9 -i—2ta
= — = — = X— N
T ax 27 ot T T
(11)
V. AL Vo= 2 _oxul
= —t— — =x"— — 2xu— .
4 ot n—10u ° 0x ou

In order to construct the one-dimensional optimal syst&m following Olver, we
construct a table showing the separate adjoint actions of each eleméhtam it acts
on all other elements. This construction is done easily by summing the Lie series. The
commutator table, and its adjoint table appears respectively in tables A1 and A2, that are
in the appendix. For # —%, only the first four rows and columns must be considered.
In table 1, we list the non-trivial optimal systefv;} with i =1,...,7, forn = —%; and
i =1,...,4, forn arbitrary, as well as the corresponding similarity variables and similarity
solutions. In table 2 we list thebes to whichpPDE (4) is reduced.

In particular, the second-order nonlinear differential equationf@r), obtained for
i =1, is shown to admit first integrals for two values@fnamely,

c=2—-2n c=1—-n

and this first integral is

dy Ky yin

z z  (c—22

wherek = % and c; is the constant then of integration. If this constant is zero

integrating, we obtain for = 1 — n, the point source solution and, for= 2 — 2z, the
dipole solution [28].

1

2.2. Casell:f(x)=0
In this case equation (3) is the same as (5),
up = (U")xx + g0)u™



612 M L Gandarias

Table 1. Each row shows the infinitesimal generators of the optimal system, the corresponding
similarity variables and similarity solutions. In this table we writé = —ac if ac < 0, and
8 = 4ac — b°. The constants, b, ¢ are arbitrary.

n i U; Zi Ui
arbitrary 1 Va+cVa 5 h(z) x i1
2
arbitrary 2 aVo+ Va+ 2V, ey h(z)xn-1
1
arbitrary 3 aVi+Vy tetx h(z)tT-n
arbitrary 4 aVi+cVo cx—bt h(z)
_ b arctar(/c x//a) hexp(—3b arctar(ex//a) /4 /a Je)
3 51 aVi+bVa+cVs t exp( NG ) (cx2+a)3/2 ac >0
1 . M ex—d)lr2 _ hGexta)¥/B
3 52 aVi+bVatcVs (cx+d)/ (cx—d)/8 (c2244)%? ac <0
1 arctar(cx/\/ac) t h
-3 6.1 aVi+bVo+cVs —ac b m ac >0
1 1 cx—=d _ 1 h
-3 6.2 aVi+bVa+cVs ZIOgri+d_B T ac <0
3/2
1 exp(2 arctar((Zcx+b)/JS)/J3) h exp(Sh arctar(Zchrb/«/S)/«/S)
-3 71 aVi+bVz+cVs pRves (ex24brra) §>0
_1 (ZL'X*d‘Fb)l/d h(2cxfd+b)3b/2"
3 72 aVaitbVa+cVs g, iy @cx+d+b)¥/2 (¢ x24b x+a) ¥ >=0

Table 2. Each row shows thepesto whichprpe (4) is reduced byJ;, after making(z) = y/”.

" i Ai(y, ¥, y") =0

arbitrary 1 -3 ((ngﬁxilz - ([yi/;;zln) + (jfg)g(;'ﬁl)lg Y+ % -0
ey 2 (S gt 2 o

arbitrary 3 _%y(;jz/;l B ;) 4 % . % —0

arbitrary 4 Eny ﬂi; hyln g% -0

1 dy 3 b 1 b2 &y

-3 51,52 ag(by“zb*l+277z+5>+a‘;f)+‘215; +E%:O
1 3dy/dz bdy/dz | dy/dz y | b2y | By _

-3 6.1,6.2 ‘byyzb+ + 2‘2 + }Z + L;T‘ + 16; + # -0
1 dy 321 b 1 acy &y

-1 71,72 d7<_ ot 2T +Y+ =0

which corresponds to nonlinear diffusion with absorption.

It arises in the spatial diffusion of biological populations [44], and in a number
of chemical diffusion processes where the physical structure of the medium changes
with concentration. The same equation also appears in the context of nonlinear heat
conduction with a source term. For example, materials undergoing heating by microwave
radiation exhibit thermal conductivities and body-heating which are strongly dependent on
temperature. It is known, that the addition of absorption to purely diffusive cases causes a
deep qualitative change in the process of diffusion, for instance, the thermal front exhibits
a quite different behaviour than for the pure diffusive case [54].

2.2.1. Case ll.af(x) = 0, m arbitrary. In this case, we find that the most general Lie
group of point transformations admitted by (5) is, foarbitrary, the four-parameter group
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G4, and forn = —% the five-parameter grougs, both of them obtained for case I. Their Lie
algebras, are represented by the set of all the gener{ait’p}rfg 1 and{V,»}f’zl, respectively.
These generators are listed in (11). The commutator table appears in table Al and the
adjoint table in table A2 in the appendix.

Hereh = c(n — 1)f, p = M0 — 2, p(x) = kex? + kax + k1, ¢(x) = arctan”), and

$(x) = 2 V0t with d = dkiks — k3 and ks = 2ks — ka.

Table 3. Each row shows the functiongx) for which equation (5) can be reduced to by some
of the generatory;, as well as those generators.

n @ g Vi
arbitrary 1 A(kax +k1)f Vi, Vo, V3, Vs
arbitrary 2 arbitrary Vo
i ka(n—m)
arbitrary 3 cexp( ) V1, V2, Va
arbitrary 4 c2 Vi, Vo
3 (m— 3
-3 5 pz b exp(—ﬁw(x)) d>0 Vi, V3 V3 Va Vs
_om 6
-3 6 pE Vo) d<0  ViVp Vs Va Vs
The one-dimensional optimal systems, fot 1, ..., 5, are the ones obtained in case |I.

Hence, the similarity variables and solutions appear in table 1, andohbeto which (5)
is reduced are of the following form:

Ai(y, Y, Y+ Bi(y) =0

whereA;(y, y’, y”) are listed in table 2, an@; (y) are the terms listed in the last column of
table 4. In the other cases, the optimal system can be obtained from table 1 by considering
the generatord/;, whose ‘componentsV; appear in table 3. For instance, fo= 4 the
optimal system is obtained by considering oty and V>.

