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Abstract. In this work we get some properties of the plane modelC1(n) (Section 3) of
the reduction modT of the Drinfeld modular curveX1(n). The main result is the explicit
presentation of a special integral basis for this model (Theorem 4.5). This integral basis is
close to be minimal.

Introduction

It is known that the classical modular curveX1(n) has an explicit plane
model (cf. [18]). In the frame of Coding Theory, a similar plane model of
the reduction modT of the Drinfeld modular curveX1(n) was introduced
in [16] (n denotes a prime ideal inFq[T ]). This plane model, that we denote
in this work byC1(n), is smooth in the affine part and has two singular
points on the line at infinity. LetP(x, y) ∈ Fq[x, y] be the polynomial
which definesC1(n); putn = degy(P ). Then the set{1, y, . . . , yn−1} is an

integral basis for the extensionFq[x] ⊂ Fq(C1(n)). Nevertheless, it is not a
minimal basis (see section 2 for the definition of minimal basis). We found
an integral basis for this extension which is close to be minimal. We have
calculated (cf. [15]) the complexity of constructing a minimal basis from
that special integral basis by means of Coates’ algorithm. This complexity
is relatively low compared with the complexity of constructing a minimal
basis from the basis{1, y, . . . , yn−1}: the estimate isO(n6.5(logq n)7) in the
first case; in the second case, the estimate isO(n11.5).

We see this result as a non-trivial example on integral bases for plane
curves which deserves further understanding. We think that a deeper com-
prehension of this example would help to obtain results on integral bases
for more general families of plane curves.

We organize the contents of this paper as follows.
In Sect. 1, we first present Drinfeld modular curves analytically (over

C). These curves have canonical models defined over finite extensions of

B. López: Departamento de Matemáticas, Universidad de Cádiz, E-11510 Puerto Real
(Cádiz), Spain. e-mail: bartolome.lopez@uca.es

Mathematics Subject Classification (1991):11G09, 11R58, 11G20



56 B. López

Fq(T ). Then we present Drinfeld modular curves as moduli varieties of
Drinfeld modules. This allows us to study the reduction modulo a prime of
those canonical models.

In Sect. 2, we recall some facts concerning the integral closure ofFq[x] ⊂
Fq(C), whereC is the plane curve defined by an absolutely irreducible
polynomialP(x, y) ∈ Fq[x, y].

In Sect. 3, we present the plane modelC1(n) for the fiberM
2
1(n)p; the

symbolM
2
1(n) denotes the scheme over Spec((Fq[T ])[n−1]) defined at the

end of section 1 andp is a prime ideal in(Fq[T ])[n−1]. The expansion

of the functionss1e
q−1
(0,1/f ) and s2e

q2−1
(0,1/f ) in the local parametertn,p at the

cusps is also introduced in this section (the functionss1e
q−1
(0,1/f ) ands2e

q2−1
(0,1/f )

are introduced in Remark 1.3, andtn,p is introduced in Remark 3.5). This
expansion is the tool to prove the Lemmas of Sect. 4.

Section 4 is the central part of the work.We present here a special integral

basis for the plane modelC1(n) of the fiberM
2
1(n)(T ) (Theorem 4.5). It is

derived from Lemmas 4.1, 4.3 and 4.4.

1. Preliminaries

We will introduce some facts on Drinfeld modules; a reference for this is
[13]. We also recall some definitions and results on Drinfeld modular curves
which can be found in [19], [20] (Lecture 8) and [4].

Let A := Fq[T ]. Consider a fieldk such that there exists a morphism
i : A → k. Let k{τ } be the ring of non-commutative polynomials overk,
whereτ is the Frobenius endomorphism: ifB is ak-algebra, thenτ(β) = βq ,
β ∈ B. The product ink{τ } satisfies the ruleτα = αqτ , whereα ∈ k.
The ring k{τ } can be identified with the ring ofq-additive polynomials∑l

i=0 αiZ
qi

, where the product is given by substitution. A Drinfeld module
of rankd overk is anFq-homomorphismφ : A → k{τ } defined by

φ(T ) = i(T )τ 0 +
d∑

i=1

αiτ
i ,

whereαi ∈ k andαd 6= 0. Two Drinfeld modulesφ, φ′ are isomorphic if
there exists an elementu ∈ k∗ such thatu · φ(a) = φ′(a) · u for anya ∈ A.

Let us now denote byK = Fq(T ) the field of rational functions in an
indeterminateT . We define onFq(T ) a valuation by|a/b| = qdega−degb.
The completion ofK with respect to| | is K∞ = Fq((1/T )). There exists
a unique extension of the valuation| | to the algebraic closureK∞ of K∞.
The completionC of K∞ is an algebraically closed field.
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An A-lattice in C of rank d is a discrete, finitely generatedA-module
3 ⊂ C such that dimK K3 = d. We can associate to3 the exponential
function

e3(z) = z
∏

β∈3−{0}
(1 − z/β) .

Through the functione3, we can construct a Drinfeld module of rankd. This
construction establishes a bijection between lattices and Drinfeld modules.
Homothetic lattices correspond to isomorphic Drinfeld modules. We will
deal with Drinfeld modules of ranks one and two.

