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Abstract. In this work we get some properties of the plane madgln) (Section 3) of

the reduction mod" of the Drinfeld modular curvel; (n). The main result is the explicit
presentation of a special integral basis for this model (Theorem 4.5). This integral basis is
close to be minimal.

Introduction

It is known that the classical modular cursg (n) has an explicit plane
model (cf. [18]). In the frame of Coding Theory, a similar plane model of
the reduction mod" of the Drinfeld modular curve(;(n) was introduced

in [16] (n denotes a prime ideal iR, [7']). This plane model, that we denote

in this work by C1(n), is smooth in the affine part and has two singular
points on the line at infinity. LeP (x, y) € F,[x, y] be the polynomial
which define<;1(n); putn = deg(P). Thenthe setl, y, ..., y" t}isan
integral basis for the extensidiﬁ_’q[x] C Fq(cl(u)). Nevertheless, itis nota
minimal basis (see section 2 for the definition of minimal basis). We found
an integral basis for this extension which is close to be minimal. We have
calculated (cf. [15]) the complexity of constructing a minimal basis from
that special integral basis by means of Coates’ algorithm. This complexity
is relatively low compared with the complexity of constructing a minimal
basis fromthe basid. y, ... , y"~'}: the estimate i®) (n*>(log, n)”) in the

first case; in the second case, the estimat@(is-°).

We see this result as a non-trivial example on integral bases for plane
curves which deserves further understanding. We think that a deeper com-
prehension of this example would help to obtain results on integral bases
for more general families of plane curves.

We organize the contents of this paper as follows.

In Sect. 1, we first present Drinfeld modular curves analytically (over
C). These curves have canonical models defined over finite extensions of
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F,(T). Then we present Drinfeld modular curves as moduli varieties of
Drinfeld modules. This allows us to study the reduction modulo a prime of
those canonical models.

In Sect. 2, we recall some facts concerning the integral cIosﬂT{g{mI C
Fq(C), whereC is the plane curve defined by an absolutely irreducible
polynomial P (x, y) € F,[x, y].

In Sect. 3, we present the plane modgln) for the fiberﬁi(n)p; the

symbolﬁi(n) denotes the scheme over S((ég[T])[n‘l]) defined at the
end of section 1 ang is a prime ideal in(IFq[T])[n‘l]. The expansion

; q-1 ?-1 .
of the functionssie(, 1, andsze(o;f, in the local parametes, , at the

cusps is also introduced in this section (the functiqg,fll/f) andszez’g;/lf)
are introduced in Remark 1.3, ang, is introduced in Remark 3.5). This
expansion is the tool to prove the Lemmas of Sect. 4.

Section 4 is the central part of the work. We present here a special integral

basis for the plane modé€l;(n) of the fiberﬁi(u)m (Theorem 4.5). Itis
derived from Lemmas 4.1, 4.3 and 4.4.

1. Preliminaries

We will introduce some facts on Drinfeld modules; a reference for this is
[13]. We also recall some definitions and results on Drinfeld modular curves
which can be found in [19], [20] (Lecture 8) and [4].

Let A := FF,[T]. Consider a field such that there exists a morphism
i: A — k. Letk{r} be the ring of non-commutative polynomials ovxer
wherer is the Frobenius endomorphismafis ak-algebra, them (8) = 7,
B € B. The product ink{r} satisfies the rulea = a7, wherea < k.
The ring k{r} can be identified with the ring of-additive polynomials
Zi:o «; Z49', where the product is given by substitution. A Drinfeld module
of rankd overk is anF,-homomorphisny : A — k{r} defined by

d
O(T) =TT+ Y a1’

i=1

wherew; € k anday; # 0. Two Drinfeld modulesp, ¢’ are isomorphic if
there exists an elemente k* such that: - ¢ (@) = ¢'(a) - u for anya € A.