2.2.2. Case ll.b:f(x) = 0, m = 1. In this case considering(x) = constant, we find
that, besides the group obtained in case Il.anfarbitrary, the most general Lie group of
point transformations admitted by (5) is the four-parameter g@upand forn = —% is
the five-parameter grou@z. Their infinitesimal generators are:

0 2 0
vi=W Vo=V, Vo=x—+ — —u—
dx (n—1) ou 12
0 0 0 0 (12)
V, = e g gty — Vi=x*"— —3xu_—.
ot u 0x ou

The commutator table and the adjoint table appear in tables A3 and A4, respectively, from
the appendix.

In table 6, we list theobEs to which (5) is reduced, after making = yﬁld, where
d=n-1.

2.2.3. Case ll.c:f(x) = 0, m = n. In this case we find that, besides the group obtained

for m arbitrary in case Il.a, the most general Lie group of point transformations admitted

for g arbitrary by (5) is, for n arbitrary a two-parameter grougs, and forn = —%, a
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three-parameter grou@;. Associated with these Lie groups are the Lie algebras, which
can be represented by the set of all the generdtgh?_,, and{V!}3_,, respectively, where

3 3p'(x) 9
Vi=va  Vi=Ve  Vi=plo - p2x us (13)
where p(x) satisfies
2p(x)p" (x) — (P'(x)* + 4g(x) p(x)* = k . (14)

The commutator table and adjoint table are A5 and A6. In table 7 we list the optimal system
{Ul}i=1,2,..., obtained forn = —%, as well as the corresponding similarity variables
and similarity solutions. Iz # —%, then the only subgroups allowed by (5) aré and

V4, and the optimal system comprises them. The similarity variable, is in both cases

with the corresponding similarity variables= tlflnh(x) andu = h(x). In table 8 we list
the oDEs to whichpPDE (5) is reduced.

Frequently the second-order differential equations obtained can be easily integrated and
yield to exact solutions. For instance, choosing= 0 in Ax(y,y'y”) = 0, and after

Table 4. Each row shows for each of the infinitesimal generators of the optimal system,
the corresponding functiorg(x) for which (4) can be reduced to aopg, and the terms
(3bs+4b) arctar(/cx/\/a)

Bi(y) of theseopeEs Here ¢(x) = 3ckix + k2, p1(x) = NG , and
3bm arctar{ (2c x+b)/+/ (4a c—b?)
p2(x) = — r(¢4 2 ) anda(t) = —/at — b arctan(x//a)//ab.
ac—.
n i g(x) Bi(y)
) (n=m) _ ,
arbitrary 1 kpx a1 2 — ko /n
. 2(1-m) ol
arbitrary 2 kpnx o1 oy " /22
i (n—m)ax n+m—=2  m—-n+1
arbitrary 3 —akpne -1 Koz Ty
. n+m
arbitrary 4k kony n
1 (12¢ky x+3b k1) (c x%+a)3$/2 /1) k
-3 51 1ot 1)2)‘ @) o — ac >0
3 - 3=
3bd 3bd i
_1 5o [(cxtd) 3‘”3+W(4¢(x)+3bk1)(c‘x2+u)3:/2+3/2 ka ac <0
3 . 3bds |, 3bd 3“&71
A(cx—d) Bac "Bac -
1 (cx=d) 2 3s5/243/2 ko
-3 6.1 —Bckix +ko) (cx +a) S ac >0
35/2+3/2 k
—% 6.2 —QBckix+kp) (cx2+a) ! VTZH ac <0
-1 71 —3ckix (cx?+bx+a)’"? g2 — 52y dac —b2 >0
1 —QRex+d+b)P D2 (x) (¢ x?+b x+a) 3 HD/2 kp .2
-3 7.2 2cx—dth)POFDTA B dac —b* <0

Table 5. Each row show the infinitesimal generators of the optimal system, the corresponding
similarity variables and solutions. Hede=n — 1.

n Ui Zi u;
H / / x hek!
arbitrary aVz+ V3 4+ bV, (akdiyp)Takd a2/ak¢12(aekd1+b)“‘kd*2>/“k‘/2
. x/a et
arbitrary aVy + bV +cV; W W
-1 aVi+bVa+cVy+ V(e By p) e gh(cethiB 4 p)¥i( o )2
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Table 6. Each row shows thepesto which ppe (5) is reduced by;, d = n — 1.

n U Aiy,y,y"H=0

aitrary U} a2elkd $z 4 d@+1) yrn 4 a0t (@ 11 @dk-2) y =0

" 2.,

arbitrary U} $<7" a +%)+ f’,zbﬁ +z7~; =0
Napyd&FL yd+1 "2 N
d?y d

-1 Uy y4rfz2+(y4—48a2) Fr+ay’>+16a%bky =0

Table 7. Each row show the infinitesimal generators of the optimal system, the corresponding
similarity variables and similarity solutions.

i Ut z i
1 1 1,0 1 h 3 0 1
1 Vi+cevy rexp(z fmdx) o) exp(—ﬂfmdx)
1 1 1 h
2 aVji+cvg %fmdx —t R

Table 8. Each row show thepesto which poE (5) is reduced byU;, h = y=3.

Ut Ai(.y.y)=0

i

3dy/dz |, 3c?dy/dz y Py _
U1 2z -+ V422 + 1622 + dz2 0
d®y  3c2dy/dz |, 3c%ky
Uz g = 2t + 755" =0

integrating once we obtain,

dy 3¢
diz - 7a2y3 —C1 = 0.
By choosing the constant of integratian,= 0, an exact solution is
a3/?
v= V234 3/2 1 34"
24234 p(x)32(ct —cco—a fmdx)

It is of interest to observe that although in the present casg ferconstant equation (5)
does not admit the stretching-type similarity solution, i.e. a solution arising from invariance
under the stretching group [46], although it does admit that type of solution(for= c/x2.