An important example of Drinfeld module is theCarlitz module of rank
one, defined by

ρ(T ) = T τ 0 + τ .

LetL = πA be the lattice corresponding toρ. The elementπ is well-defined
up to an element ofF∗

q . We define the functions

t(z) = eL(πz)−1, t (z) = t(z)q−1 . (1)

The functiont (z) is the analogue to the classical functione2πiz.
Any Drinfeld module of rank two overC is isomorphic to one given by

φz(T ) = T τ 0 + g(z)τ + 1(z)τ 2 , (2)

wherez ∈ � = C − K∞, andg(z) and1(z) are functions on� (cf. [6],
subsection 5.1, p. 679). The group0(1) := GL(2, A) acts on� in the

following way: if γ =
(

a b

c d

)
∈ 0(1) andz ∈ �, then

γ (z) = az + b

cz + d
.

Two Drinfeld modulesφz, φz′ are isomorphic if and only ifz and z′ are
equivalent by0(1).

The space� has the structure of a rigid analytic space overC. A mero-
morphic functionh on� is said to be amodular function of weightk for a
group0 of finite index in0(1) if

h

(
az + b

cz + d

)
= (cz + d)kh(z) ,

for every γ =
(

a b

c d

)
∈ 0. A modular functionh is calledmeromor-

phic at the cusp∞ if h has an expansion in the functiont(z) of the form∑
n≥n0

an t(z)n. A modular functionh is said to be amodular formif h

is holomorphic on� and has an expansion of the form
∑

n≥0 an t(z)n.
The functionsg(z) and1(z) are examples of modular forms for the full
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group 0(1) of weightsq − 1 andq2 − 1, respectively (cf. [12], p. 27).
The functionj (z) = g(z)q+1/1(z) is a meromorphic modular function of
weight 0 for0(1). The modular formsg(z) and1(z) have expansions in
t (z). More precisely, the power series int (z), (π)1−qg(z) = 1 + . . . and
(π)1−q2

1(z) = −t (z)+ . . . have coefficients inA. Hence, the power series
in t ,

j (z) = −t (z)−1 + . . . (3)

has coefficients inA.
Let nown be an ideal inA. The principal congruence subgroup0(n)

of level n in 0(1) is the group of matricesγ =
(

a b

c d

)
∈ 0(1) such that

a, d ≡ 1 mod n, b, c ≡ 0 mod n. A congruence subgroup of leveln is
a group0 which contains0(n). Distinguished examples of congruence
subgroups (apart from0(n) itself) are

00(n) =
{(

a b

c d

)
∈ 0(1) : c ≡ 0 mod n

}
,

01(n) =
{(

a b

c d

)
∈ 0(1) : a ≡ 1 mod n, c ≡ 0 mod n

}
.

The quotientY = 0\� has the structure of a rigid analytic space. The
canonical smooth compactification ofY is the spaceX = 0\�∗, supplied
with a convenient topology, where�∗ = � ∪ P

1(K) (cf. [20], Lecture 8).
The points of0\P

1(K) are the cusps ofX. We will denote byX(n), X0(n)

andX1(n) the spaces0(n)\�∗, 00(n)\�∗ and01(n)\�∗, respectively.
Let us now consider a congruence subgroup0′ such that0′ ⊂ 0. There

is a natural projectionλ : 0′\�∗ → 0\�∗. The ramification ofλ can be
obtained from the stabilizers of the points of�∗ for the action of the groups
0 and 0′ as follows. Letϕ : �∗ → 0\�∗ and ϕ′ : �∗ → 0′\�∗ be
the natural projections. For each pointz ∈ �∗, we consider the subgroups
0z = {γ ∈ 0 : γ (z) = z} and0′

z = {γ ′ ∈ 0′ : γ ′(z) = z}. Let w ∈ 0\�∗
andλ−1(w) = {p1, . . . , pr}. We now consider pointsz, z1, . . . , zr ∈ �∗
such thatϕ(z) = w andϕ′(zi) = pi . Then, the ramification index ofλ at
pi is [0zi

Z(Fq) : 0′
zi
Z(Fq)], whereZ(Fq) is the center of0(1) (observe

that the action ofZ(Fq) on�∗ is trivial). Furthermore, the points ofλ−1(w)

correspond to the double cosets of0′Z(Fq)\0Z(Fq)/0zZ(Fq) (compare
with Proposition 1.37 of [22]).

In the sequel,n will denote aprime ideal in A generated by amonic
polynomialf :

f = T m + am−1T
m−1 + . . . + a0. (4)
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We now determine the ramification indices at the cusps of the projections
X1(n) → X0(n) andX0(n) → 0(1)\�∗.

Proposition 1.1. The cusps ofX0(n) are represented by0 = (1 : 0) and
∞ = (0 : 1). The cusp∞ of X0(n) is unramified aboveX(1) = 0(1)\�∗,
and the cusp0 is ramified with ramification indexqm. The curveX1(n) has
qm−1
q−1 cusps above each cusp ofX0(n).