Let us now denote b = F,(T) the field of rational functions in an
indeterminater’. We define orfF,(T) a valuation byla/b| = g4e%—ded,
The completion ofK with respecttq | is Ko, = F,((1/T)). There exists
a unique extension of the valuatipmto the algebraic closurg ., of K.
The completiorC of K . is an algebraically closed field.
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An A-lattice inC of rankd is a discrete, finitely generatettmodule
A C C such that dig KA = d. We can associate ta the exponential
function

eax@=z [[ @-z/8).
BeA—(0}

Through the functiom, , we can construct a Drinfeld module of rathKT his
construction establishes a bijection between lattices and Drinfeld modules.
Homothetic lattices correspond to isomorphic Drinfeld modules. We will
deal with Drinfeld modules of ranks one and two.

An important example of Drinfeld module is ti@arlitz module of rank
one, defined by

p(T) = T+ 1.

Let L = A be the lattice correspondingpo The elemenif is well-defined
up to an element df; . We define the functions

t@) =e (), t(2) = )Tt 1)

The functior (z) is the analogue to the classical functiefi’~.
Any Drinfeld module of rank two ove€ is isomorphic to one given by

¢.(T) = T7° + g(2)T + A2)7?, (2)

wherez € @ = C — K, andg(z) and A(z) are functions orf2 (cf. [6],
subsection 5.1, p. 679). The grolijfl) := GL(2, A) acts onQ in the

following way: if y = (i Z) e I'(D) andz € €, then

Two Drinfeld modulesp,, ¢, are isomorphic if and only it andz’ are
equivalent byl"(1).

The space2 has the structure of a rigid analytic space cd@eA mero-
morphic functionz on € is said to be anodular function of weight for a
groupT of finite index inI" (1) if

h (az +b) = (cz+ d)*h(z) ,

cz+d

cd
phic at the cuspx if 4 has an expansion in the functie(y) of the form
ZnZnoa” t(z)". A modular function/ is said to be anodular formif i
is holomorphic on2 and has an expansion of the forjn,_qa, t(z)".
The functionsg(z) and A(z) are examples of modular forms for the full

for everyy = <a b) e I'. A modular function# is called meromor-
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groupT'(1) of weightsq — 1 andg? — 1, respectively (cf. [12], p. 27).
The functionj (z) = g(z)?™*/A(z) is a meromorphic modular function of
weight 0 forT"(1). The modular formg(z) and A(z) have expansions in
t(z). More precisely, the power seriesiity), (7)*9g(z) = 1+ ... and
(ﬁ)l*qu(z) = —t(z) +... have coefficients idl. Hence, the power series
int,

j()=—t@)t+... (3)

has coefficients im.

Let nown be an ideal inA. The principal congruence subgrofiijgn)
Z Z) e I'(1) such that
a,d = 1 modn, b,c = 0 mod n. A congruence subgroup of levelis
a groupI” which containsl"(n). Distinguished examples of congruence
subgroups (apart frorfi(n) itself) are

of leveln in I'(1) is the group of matriceg = <

Fo(n)={<j2> GF(l):CEOmOdI‘L},

Fl(n)z{(ig)er(l):azlmodn, CEOmOdn}.

The quotientY = I'\Q has the structure of a rigid analytic space. The
canonical smooth compactification Bfis the spaceX’ = I'\Q*, supplied
with a convenient topology, whe®* = Q U PY(K) (cf. [20], Lecture 8).
The points of"\P'(K) are the cusps af. We will denote byX (n), Xo(n)
and X;(n) the spacef (n)\Q*, To(n)\Q* andTI'1(n)\Q*, respectively.

Let us now consider a congruence subgrbupuch thaf™ c I'. There
is a natural projection : I'"\Q* — I'\Q*. The ramification ofs can be
obtained from the stabilizers of the pointscf for the action of the groups
[ andI” as follows. Letp : Q* — IN\Q* andg’ : Q* — I"'\Q* be
the natural projections. For each poine Q*, we consider the subgroups
I={yel:y@=zandl, ={y' eI : y'(z) = z}. Letw € I'\Q*
andi~Y(w) = {p1,..., p,}. We now consider points, z1, ... , z, € Q*
such thatp(z) = w and¢’(z;) = p;. Then, the ramification index of at
piis ', Z(Fy) : T Z(F,)], whereZ(F,) is the center of"(1) (observe
that the action o (IF,) onQ* is trivial). Furthermore, the points of L(w)
correspond to the double cosetsI8Z (F,)\I"Z(FF,)/TI".Z(F,) (compare
with Proposition 1.37 of [22]).