2.3. Case lll:g(x) = 0.
Equation (3) becomes (6),
Uy = (un)xx + f(x)usux

which corresponds to nonlinear diffusion with convection. Wh€n) = constant, we arrive
at the Boussinesqg equation of hydrology, which is involved in various fields of petroleum
technology and ground water hydrology. Several exact solutions of this equation have been
obtained by using an isovector method [7].

It is a well known fact that non-negative solutioms,of (6) may give rise to interfaces
(or free boundaries) separating regions where- 0 from those wheres = 0. These
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fronts are relevant in the physical problems modelled and their occurrence is essentially
due to slow diffusion(n > 1) or to convective phenomenon dominating over diffusion

(s < n—1. In this case, ifs < 0 ands < n — 1, there is a great contrast with pure
diffusion phenomenon [1].

2.3.1. Case lll.a: s arbitrary. In this case, we find that the most general Lie group of
point transformations admitted by (6) is the four-parameter gupbtained for case |, as

well as for case Il.a. Its Lie algebra, can be represented by the set of all gen¢raibrs

these generators are listed in (11). The commutator table and the adjoint table appear in the
four first rows and columns of tables A1 and A2 from the appendix. In the following table
we list the functionsf (x) for which equation (6) can be reduced by some of the generators

V; as well as these generators.

Table 9. Each row shows the functiong(x) for which equation (6) can be reduced to by some

of the generatory;, as well as these generators.Where- k‘,‘é”(;:)l) —1landy =c(n — 1)~.
n @ f Vi
arbitrary 1 y (ksx + k1)* Vi, Vo, V3, Vy
arbitrary 2 arbitrary Vo
. ka(n—s—1)x
arb!trary 3 crexpy D ) Vi, Vo, Va
arbitrary 4 c1 V1, Vo
25 +1 5 c1 Vi1, V2, V3

The one-dimensional optimal system was obtained in case I, the similarity variables and
solutions are listed in table 1, and tl®es to which (6) is reduced are of the following
form:

Ai(y, Yy, Y+ Ci(y,y)=0

where A;(y, ¥, y”) appear in table 2, and;(y, y’) are the terms listed in the last column
of table 10.

Table 10. Each row shows the infinitesimal generators of the optimal system, the corresponding
function f(x) for which (6) can be reduced to apg, and theC;(y, y') terms of thoseopes

iU fx) Ci(y,y)
cli=s=1) _q P2 kreny Bt
_ —=1 __ k1) Y icny
1 Va+cVa kyxn z (c—2n—c+2)22
25-n+1 K Jem
2 aVo+V3+2Vy kinx T-n S
s=nt1
o . KLy
3 aVi+Vy —a klnexp(— @s :j;ra))”) i}ﬁ y’
s+1
4 aVi+cV k1 kyy =y

If ug(x) = 8(x), wheres(x) is the Dirac measure, we have a similarity solution of the
form u(x, t) =t~V H(z), where the similarity variable is = xt=", N~ = n + 1, and the
correspondingDE is

n(n + 1)(Hn)zz + (ClzsanS+lfn + Z)(Hn)z + nH = 0
If we choosef = constant, integrating once we obtain
(n+1(H"), + H(cH" +2) =0
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Table 11. Each row show the functions f(x) for which equation (5) can be reduced by some of
the generator¥;, as well as these generators.

n Vi1 f
arbitrary v, v} arbitrary

i 1 1 1 g n(3n+1)p’ (x)
arbitrary Vi V5. Vs & — moea)

Table 12. Each row show thepesto which (6) can be reduced iy}, h = 1/y°.

ut o A

i

2 2 y
+(2§_*+ 24)gv+(9(8]\_3%+1*1e3)ﬁ:0

Ui

d
dz2
Ul i‘Tz (3T + 3“2)(,7' +

recovering a result obtained by Rosenau [53].

2.3.2. Case lllLb:s = n — 1. In this case we find that besides the group obtainedsfor
arbitrary, the most general Lie group of point transformations admitted by (6), is the three-
parameter groug; obtained for case Il.c, when= —%. Its infinitesimal generator{g/,-}?:l,
are listed in (13), its commutator table and adjoint table are, respectively, in tables A5 and
A6. In table 11, we show the functiong(x) for which equation (6) can be reduced by
some of the generatoiig.

Where in table 11p(x) satisfies

n(1—n)p(x)p”(x) + 2n*(p'(x))* + (1L — n)6ep' (x) = K . (15)

Forn = —%, we obtain the one-dimensional optimal systgift}. i = 1, 2. Hence, the
similarity variables and solutions are given in table 7, anddbesto which (6) is reduced,
after makingh = 1/y%, are listed in table 12.

2.3.3. Caselll.cs =0,n = —%. In this case, besides the group obtainedsarbitrary
we must distinguish between:

(i) For f(x) = constant, the most general Lie group of point transformations obtained is
G¢, its infinitesimal generators afg/’}>_,.

" " 4 8 a
V=W V) =V, Vi = (x +kt)2a —3(x +k;)u£

" a 3uo ” 0 8 3u 9

(16)

and its commutator and adjoint table appear in tables A7 and A8, respectively.
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(i) For f(x) = kix + ko, the group obtained i§/'. Its infinitesimal generators are:

V///

V///

V///

V///

V/// _

kr , 0 k 9
— el (x + 72)27 34 (x + -2 )u—
k]_ ou
ad
= — _Zkll(k1x+k2)7 + —2kat a[
8 3k 0
=—(kix+k) o+ — + —u— 17
(lx+2)8x+8t+k2u8u (7
( +k2) 0 3 9
= (X _—)— — —U—
ki"0x 2 du
_klli
0x

and its commutator and adjoint table appear in tables A9 and A10.

In table 13, we list the one-dimensional optimal systi(}, i = 1, 2, 3, obtained for

f(x) = constant, the optimal system}” i = 1,2, ...,

obtained forf(x) = k1x + k», as

well as their similarity variables and similarity solutions.