Proof. The cusps of X0(n) correspond to the double cosets of
00(n)\0(1)/0(1)∞. A set of representatives of00(n)\0(1) is

{(
1 0
c 1

)
: degc < m

} ⋃ {(
0 1
1 f

)}
.

Hence, there are two double cosets in00(n)\0(1)/0(1)∞ which cor-
respond to the matrices

id =
(

1 0
0 1

)
, γf =

(
0 1
1 f

)
.

Thus, the cusps ofX0(n) are represented by∞ andγf (∞) = 0.
The claim on the ramification indices of the mapX0(n) → X(1) at ∞

and 0 follows from the fact that00(n)∞ = {
(

a b

0 d

)
: a, d ∈ F

∗
q, b ∈ A}

and00(n)0 = {
(

a 0
c d

)
: a, d ∈ F

∗
q, c ∈ n}.

Let λ : X1(n) → X0(n) be the natural projection. We claim thatλ is
unramified at each cusp ofX1(n). We prove this for the cusps above∞;
the claim for the cusps above 0 follows from a similar argument. The set of
matrices

G =
{
γa =

(
a b

f d

)
: a monic, dega < m, degd < m, ad − bf = 1

}

is a set of representatives of00(n)/01(n)Z(Fq). Hence, the number of
double cosets of01(n)Z(Fq)\00(n)/00(n)∞ equals the cardinality of the
quotient setG/ ∼, where∼ is the equivalence relation inG defined as
follows:

γa′ ∼ γa ⇔ there existsσ ∈ 00(n)∞ such thatγa′ = γa σ.

From this definition, it is easy to check that ifγa′ ∼ γa, thenγa′ = γa.
This proves the claim.ut
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The spaceX = 0\�∗ has the structure of a smooth projective curve over
C. The function fieldM(X) of X is the field of meromorphic functions on
� which are invariant under the action of0. For instance, in the case of
the full group0(1), we have thatM(X(1)) = C(j (z)). It is also possible
to present explicit models of the function fields ofX0(n) andX1(n). The
function field ofX0(n) is C(j (z), j (f z)). To introduce the function field of
X1(n) we define some modular forms for the group0(n).

Let us considern = (f ), andu = (u1/f, u2/f ) such that degui <

degf . Let φz be the Drinfeld module defined in equation (2) and3z its
corresponding lattice. For eachu, we define the function

eu(z) = e3z
((u1z + u2)/f )

on�. This function has an expansion int(z/f ) (cf. equation (1)), which can
be explicitly given as follows. Let

hu(z) := ρ(u1)(t(z/f )−1) + eL(πu2/f ),

whereρ is the Carlitz module andL is the lattice corresponding toρ. Then,

πeu(z) = hu(z)
∏

c∈A−{0}

(
1 − hu(z)

ρ(c)(1/t(z))

)
(5)

(cf. [4], pp. 61-62). Now, the function field ofX1(n) is

C
(
g(z)e(0,1/f )(z)

q−1, 1(z)e(0,1/f )(z)
q2−1

)
.

The curvesX0(n) andX1(n) have canonical models defined overK that
we will denote byX0(n)/K andX1(n)/K, respectively. The function fields
of X0(n)/K andX1(n)/K are:

M(X0(n)/K) = K(j (z), j (f z)),

M(X1(n)/K) = K
(
g(z)e(0,1/f )(z)

q−1, 1(z)e(0,1/f )(z)
q2−1

)
.

(6)

The curvesX0(n)/K andX1(n)/K have good reduction modp, p ∈
Spec(A[n−1]). In order to introduce this result, we consider these curves as
moduli varieties of Drinfeld modules. Details of the facts that we present
here are in [17], [21] and [20]. We will deal with the case ofX1(n); the case
of the curveX0(n) is analogous.

Let n = (f ) be a prime ideal ofA and letS be a scheme overA[n−1]
with canonical morphismi : A[n−1] → H 0(S, OS). A pair (E, φ), where
E is a group scheme overS andφ : A[n−1] → EndS(E) is a morphism
from A[n−1] to the endomorphism ring ofE as group scheme, is a Drinfeld
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module of rankd over S if there exists a covering ofS by affine open
subschemesU = Spec(R) such thatEU ' Spec(R[x]) and

φ(T )|Spec(R) = i(T )τ 0 +
d∑

i=1

αiτ
i,

whereτ is theq-power Frobenius endomorphism,αi ∈ R andαd is a unit
in R.

Let (E, φ) be a Drinfeld module overS. We consider the sub-
scheme ofE of n-division points,En = kerφ(f ). A level n structure
onφ is an isomorphism

α : (n−1/A)d ×A S ' En

as group schemes overS.

Remark 1.2.The group schemeE, or more precisely, its sheaf of sections, is
an invertible sheaf overS. There exist sectionssi ∈ H 0(S, E1−qi

) such that
si |Spec(R) = αi . Furthermore, ifα is a leveln structure andu ∈ (n−1/A)d ,
thenα(u) defines a sectioneu ∈ H 0(S, E).

The functor

Md(n)(S) =
{

Set of isomorphism classes of Drinfeld modules
overS of rankd with leveln structure

}

is representable by an affine schemeMd(n) smooth overA[n−1]. Ford = 2,
the fibers of the morphismM2(n) → Spec(A[n−1]) are affine curves.

From now on, we will assumed = 2. Letφn be the universal module of
rank 2 over the schemeM2(n) with leveln structureα : (n−1/A)2 → En,
whereE is the line bundle onM2(n) associated withφn. The sections
s1, s2, eu considered in Remark 1.2 satisfy

s
q+1
1 /s2, s1e

q−1
u , s2e

q2−1
u ∈ H 0(M2(n), OM2(n)).

The groupGL(2, A/n)/Z(Fq) acts as a group of automorphisms on the
schemeM2(n) and the quotient by this action isA1

A[n−1]. The natural pro-

jectionM2(n) → A
1
A[n−1] is given by the sectionj = s

q+1
1 /s2 on M2(n).

The action ofGL(2, A/n)/Z(Fq) on the sectionss1e
q−1
u ands2e

q2−1
u is the

following: if γ ∈ GL(2, A/n), then

(s1e
q−1
u )γ = s1e

q−1
uγ and (s2e

q2−1
u )γ = s2e

q2−1
uγ .
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Remark 1.3.The global sectionss1, s2, j , s1e
q−1
u and s2e

q2−1
u on M2(n)

define functions on each fiberM2(n)p of the morphism

M2(n) → Spec(A[n−1])
We denote both, sections onM2(n) and functions onM2(n)p, with the same
symbol, if there is no risk of confusion.

The schemeM2(n) has a canonical compactificationM
2
(n) smooth

and proper over A[n−1] (cf. [20], Lecture 9). The group

GL(2, A/n)/Z(Fq) acts onM
2
(n) and the quotient of this action isP1

A[n−1].
Let us now consider the subgroupH1(n) of GL(2, A/n), where

H1(n) =
{(

a b

c d

)
∈ GL(2, A/n) : a = 1, c = 0

}
. (7)

We denote byH1(n) the image ofH1(n) in GL(2, A/n)/(Z(Fq)). The

schemeM
2
1(n) = H1(n)\M2

(n) is smooth and proper overA[n−1]. The

fibers of the morphismM
2
1(n) → Spec(A[n−1]) are absolutely irreducible

curves. We will explain this last claim.
Let M2(n)(0) be the generic fiber of the morphism

M2(n) → Spec(A[n−1]).
Then,

M2(n)(0) ×K C ' (0(n)\�) × 4 ,

where4 = GL(A2)\GL(n−1A2/A2) (cf. [20], Lecture 8, Proposition 2.1
and Theorem 2.2). There is a natural bijection between4 andGL(2, A)\
GL(2, A/n). The map det: GL(2, A)\GL(2, A/n) → (A/n)∗/F

∗
q is

a bijection. The groupGL(2, A/n) acts on(0(n)\�) × ((A/n)∗/F
∗
q) as

follows. Each matrixγ ∈ GL(2, A/n) can be written as a product of two
matricesµ andα in GL(2, A/n), γ = µ α, such that detµ ∈ F

∗
q andα =(

1 0
0 d

)
with d ∈ (A/n)∗. For eachξ ∈ (A/n)∗, we consider a matrixσ ∈

GL(2, A) such that its imageσ in GL(2, A/n) equals

(
1 0
0 ξ−1

)
µt

(
1 0
0 ξ

)
.

Now, if ([z], [ξ ]) ∈ (0(n)\�) × ((A/n)∗/F
∗
q), then

γ ([z], [ξ ]) = ([σ(z)], [d ξ ]) .

The map det: H1(n) → (A/n)∗ is surjective. Hence, ifM2
1(n) = H1(n)\

M2(n) and M2
1(n)(0) is the generic fiber of the morphismM2

1(n) →
Spec(A[n−1]), then

M2
1(n)(0) ×K C ' H1(n)\ (

M2(n)(0) ×K C
) ' 0′

1(n)\� ,
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where0′
1(n) = {γ t ∈ GL(2, A) : γ ∈ 01(n)}. Thus, the fiberM2

1(n)(0) is

connected. Hence, the generic fiberM
2
1(n)(0) of the morphismM

2
1(n) →

Spec(A[n−1]) is connected; this implies that all the fibers of this morphism
are connected (cf. Corollary 11.5 of [14], p. 280). Being smooth, they are
irreducible.

Remark 1.4.The automorphism of� given byz 7→ 1/z induces an iso-
morphism0′

1(n)\� ' 01(n)\�. Hence,M2
1(n)(0) ×K C ' 01(n)\� and

M
2
1(n)(0) ×K C ' X1(n).

2. Minimal bases for plane curves

Let P(x, y) ∈ Fq[x, y] be an absolutely irreducible polynomial;P(x, y)

defines a projective plane curve that we denote byC. The placesq of C over
the algebraic closure ofFq can be represented by irreducible parametriza-
tions(xq(t), yq(t)) of P(x, y), wherexq(t), yq(t) ∈ Fq((t)). The valuation
associated toq is denoted byvq.