Table 13. Each row show the infinitesimal generatdr§ and U;” of the optimal systems, as

well as their similarity variables and similarity solutiors= +/a b k.
i U; Zi u;
1 aVo+bVj+cV Larctar(% + 4') — Llog(ct + a) h(ct +a)®¥* cos$ 7"“”"’3(”*“))
1" " " . 1/c , _ _ . 3c-6
2 aVy + V) +cVg (ct+a)y’ z—kt—ak h(ct+a) 4
3 aV+ V{4V Ja tan(@ + Lfg’) —kt ht¥4 cos L“j"’g’)
— 1/c
1 VY + vy e ’(klk);;kz) he-3ci/2
! hexp(3kyt/2)

an’-’- Vé//+CV5///

—kat + 24 arctan( 2¢Y axtka) |

ky

?)

se@ ((kz+kky1)/2ky)

Table 14. Each row show thepes to which (6) can be reduced respectively by, or U/”,

h=1/y5.
u',u”  Al(y») =0 S
" dzy 344 dv/dg 2. Bed* _
U; & pyd Ty = =0 k
” doy 3k dy _ 3¢ —
Uz dé Tyid a3 T =0 k
" d“y 3a dv/d~ ay _ _3a _
U3 dzz c2y4 B 12 402 3= 0 k
dy etk L2c- 3,202
uy i _ 3« 1-*;6) _ + 3C . p =0 kix + k2
" dzy _ 3k4d}j/dz i l‘i'_ 3kt
Uz &2~ 162k T ak3 + 16a%42)3  32aZk1 ) =0 hrtk

In table 14 we list theoDEsto which (6) is reduced byU!'}, after makingh = 1/y3.

2.4. Case IVif(x) #0andg(x) # 0.

Uy = U")ex + gOU" + f)u'uy .
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Table 15. Each row shows the functiong(x) and g(x) for which equation (3) can be
reduced by some of the generatdfs as well as those generators. Here= kai=s—1) _ 9

k3z(n—1)
_ _ a _ LY _ katm—n) _ 2ksx+k3 _ 2ksx—+/—d+k3
y=cn—-DD% r=cn—D", B= (T—nyks 2. 9(x) = arctanid, d(x) = Dhex ks

¢1(x) = c(Bksx + 1) with d = dksky — k%, ke = 2k3 — kg4, and p(x) = k5x2 + k3x + ki.

n m @O f 8 Vi

arbitrary arbitrary 1 y (ksx 4 k1)* Mkax + kp)P Vi, Vo, Va3, V4, Vs

arbitrary arbitrary 2 arbitrary arbitrary Vo

arbitrary arbitrary 3 ¢ exp(A42-=2r) cexp(Hlrar ) Vi, Vo, Va

arbitrary arbitrary 4 c; 2 Vi, V2

—1 s+l 5 op) E exp(— R g (0 (0 2exp(— N 4= 0 Vi, Vo, Vs, Va, Vs
.  kpGs+4) _ keG54

1 S48 p(0) T e W $L(0) p(1) ¥ /2 AT d <0 Vi, V2, Vs, Va, Vs

This equation corresponds to porous media with sources, or thermal evolution with sources
and convection. This equation exhibits a wide variety of wave phenomena, some of which
were studied, forf (x) = constant and;(x) = constant, by Rosenau and Kamin [53].

2.4.1. Case IV.a: s arbitrary. In this case, we find that the most general Lie group of
point transformations admitted by (3) is

(i) For m, n arbitrary the four-parameter groug, obtained for case I, as well as for
case ll.a. and case lll.a.
(iForm=s+1,n= —%, the five-parameter grou@s, obtained for case | and case Il.b.

Associated with these Lie groups are their Lie algebras, which can be represented by the set
of all the generator$v,»}f=1, and{v,»}f’:l, respectively. These generators are listed in (11).
In order to construct the one-dimensional optimal system, we need the commutator table
and the adjoint table that appear in tables A1 and A2. In table 15, we list the functions
f(x) andg(x), for which equation (3) can be reduceddpes by some generators, as well
as these generatofs.

The one-dimensional optimal system for case 1V.a, is the one obtained in case I, hence,
the similarity variables and similarity solutions are listed in table 1. ®besto which (3)
is reduced are of the following form:

Ai(y, Yy, Y)+Bi()+Ci(y,y)=0

whereA;(y, ¥, y"), B;(y) andC;(y, y’) are listed in tables 2, 4 and 10, respectively.
For f = ¢; andg = ¢, we find a travelling-waves solutian= H(z) wherez = x — ct
and H satisfies

nin—1

nH" + H? + kaH ™" H' + cHY"H' + koH" "1 = 0.

If ug(x) = 8(x), wheres(x) is the Dirac measure, we have a similarity solution of the
form u(x, t) =t~V H(z), where the similarity variable is = xt=", N~ = n + 1, and the
correspondingdDE is

n(n + 1)(Hn)zz + (Cle7”HS+17n 4 Z)(Hn)z 4+ nH+ C2Zm7n72Hm —0.

2.4.2. Case lV.bs =0,n = —%. In this case besides the group obtaineddarbitrary,
we find that the most general Lie group of point transformations admitted by (3) is:
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Table 16. Each row show the functiong(x) and g(x) for which equation (3) can be reduced
by some of the generatoig”, or V" as well as those generators.

m fx) g(x) i ULy

arbitrary & c(kax + ky) 33D 1 VLVLVI+ VY
arbitrary  kix +ka  c(kyx + kp)3m—D 2 V] V) + vy
arbitrary  kpx + k2 ¢220D2(kyx 4 kp)3m=V/2 3 vy vy

arbitrary  kix +k»  c(kyx + ko) 72 4 V. kVy + vy

-1 kix +kp  clkix + k)72 5 VL VYLV

: kix + ko c(kix +k2)~2 6 V] V) kVy + VY
arbitrary  kix +k2 ¢ 7 VY V) + VY

1 kix +k» ¢ 8 Vlw, V3W, Va, VSW

Table 17. Each row shows the functions(x) and g(x) for which equation (3) can be reduced
by some of the generatoig”, or V" as well as these generators.

n m vi f) g(x)
arbitrary  arbitrary V1, Vv arbitrary arbitrary
dx
i . 1 1 1 . B+ p (x) 2(m:1) ki(n—m) [ 200
arbitrary  arbitrary Vi, V3, Vg A5 = MEERIES cap(o) T expl —— 0
; 3n+1)p’
arbitrary Vi VE Ve o - nBHIr g

(i) For f(x) = constant, the five-parameter grogg.
(i) For f(x) = kix + ko, the five-parameter grou@’’.