In the sequel, we will assume thatP(x, y) is monicandseparablein y.
Let nowR be the integral closure ofFq[x] in Fq(C), whereFq(C) is the
function field ofC. The ringR is a freeFq[x]-module of rank degy(P ). An

integral basis forR is a basis as freeFq[x]-module.
Let λ be the projection

C
λ−→ P

1

(x, y) 7−→ x
.

The symbolseq andmq will denote the ramification index and the differential
exponent ofλ atq, respectively. Ifq is a place ofC such thatxq(t) ∈ Fq[[t]],
theneq = ord(xq(t)−xq(0)) andmq = ord(x ′

q(t)). If q is a place ofC such

thatxq(t) 6∈ Fq[[t]], theneq = ord(1/xq(t)) andmq = ord((1/xq(t))
′). We

will denote byA the set of placesq of C such thatxq(t) ∈ Fq[[t]]; for each
α ∈ Fq , we will denote byAα the set of placesq of A such thatxq(0) = α.
Finally, A∞ will denote the set of placesq such thatxq(t) 6∈ Fq[[t]].

Next, we recall some facts concerning integral bases. For characteristic
zero, these results are in [3]; we will sketch the proofs (they are also valid
for characteristicp).

Let n := degy(P ). Let {h1, . . . , hn} be a basis forFq(C) over Fq(x).
One can associate toB = {h1, . . . , hn} the rational function

D(h1, . . . , hn) = det
(
Tr

Fq (C)/Fq (x)(hihj )
)

,
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which is called thediscriminantof B.A classical result says that, if{h1, . . . ,

hn} is an integral basis forR overFq[x], then

D(h1, . . . , hn) = ζ
∏
α∈Fq

(x − α)
∑

q∈Aα
mq , (8)

for someζ ∈ F
∗
q .

Let nowh ∈ R. We define

ν(h) = min
q∈A∞

[
vq(h)

eq

]
.

Let {h1, . . . , hn} be an integral basis forR. Sincevq(x
ν(hi )hi) ≥ 0 for each

q ∈ A∞, we have that

ord∞ D (
xν(h1)h1, . . . , xν(hn)hn

) ≥
∑

q∈A∞

mq,

where ord∞ denotes the order of the expansion in 1/x of an element inFq(x)

(as a formal Laurent series). On the other hand, it follows from equation (8)
that

ord∞ D (
xν(h1)h1, . . . , xν(hn)hn

)
= −2(ν(h1) + . . . + ν(hn)) −

∑
q∈A

mq.

Hence, if{h1, . . . , hn} is an integral basis forR, then

ν(h1) + . . . + ν(hn) ≤ −1/2
∑
q∈C

mq.

Definition 2.1. An integral basis{h1, . . . , hn} for R is a minimal basis if

ν(h1) + . . . + ν(hn) = −1/2
∑
q∈C

mq.

It is always possible to construct a minimal basis forR as it follows. We
will use Coates’ algorithm; a detailed description of this algorithm can be
found in [3].

Let {h1, . . . , hn} be an integral basis. We assume that thehi ’s have been
permuted in such a way thatν(h1) ≥ ν(h2) ≥ . . . ≥ ν(hn). For eachhi ,
i = 1, . . . , n, and for eachq ∈ A∞, we consider the expansion

xq(t)
ν(hi ) hi(xq(t), yq(t)) =

∑
s≥0

b(i,q,s) t
s .
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Let A∞ = {q1, . . . , qr}. We now consider then × n matrix

B =



b(1,q1,0) . . . b(1,q1,eq1−1) . . . b(1,qr ,0) . . . b(1,qr ,eqr −1)

...
. . .

...
. . .

...
. . .

...

b(n,q1,0) . . . b(n,q1,eq1−1) . . . b(n,qr ,0) . . . b(n,qr ,eqr −1)


 .

If detB 6= 0, then{h1, . . . , hn} is a minimal basis; this follows from the
properties of the discriminant defined above. If detB = 0, then there exist
β1, . . . , βn ∈ Fq which satisfy the following: ifi0 = max{i : βi 6= 0}, then

ν
(
β1x

ν(h1)−ν(hi0)h1 + . . . + βi0hi0

) ≥ ν(hi0) + 1.

We can replace the basis{h1, . . . , hn} by the basis{h̃1, . . . , h̃n}, where
h̃i = hi if i 6= i0, andh̃i0 = β1x

ν(h1)−ν(hi0)h1 + . . . + βi0hi0. Then,

ν(h̃1) + . . . + ν(h̃n) ≥ ν(h1) + . . . + ν(hn) + 1.

If {h̃1, . . . , h̃n} is a minimal basis, we stop. Otherwise, we repeat the previ-
ous argument. We find a minimal basis after a finite number of steps.

3. The plane modelC1(n)

Let p ∈ Spec(A[n−1]). Let M
2
1(n)p be the fiber corresponding top of the

morphismM
2
1(n) → Spec(A[n−1]). Lets1e

q−1
u ands2e

q2−1
u be the functions

onM
2
(n)p considered in Remark 1.3.

Proposition 3.1. The function field ofM
2
1(n)p is

k(p)
(
s1e

q−1
(0,1/f ), s2e

q2−1
(0,1/f )

)
,

wherek(p) is the residue field ofp.

Proof. First, we recall thatH1(n) denotes the image ofH1(n) (cf. equation
(7)) in GL(2, A/n)/Z(Fq).

Sinces1e
q−1
(0,1/f ) ands2e

q2−1
(0,1/f ) are invariant under the fiberwise action of

H1(n), the fieldk(p)(s1e
q−1
(0,1/f ), s2e

q2−1
(0,1/f )) is contained in the function field

of M
2
1(n)p.

Conversely, letγ ∈ GL(2, A/n)/Z(Fq) be such thathγ = h for any

functionh onM
2
1(n)p. Then,

(s1e
q−1
(0,1/f ))

γ = s1e
q−1
(0,1/f ) .

This implies thatγ ∈ H1(n). Hence, the function field ofM
2
1(n)p is con-

tained ink(p)(s1e
q−1
(0,1/f ), s2e

q2−1
(0,1/f )). ut
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Let us now describe the cusps ofX1(n) above the cusp ofX0(n) rep-
resented by 0 (cf. Proposition 1.1). It is possible to present explicit local
parameters at these cusps.

Let G be the set of representatives of00(n)/01(n)Z(Fq) defined in the
proof of Proposition 1.1. We have that

U =
{
b/d : γa =

(
a b

f d

)
∈ G

}
(9)

is a set of representatives of the cusps ofX1(n) above the cusp 0 ofX0(n).
Furthermore,{d : γa ∈ G} is a set of representatives of(A/n)∗/F

∗
q . Let

w = b/d ∈ U and letµ ∈ 0(1) be such thatµ(w) = ∞. Then,t (µ(z)/f )

is a local parameter at the cuspw (cf. [9], pp. 294-296 or [4], pp. 45-46).
We choose

µ =
(

f −a

d −b

)
.

Proposition 3.2. Letw = b/d be a representative of a cusp ofX1(n) above
the cusp0 of X0(n) and lettn = t (µ(z)/f ) be as above. The coefficients of
the expansion intn of the functionsg(z)e(0,1/f )(z)

q−1 and1(z)e(0,1/f )(z)
q2−1

belong toA.

Proof. Let ω = µ(z) and letγ =
(

a b

c d

)
∈ 0(1). Then,

(eu(z))
γ = (cz + d)−1euγ (z).

By substitutingz = µ−1(ω) in equation (5), we obtain the formula

π(−dω + f )e(0,1/f )(z)

= ρ(−d)(t(ω/f )−1)
∏

c∈A−{0}

(
1 − ρ(−d)(t(ω/f )−1)

ρ(c)(t(ω)−1)

)
. (10)

The(q − 1)-th power of the right side in equation (10) is a power series in
t (ω/f ) = tn.

On the other hand,g(γ (z)) = (cz + d)q−1g(z) and1(γ (z)) = (cz +
d)q2−11(z). Hence, the coefficients of the expansion int (ω) of the functions
(π)1−q(−dω+f )1−qg(z) and(π)1−q2

(−dω+f )1−q2
1(z) belong toA. ut

The fiberM
2
1(n)p has a simple plane model. To introduce this model,

we first define the polynomialsPi(x, y) ∈ k(p)[x, y] recursively:

P0 = 1, Pi+1 = i(T )Pi + xP
q

i + yP
q2

i , (11)

wherei : A → k(p) is the natural morphism. Now, let

P(x, y) = Pm + am−1Pm−1 + . . . + a0 ,
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where theai ∈ Fq are the coefficients of the polynomialf (cf. equation (4)).
The polynomialP(x, y) defines a plane curve that we denote byC1(n).

Proposition 3.3. The functionss1e
q−1
(0,1/f ) and s2e

q2−1
(0,1/f ) on M2

1(n)p satisfy
the equation

P(s1e
q−1
(0,1/f ), s2e

q2−1
(0,1/f )) = 0.

Proof. This follows from the equationφn(e(0,1/f )) = 0, whereφn is the
Drinfeld module onM2(n)p defined byφn(T ) = i(T )τ 0 + s1τ + s2τ

2. ut
From now to the end of Proposition 3.4, we will assume thatp = (0); we

recall that the polynomialP(x, y) and the curveC1(n) have been defined
for eachp ∈ Spec(A[n−1]).

The functionsg(z)e(0,1/f )(z)
q−1 and 1(z)e(0,1/f )(z)

q2−1 on the curve
X1(n) satisfy the equation

P(g(z)e(0,1/f )(z)
q−1, 1(z)e(0,1/f )(z)

q2−1) = 0.

This implies that the curveC1(n) has as a component a plane model of
X1(n). Indeed,C1(n) is a plane model ofX1(n)/K:

Proposition 3.4. The curveC1(n) is absolutely irreducible.