Both groups were obtained for case lll.c, their Lie algebras, can be represented by the
set of generator$V/'}>_,, and {V/"}>_,, respectively. These generators are listed in (16)
and (17), their commutator and adjoint tables appear in A7-A10. In table 16, we list the
different functionsf (x) and g(x), for which equation (3) can be reduceddoes and the
corresponding generatof{¥,"} and{V;"}.

2.4.3. Case IV.cs = n — 1. In this case, we find that the most general Lie group of
point transformations admitted by (3) is the three-parameter gigugbtained for case Il.c,
as well as case Ill.b whem = —%. Its infinitesimal generatorfﬁvl.l}ii1 appear in (13). Its
commutator table and the adjoint table are shown in tables A5 and A6, respectively. In
table 17 we list the different choices fgi(x) and g(x), and the generator(sl/il) allowed
by equation (3) for these choices.

Where in table 17p(x) satisfies (15) ang (x) can be obtained from

—2np” (x) = 2f (1) p" (x) + 2p'(x)(1 — m) + ks(m — )¢ (x) + p(L —n)¢'(x) =0

In table 18 we write thedDEsto which (3) is reduced, here = 713

3. Lie symmetries forn =1
In this case equation (3) becomes

U = thyx + gOU™ 4+ fX)u'uy . (18)
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Table 18. Each row shows thepesto which poEe (3) is reduced byUl, hereh(z) = y3.

Ut AG.Y.Y")
2 2
2

1 d 3c2 3 3¢2 2 C1 92k 3¢
vl (2 i) (st -

Q
<

=0

1
3 +@)+

1 dy 3.2 3c2Y) dy 2cy 9c2%k _
vb (-3 -) (TRt =0

o
N

Table 19. Each row shows the functions(x) and g(x)for which equation (18) can be reduced
by some of the generatoﬂzl.z, as well as those generators. Here= 7(% + 1), and
B=—ftm—1 -2

0 S g(x) Ve
calkax +k)*  colkax +k))f  VE VE VZ V?
arbitrary arbitrary 14
kas kg(m—1) 2 2 2
exp(—7%) exp(— M) VE VR VS

Equation (18) is invariant under a Lie group of point transformations with infinitesimal
generator (7)

X = px,t, u)% +q(x,t, u)% +r(x,t, u)%
if and only if

p=""+p) g=q@)  r=rn@outrGn  (19)
wherep, ¢, r and f are related by the following conditions:
[(Fx+ 5+ fras+ fpafu + frasu ™ + D5 421, 4 pyy = 0 (20)

'x

+(roce —r2) =0. (21)
We can then consider the following case.

3.1. Case Vs #0ands # 1

In this case, we find that the most general Lie group of point transformations admitted by
(18) is a four-parameter groufg. Associated with this Lie group is the Lie algebra, which
can be represented by the set of all the generdtaf$’
ad
Vi=Vv Vi=V, Vi=V3 ﬁ=%< (22)
u
The commutator table and the adjoint table appear in tables A11 and A12, respectively. In
table 19, we list the different choices fgi(x) and g(x) and the generator{sl/iz} allowed,
for these choices by equation (18).
In table 20 we list the one-dimensional optimal systgiff} i = 1,2, ..., as well as
the corresponding similarity variables and similarity solutions.
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Table 20. Each row shows the infinitesimal generators of the optimal system, the corresponding
functions f (x) and g(x) for which (18) can be reduced to ame, as well as the corresponding
similarity variables and solutions.

i U? zi u; LACI R {€9)

2 .
1 V32 + cV42 = x€h(z) 2\%1 *M%z
2 aV12+ V22+CV42 x —at h(z) c1 2

Table 21. Each row show the@bes to which ppe (18) is reduced b)U,.Z.

U2 Aiz)=0

1

U2 428 4 e+ e+ 2P — o — B e~ Dh=0

U2 St )@ el =0

3.2. Case Vl.s =1
In this case we find that.

(i) For f(x) = H_Lzay andg(x) =k — Fzza)h

infinitesimal generators ang/?}2_,,

we obtain the two-parameter gro@ﬁ. Its

K2(x + 2a)% 9

t
S U A (23)
(i) For f(x) = c(x+2a)®*V, andg(x) = ﬁéa)z’ we obtain the grougs. Its infinitesimal
generators ar¢V42 ,,
vl“=(x+2a)i+r3—(zb+1)ui Vi ="V,. (24)
0x at ou

(i) For f(x) = ¢, andg(x) = 0, the five-parameter grouzfig. Its infinitesimal generators
are{V/'}y>_,.

7 7 7 0 2 9 0
Vi=W" Vo =V Vo=tx—+1t°— — (tu+x)—
V7_x8+t8 u 9 V7—ta u o
47 20x  ar 20u T x cou’
Their respective commutator and adjoint tables are in the appendix A13—A16. In table 22
we list the one-dimensional optimal systebd3U*, withi = 1,2,...,andU/ i = 1,...,7,

as well as the corresponding similarity variables and solutions.

The obEsto which (18) is reduced appear in table 23.

If ¢ = —1 when f(x) = constant then we get the classical Burgers equation. Lie
symmetries of this equation are known, non-classical symmetries for this equation have
been obtained by Pucci [50] and Arriga al [5].