Proof. Let w = b/d ∈ U (see equation (9)). Assume that degd = l < m.
By equation (10),

π(−dω + f )e(0,1/f )(z) = ζ t(ω/f )−ql + . . . ,

whereζ ∈ F
∗
q . Since(π)1−qg(z) = 1 + . . . , we have that

g(z)e(0,1/f )(z)
q−1 = t (ω/f )−ql + . . . (12)

Hence, the place ofC1(n) corresponding tow is on the line at infinity. To
simplify matters, we identifyw with the corresponding place ofC1(n).

Let Q ∈ C[x, y] be an irreducible polynomial such that

Q(g(z)e(0,1/f )(z)
q−1, 1(z)e(0,1/f )(z)

q2−1) = 0.

The polynomialQ defines a projective plane curveZ which is a component
of C1(n) and a plane model ofX1(n).

Let us now consider the projection

C1(n)
λ−→ P

1

(x, y) 7−→ x
.

From equation (12), we get that the ramification indexew of λ at w is ql.
Hence,

∑
w∈U ew = q2m−1

q2−1 = degy(P ). Since
∑

w∈U ew ≤ degy(Q), we
have thatZ = C1(n). ut
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Let us now consider the schemeM
2
1(n). We know that the group

GL(2, A/n)/Z(Fq) acts onM
2
(n) and the quotient by this action isP1

A[n−1]
(cf. [20], Theorem 5.3, p.163). Hence, there is a natural projectionM

2
1(n) →

P
1
A[n−1]. By Proposition 3.2, the cusps ofX1(n)/K above the cusp 0 ofX0(n)

are defined overK; we recall that these cusps are represented by the ele-
ments of the setU defined in equation (9). Because of the isomorphism

M
2
1(n)(0) ' X1(n)/K, these cusps correspond to closed subschemes of

M
2
1(n) isomorphic to Spec(A[n−1]); these subschemes lie above the infi-

nite section ofP1
A[n−1]. Hence, for each fiberM

2
1(n)p, the elements of the

setU correspond toq
m−1
q−1 k(p)-rational points onM

2
1(n)p. For eachw ∈ U ,

we will denote bywp the corresponding point onM
2
1(n)p.

Remark 3.5.Let us denote by
∑

bit
i
n and

∑
cit

i
n the expansions at a cusp

w ∈ U (determined by the choice of the matrixµ, see Proposition 3.2)
of g(z)e(0,1/f )(z)

q−1 and 1(z)e(0,1/f )(z)
q2−1, respectively. For eachp ∈

Spec(A[n−1]), let i : A → k(p) be the natural morphism. The formal
Laurent series

∑
i(bi)t

i
n,p and

∑
i(ci)t

i
n,p are the expansions in a local

parametertn,p atwp of the functionss1e
q−1
(0,1/f ) ands2e

q2−1
(0,1/f ), respectively.

4. Valuations at the places ofC1(n) at infinity

From now on, we assume thatp = (T ); this hypothesis is needed in the
proof of Lemma 4.4. Nevertheless, Lemmas 4.1 and 4.3, and Corollary 4.2
are valid for anyp ∈ Spec(A[n−1]).

Let us denote byUp the set of places ofC1(n) which correspond to the
cusps ofX1(n) above the cusp 0 ofX0(n). The places ofUp are on the line
at infinity of C1(n). The ramification of the projection

C1(n)
λ−→ P

1

(x, y) 7−→ x

at these places is determined in the following Lemma.

Lemma 4.1. The ramification index ofλ is qi at exactlyqi places ofUp,
for i = 0, 1, . . . , m − 1.

Proof. This follows from the proof of Proposition 3.4 and Remark 3.5.ut
Corollary 4.2. The curveC1(n) is absolutely irreducible.

Since C1(n) is the curve which corresponds to the model

k(p)(s1e
q−1
(0,1/f ), s2e

q2−1
(0,1/f )) of the function fieldk(p)(M

2
1(n)p), in the sequel

we will put x = s1e
q−1
(0,1/f ) andy = s2e

q2−1
(0,1/f ).
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Lemma 4.3. Letq ∈ Up. Letvq be the valuation associated toq. If vq(x) =
−ql, thenvq(y) = qm − ql(q + 1).

Proof. We have that

j (z) = g(z)q+1

1(z)
= (g(z)e(0,1/f )(z)

q−1)q+1

1(z)e(0,1/f )(z)q2−1
.

By equation (3),j (z) = −t (z)−1 + . . . Hence,vq(x
q+1/y) = −qm. ut

Lemma 4.4. LetPi(x, y) be the polynomials defined in equation (11). Let
q andvq be as inLemma 4.3. We have that:

(a) if vq(x) = −ql, l ≤ m−2, thenvq(Pi) ≥ −(ql +ql+1+ . . .+qm−2),
for i = 1, 2, . . . , m − 1;

(b) if vq(x) = −qm−1, thenvq(Pi) ≥ 0, for i = 1, 2, . . . , m − 1.

Proof. To simplify matters, the local parametertn,p atwp in Remark 3.5 will
be denoted byt , and the pointwp will be identified with the corresponding
placeq ∈ Up. The coefficients of the formal Laurent series int that we will
consider in this proof will be denoted by the symbol∗; these coefficients
belong toFq .

The first terms of the expansion ofx in t depend only on the factor
ρ(−d)(t(ω/f )−1) of π(−dω + f )e(0,1/f )(z) in equation (10). Ifvq(x) =
−ql, then

x = t−ql + ∗t−ql+ql−1 + . . . + ∗t−ql+ql−1+...+q+1 + . . .

Assume thatl ≤ m − 2. Letj = xq+1/y. Then, fori ≤ m − (l + 2), we
have that

x1+...+qi ≡ Pi+1 mod (1),

i.e., considered as formal Laurent series,x1+...+qi

andPi+1 coincide modulo
an element inFq[[t]].

Let nowi > m − (l + 1). We claim that

x1+...+qm−(l+2)
(
∗ + ∗tq

m−2 + . . . + ∗tq
m−2+...+1 + . . .

)

≡ Pi mod (1).

We first prove the casei = m − l. The expansion ofj−1 is

j−1 = −tq
m + ∗tq

m+qm−1 + . . . + ∗tq
m+...+q+1 + . . .

Hence,

xqm−l

j−1 = −1 + ∗tq
m−1 + . . . + ∗tq

m−1+...+q+1 + . . .
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Now, sincePm−l = xP
q

m−(l+1) + yP
q2

m−(l+1), we have that

x1+...+qm−(l+1)
(
∗tq

m−1 + . . . + ∗tq
m−1+...+1 + . . .

)
≡ Pm−l mod (1).

Finally,

xqm−(l+1)

(∗tq
m−1 + . . . + ∗tq

m−1+...+1 + . . . )

= ∗ + ∗tq
m−2 + . . . + ∗tq

m−2+...+1 + . . .

For i > m − l, the claim is proved by induction, using the same argument.
For the casel = m − 1, it follows that

∗ + ∗tq
m−2 + . . . + ∗tq

m−2+...+q+1 + . . . = Pi,

for i ≥ 1. ut
Let us state the main result. We use here the notations of section 2. LetR

be the integral closure ofFq[x] in Fq(C1(n)). SinceC1(n) is smooth in the
affine part (cf. [16], Lemma 2, p. 2627), we have thatR = Fq[x, y]. Hence,

the setB = {1, y, . . . , yn−1}, wheren = degy(P ) = q2m−1
q2−1 , is an integral

basis forR.

Theorem 4.5. Let R be the integral closure ofFq[x] in Fq(C1(n)). There
exists an integral basis{h1, . . . , hn} for R, where

hl = yl0P
l1
1 · · ·P lm−1

m−1 ,

and the exponentsl0, l1, . . . , lm−1 satisfy:
(a) degy(hl) = l − 1, li < q2 for i ≥ 1 andl0 − 1 ≤ l1+...+lm−1

q2−q
≤ l0;

(b) ν(hl) ≥ −l0.

Proof. Property (b) follows from property (a) and Lemmas 4.3 and 4.4: let
q ∈ Up be such thatvq(x) = −qs . If s = m − 1, thenvq(hl) ≥ −l0q

m−1.
If s < m − 1, then

vq(hl) ≥ l0(q
m − qs+1 − qs) − (qs + . . . + qm−2)(l1 + . . . + lm−1).

By property (a),l1 + . . . + lm−1 ≤ (q2 − q)l0. Hence,vq(hl) ≥ −l0q
s .

Let us now obtain for fixedl, 0 < l < n, exponentsl0, l1, . . . , lm−1

which satisfy property (a). Letδi := degy(Pi); note thatδi+1 = q2δi + 1,
for i = 1, 2, . . . , m − 1. We considerlm−1, εm−1 ∈ N such that

l = lm−1δm−1 + εm−1,
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with lm−1
q2−q

≤ εm−1 ≤ lm−1
q2−q

+ δm−1. If εm−1 − 1 ≤ lm−1
q2−q

, then the exponents

l0 = εm−1, 0, . . . , 0, lm−1 satisfy property (a). Iflm−1
q2−q

< εm−1 − 1, then we
considerlm−2 andεm−2 such that

εm−1 = lm−2δm−2 + εm−2,

with lm−1+lm−2
q2−q

≤ εm−2 ≤ lm−1+lm−2
q2−q

+ δm−2. If εm−2 − 1 ≤ lm−1+lm−2
q2−q

, then the
exponentsl0 = εm−2, 0, . . . , 0, lm−2, lm−1 satisfy property (a). Otherwise,
using the previous argument, fromεm−2 andδm−3, we getlm−3 andεm−3.
This process finishes after a finite number of steps (at mostm). ut
Example 4.6.Let q = 3 andm = 3. The numbers

∑
l ν(hl) corresponding

to the basisB = {1, y, . . . , yn−1}, the basis of Theorem 4.5 and a minimal
basis are

−4095, −164 and − 117,

respectively.
In general, the numbers

∑
l ν(hl) corresponding to the basisB and a

minimal basis are

−n(n − 1)

2
and − q2(qm − 1)(qm−1 − 1)

(q2 − 1)(q − 1)
,

respectively. For the basis of Theorem 4.5, we have the inequality∑
l

ν(hl) ≥ −(1 + 1/q)mn.
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