3.3. Case Vll..s =0
Equation (3) adopts the parabolic normal form

Up = Uy + 80U + f(X)uy (26)
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Table 22. Each row show the infinitesimal generators of the optimal system, the corresponding
functions f (x) and g(x) for which (18) can be reduced to ame, as well as the corresponding
similarity variables and solutions.

i U Zi uj Fx) g(x)
3 3 k1t ky(x+2a)? b 2
L oavi+V; o M-t == k= Graan
3 b —2
2 V2 X h(x) x+2a k— (x+2a)2
4 +2a)? h . 2b+1 d
1 v B clet2a) @Y o
4 (2b+1) d
2 Vv x h(x) c(x + 2a) (x+2a)

Table 23. Each row show thepes to which ppe (18) is reduced b)U,.3 or U,.“.

U? Bi(y)=0

i

U 2z2%h,; + (3—bh)zh, —h =0

U3 h.+gh+ fhh,=0

U} 42%H, + 2cz"P2H + 22+ 20)H, + (b + )zH +dH =0
U} hi+gh+ fhh, =0

which is a Fokker—Planck equation. In this case

x2 X X
=2 P - f(q’ + ”1) (27)

8 2 4 2
if r2(x, t) = 0, and the following conditions must be satisfied:

D B0 T (E—i—g)/(x)(q Dy pl(t))-l— (E+8)(0q' () =0
(28)
where
L
Em=%+7% (29)

If we differentiate (28) three times with respect o as E is a function only ofx, we
deduce that it must be

c
E " -
(E+8)"() = o
integrating three times with respect.tp we then get thak (x) adopts the following form:
(E + g)(x) = cix® + cox + ca+ ﬁ (30)

whereci, ¢z, c3, ¢4 and A are constants. Substituting (30) into (28) we obtain that the
following conditions must be satisfied:

q" (1) —16c14'(1) =0 pi'(t) — (Bcaq'(t) + 4c1pi(t)) =0
, q"(t) / / (31)
r3(t) + 7 +c3q'(t) + copr(t) =0 8ca(Aq'(t) — 2p1(t)) = 0.

There are two cases in which (28) can be solved and the group is non-trivial
Case A: (E+g)(x) =Kx?+bx+c (32)
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d
Case B: (E+g)(x) = Kx?>+c+ 2 (33)

In these cases a six-parameter and a four-parameter Lie group are admitted, respectively.
This classification was obtained fgr = 0 by Ovsiannikov [49]. Lie point symmetries for

(26), whenf’(x) = 0 have been considered by Hill [27], Bluman [11] presented a detailed
analysis of a boundary problem, and potential symmetries have been found by Pucci and
Saccomandi [51].

34.Case Vlll..s =0m # 1

In this case equation (3) adopts the following form:

Uy =ty + gCOU™ + f(x)u, (34)
and the following conditions must be satisfied:

Fr + frie—ry =0 (35)

g’(q ;t)x + pl(t)> + gl(m — Dri+4')] =0. (36)
If we substitute (27) into (35) and (36), we obtain (28) and

/ _ ” 2 _ — 4
FO) gy 8@ m=Dlg"(Ox + dpat)x — 8r3()] = 89'() -
2 8(x) Aq'(H)x + 2pa(t))

the left-hand side of equation (37) depends onlyxorso by differentiating with respect to
t, we obtain that the following conditions must be satisfied:

q'0q" (1) —q"(1)* =0
p1t)g" (t) — 3p1()q" (1) + 2p (1)q' (1) = 0

’ " " ’ 2 (38)
q'(Ora(t) —q" (Ors(t) — p1()py (1) + p1(1))° =0
(m — D) (p1()rz(t) — pi()rs) + pi(t)q” (1) — pi()g'(t) = 0.
We can distinguish:
() If ¢”(@) # 0 then from (38) we obtain:
q= %e{m"‘kS p1 = ks + ks€t'/?
1
kakak
r3 = ke€' — 712;2 > ght/2 (39)
ks — kakgm — 1) + 2k5
2ko(m — 1) '
(i) If ¢”(¢) = 0, then from (38) we obtain
q = kot + k3 p1=ks r3 =kg. (40)

If we consider that in equation (2& depends only on x we obtain, as in the previous
case, thatt (x) adopts the form (30). Substituting (30) into (28) we obtain that conditions
(31) must be satisfied. There are two cases in which (28) can be solved and the group is
non-trivial:

Case A: Ei(x) =ax’+bx +c¢

d
Case B: Ez(x)zaxz—i—c—i—;.
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Table 24. Each row shows the infinitesimal generators of the optimal system, the corresponding
functions E (x) and g(x) for which (18) can be reduced to @mg, as well as their similarity
variables and solutions.

Ui Z uj E(x) gl
2 2
VP + bV e k2 ppehit pexp(- M 4 B L ryd) ax? 4 kexp(M5- + 3 £00) de(m—1)
] x h(x) /4 o
2 k-8 _ 4cyexp(3m—1) [ f(x)dx

v+ kvp e hexp—3 [ f(x)dr) x3n=2 ez Saeeleeh [ /wd) i EGLY

k 1 4cpexp(3 [ f(x) dx(m—1)
VS +kVE+ksVE x —kt hexp(gsts — 3 f(x)dr) c -

Table 25. Each row shows thepesto which poEe (18) is reduced by/? or UP.

US> Aix)=0

i

Up b%k+nmk+ $h=0
U he+gh+ fhh, =0

dh
6 q 2(m z—z+2m+k—10) h(k—8)(Am—k+4) m d2hn ch _
Us - +eh"+ -G =0

5 4(m=1) 64(m—1)2
6 hks _dh(_ ks N _apm oy i —
U2 Gnoae — & Camep k) —Ch" + Gz —ch =0

@) If ¢”() # 0, substituting (39) an& (x) into (28) we find, that the most general
Lie group of point transformations admitted by (34) is fA(x) = ax? + ¢ and
gx) = exp(’"gl(f fx)dx + %)) a three-parameter groug;. Associated with this
Lie groups is the Lie algebra, which can be represented by the gene{ruﬁ)fgl:

Vs = ek”xiijﬂ_e/m k1x2+xf(x) 1\ 8

2 0x ky Ot 8 4 1-m)/)ou (41)
VS_ v Vs _ e ot kyx N fx)\ 9 ’
2= 12 37 2 ox 4 2 ou

(i) If ¢”(¢r) = 0, substituting (40) and (x) into (28); we obtain fotE (x) = c1(kyx + 2ks) 2

andg(x) = cexp(”5t [ f(x) d) (kax + 2k3)%1 GE.
Associated with this Lie group are the Lie algebras, which can be represented by the
generator§ V)3

x 0 0 xf(x) 1 0 6 6 ) fx) o
Vi=C 41— - ) — Ve=V. vi= _— — — .
1= 20 T < 4 l—m)au 2= 72 ST ox 2 ou

(42)

Herea = % andc = %5 In table 24 we list the infinitesimal generators of the one-
dimensional optimal system, the corresponding functifiis) and g(x), as well as their
similarity variables and solutions.

In the table 25 we list theDesto which (34) is reduced.

For case VIII, if f(x) = 0 andg(x) = constant, we recover the solutions obtained by

Clarkson [18].
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3.5. Concluding remarks

In this paper we have classified the Lie symmetries of the quasi-linear parabolic equation (3).
Recognizing the importance of the space-dependent parts on the overall dynamics of (1),
we have studied those spatial forms which admit the classical symmetry group. In general,
the groups that leave (3) invariant depend on several parameters, to each one-parameter
subgroup there will correspond a family of group-invariant solutions. We desired to
minimize the search for group-invariant solutions to that of finding non-equivalent branches
of solutions, which leads to the concept of optimal systems of group-invariant solutions,
from which, every other solution can be derived. To obtain the one-dimensional optimal
systems of solutions, following Olver, we have looked for the one-dimensional optimal
systems of subalgebras. We then constructed all the invariant solutions with respect to the
one-dimensional optimal system of subalgebras, as well as albtEe to which (3) is
reduced. We have found ten different Lie algebras depending,on s, f(x) and g(x),
whose commutator tables and adjoint tables are listed in the appendix. We also list the
different choices for functiong (x), g(x) and constants, m, ands, for which equation (3) is
invariant under a Lie group of point transformations, as well as their infinitesimal generators.
Lie symmetries provide only the beginning of a systematic solution technique for
equation (3). In a forthcoming paper, methods based on non-local symmetries introduced by
Bluman [10, 12—-15] as well as ‘non-classical symmetries’ due to Bluman and Cole [11], will
be used to obtain new solutions to (3). The new solutions being unobtainable by the method
of Lie classical symmetries. We will construct non-local symmetries (potential symmetries)
which are realized as local symmetries of a related auxiliary system of differential equations,
by using potential symmetries we can also linearize (3) by an explicit non-invertible
mapping. We will also study special techniques which may allow us to unfold new solutions.
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Appendix
Table Al. Each row shows the functiosi(x), g(x) and the constants, m ands, for which
equation (3) can be reduced by some of the generatgras well as those generators.

Vil Case f(x) g(x) n m K

Vi I 0 0 arbitrary,—

V; Il.a 0 Mkax + k1)P arbitrary arbitrary

Vi Il.a 0 arbitrary arbitrary arbitrary

V; Il.a 0 cexp( kﬂ’él’_”%" ) arbitrary arbitrary

Vi Il.a 0 c2 arbitrary arbitrary
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Table Al. Continued.
Case f(x) g(x) n m s
la 0 p(x)3m=D exp(sm— %"’*%w(x)) -1 arbitrary
_ @m+Dkg
la O p()3m=D~ 2ma ¢ -1 arbitrary
b 0 c arbitrary, —% 1 arbitrary
Il.c 0 arbitrary arbitrary—3 n
lLa  y(kszx + k1)* 0 arbitrary #n-10
Ill.La  arbitrary 0 arbitrary #n-10
l.a ciex %75:1?”) 0 arbitrary #n—-10
a ¢ 0 arbitrary #n—-10
Vi lla a 0 arbitrary n=1
Vi b arbitrary 0 arbitrary,— 3 n—1
v ek 0 0
v, ke kx4 ko 0 0
Table A2. Each row shows the functiori(x), g(x) and the constants, m ands, for which
equation (3) can be reduced by some of the generators
Vl.[ Case f(x) g(x) n m K
Vi  Na  yplkax +ky)P Mkax + k1)P arbitrary  arbitrary  arbitrary
Vi IV.a arbitrary arbitrary arbitrary  arbitrary arbitrary
V; IVa ciex k“é’l‘&i‘_’ﬁ)") c2exp( kl‘:i’(l; _”’1))") arbitrary arbitrary  arbitrary
Vi Na ¢ c2 arbitrary  arbitrary arbitrary
Vi IVa  ep) St exp(— %) $100) p(x)¥/2 exp(— -1 s+1 arbitrary
iz _keGstd) _ ( kg(3s+4)
Vi WNa cpx)z ¢ G1(x)p(x)3/2¢ \av=d -1 arbitrary  arbitrary
v Vb ok c(kax + ky)3Gm=7 -1 arbitrary 0
V" Vb kix ke c(kyx + kp)3m=D 1 arbitrary 0
V' Vb kux +k calkax + ko) T -1 arbitrary 0
V' Vb kix +ko clkyx + k)2 —% +3 0
Vi IV.b  kix +k2 c -3 arbitrary,1 0
V,.1 IV.c arbitrary arbitrary arbitrary arbitrary n—1
; 1
Vi Ve 55 o arbitrary —3 m
vZ Vv c1(kax + k1)® co(kax + k)P 1 arbitrary  #1,0
vZ v crexp(— "kil* ) exp(— %{D) 1 arbitrary  #£1,0
Vi2 \ arbitrary arbitrary 1 arbitrary #1,0
3 b 2
v,.3 VI S k ~ G 1 1 1
+
V3 VI e(x +2a) Teeen 1 1 1

Table A3. Each row shows the function8(x), g(x) and the

reduced to armDE.

Vi E(x) g(x) nom s
VS ax?4c exp(lm—1) [ f+ ") 1 #1 0
Ve ax?4c  cexp(3m—1) [ f)tkax + 2%k 1 21 0

constants for which (18) can be
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Table A4. Commutator table for the Lie algebf&;}.

(@ W V2 V3 Va Vs

V1 0 0 Vi 0 2V3 + 4V,
Vo 0 0 Vo, =V, 0

V3 —V1 —2Vo 0 0 Vs

Va 0 Vo 0 0 0

Ve —2Va—4Vy 0 Vs 0 0

Table A5. Adjoint table for the Lie algebraVv;}.

Ad V1 Vo V3 Va Vs

\%1 V1 Vo V3 —€eVp Vs Vs — 2eV3 — 4eVy
Vo \% Vo V3—2Vo, Va+eVo Vs

V3 eV, e Vo V3 Vs Vs

Va \ %1 eV, V3 Va Vs

Vs Vi+2eVa+4eVy Vo Va+€Vs Va Vs

Table A6. Commutator table for the Lie algeb(&}.

(a) \Z Vo Vé V‘{ V5/
\ %1 0 0 Vi O ZV?:
Vo 0 0 0 kn—1Vv, O
Vé -V 0 0 0 Vg
Vs 0 —-k(1-n)V, 0O 0 0
VS/ -2 Vé 0 - V5/ 0 0

Table A7. Adjoint table for the Lie algebraV;}.

Ad V1 Vo Vé VA: V5/

Vi W Va Vj—eVi V, Vi —2¢Vj
Vo2 W Vo V3 Ve kd-me !

vy &W V2 14 v, A

vV, W Vo+k(n—DeV, V4 v; Ve

Ve V42V, Vo Vi+eVi V) 4

Table A8. Commutator table for the Lie aIgeb(a{il}.

@ Vvt v} v}

vi o v} oo
vi-vi 0o o0
vi o 0 0
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Table A9. Adjoint table for the Lie aIgebr;{lVil}.

Ad Vi v vi
vi vt vy vl
vi o vitev} vi vi

1 1 1 1
Vs Vi & V3

Table A10. Commutator table for the Lie algeb(&,’}.

(@) W Vs \Z4 \ 74 4

Vi 0 0 vy Vi 0

Vo 0 0 2% VL{/ kVy Vo —kVq
vy =2v,) —2kv, 0 -vy 0

VL{/ Vi —kVi Vé/ 0 0

Ve 0 kVi—Vo O 0 0

Table A1l. Adjoint table for the Lie algebrgv,”}.

Ad WV Vo 124 \ 74 4
121 Vi Vo vy —2eV,) V) —eV1 Ve
Vo Vi Vo V3// — 2ke VL{/ V! — keVq V5/ —e(Vo —kVy)
Vi Vi+2eV) Va4 2keV, 14 V) +evy Ve
v, €&V Vo + keVq evy v, 174
(7 Va—ekVi—Va) V4 vy Ve

Table A12. Commutator table for the Lie algeb(&,”}.

(a) V:It” VZ/// V3/// Vi// Vé”
vy 0 0 0 —vy2vy
| ZE 0 A1Vy 0 0
vy 0 —2qVy 0 0 0
vy o0 0 o -
v/ o2vy 0 0 v/ 0

Table A13. Adjoint table for the Lie algebrgV;”}.

" " " " "
Ad V] vy vy 14 1%

" " " " " " " "
vy vy v 14 Vi eV VY 26V
VZ/// lei” VZ/// V?:” — 2kie VZ/// VA{” Vé//

7 v e2k15 v \4 9 ek]_e v

3 1 2 3 4 5

" —e " " " —€ !
vy eV vy vy 14 eV

ua " " "n " n " n
VeV —2eV) vy v} V) eV VL
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Table A14. Commutator table for the Lie algeb(a’iz}.

(@ V2 VZ vZ OV

vV: 0 0 V2
vV 0 0 2v?
VZ —vZ -2vZ 0
vZ 0 0 0

o © © ©o

Table A15. Adjoint table for the Lie algebraViz}.

Ad V2 14 V2 vz
vz Vv? V2 VZ—evZ V2
V2 v V2 VZ—2cv2 V2

2 2 2 2 2
vZ  eVZ  e*VE Vi VZ
vi o ovE V2 V2 vz

Table A16. Commutator table for the Lie algeb(a’f}.

(@ V§ V3

3 3
2 k1Vs
Vi —kvE 0

Table A17. Adjoint table for the Lie algebravf}.

Ad V3 v3

3 3 3
v oV ey
V3 Vithkevy V3

Table A18. Commutator table for the Lie algeb(a’i“}.
(@ v} v

vi oo -vi
vi o vi oo
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Table A19. Adjoint table for the Lie algebraVI.“}.

Ad V) vy
vioov vy
v vi-evd v

Table A20. Commutator table for the Lie algebtat’,.‘r’}.

(@ VP 143 V3

Ve 0 —kV® 0

Ve VY 0 Tk Vs
Vs 0 —3kVy O

Table A21. Adjoint table for the Lie algebraViS}.

Ad VP vy 14

veoove VP —kieVP V3

vy o eaevp v gh2/2y?
5 5 5 1 5 5

Vs Vs V3 — TkieVy  Vj

Table A22. Commutator table for the Lie algeb(a’iﬁ}.

@ Vvg ve ve: v
6 6 1y6

ve o -vg —3v8 o

ve v 0 0 0
6 1y/6

ve —lvé o o 0

ve 0 0o o 0

Table A23. Adjoint table for the Lie algebraVl.G}.

Ad  VE v Ve vp
vE VP vy e2vE VP
Ve vh-evf VS Vs vE

6 6 1 6 6 6 6
ve vi-levd V§ V§ %

6 6 6 6 6
Ve  Vf % Ve %5

631
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