In the sequeln will denote aprimeideal in A generated by anonic
polynomial f:

f=7T"+ am_le_l + ...+ ao. 4)
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We now determine the ramification indices at the cusps of the projections
X1(n) — Xo(n) andXo(m) — C'(D\Q* .

Proposition 1.1. The cusps oKy(n) are represented b = (1 : 0) and
oo = (0: 1). The cuspo of Xg(n) is unramified above (1) = I'(1)\ Q*,
and the cusp® is ramified with ramification index™. The curveX;(n) has
qqm—_‘ll cusps above each cuspXg(n).

Proof. The cusps of Xo(n) correspond to the double cosets of
Co(\I'(1)/ T'(D . A set of representatives 0b(m)\I'(D) is

[(c2) e < UI(55)}

Hence, there are two double cosetsTig(m)\I'(1)/I"(1)s Which cor-
respond to the matrices

g (10) , _(o1
“\oz) "= \ayr)

Thus, the cusps ofp(n) are represented by andy,(co) = 0.
The claim on the ramification indices of the m&Ep(n) — X (1) atoo

and 0 follows from the fact thdfg(n)s = {(gz) ta,d € Fy,b e A}

d :a,deFZ,cen}.

LetA : X1(n) — Xo(n) be the natural projection. We claim thats
unramified at each cusp &f;(n). We prove this for the cusps abowe;
the claim for the cusps above 0 follows from a similar argument. The set of
matrices

andl'o(m)o = {(z 0

G = {ya = <;Z> : a monic, dega < m, degd <m,ad—bf:1}

is a set of representatives bf(n)/I'1(n)Z(F,). Hence, the number of
double cosets df'1(n) Z(IF,)\I'o(n)/ T'o(n) equals the cardinality of the
quotient setG/ ~, where~ is the equivalence relation i defined as
follows:

Vo ~ Ya & there exister € IN'p(n),, such thaty, =y, o.

From this definition, it is easy to check thatif ~ y,, theny, = y,.
This proves the claim.o
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The spac&X = I'\Q* has the structure of a smooth projective curve over
C. The function fieldM (X) of X is the field of meromorphic functions on
Q which are invariant under the action bf For instance, in the case of
the full groupI’ (1), we have thatM (X (1)) = C(j(2)). It is also possible
to present explicit models of the function fields X¥§(n) and X1(n). The
function field of Xo(n) is C(j (z), j(fz)). To introduce the function field of
X1(n) we define some modular forms for the grdofn).

Let us considen = (f), andu = (u1/f, u2/f) such that deg; <
degf. Let ¢, be the Drinfeld module defined in equation (2) afnd its
corresponding lattice. For eaahwe define the function

e, (2) = ep, (w1z +uz)/f)

on . This function has an expansiontix/f) (cf. equation (1)), which can
be explicitly given as follows. Let

ha(2) = p(u)(H(z/ )™ + er(Tuz/f),

wherep is the Carlitz module and is the lattice corresponding @ Then,

B ~ h,(2)
me,(z) = h,(2) CJ:_[{O} (1 - m) ()

(cf. [4], pp. 61-62). Now, the function field dfy(n) is

C (8(2)6(0,1/f) ()77, A(Z)e(o,l/f)(z)"z_1> ‘

The curves{o(n) andX(n) have canonical models defined ovethat
we will denote byXo(n)/K andX1(n)/K, respectively. The function fields
of Xo(n)/K andX;(n)/K are:

M(Xom)/K) = K(j(z), j(f2),

MEx®)/K) = K (2@e0un@ ™, A@eoyn@ ). ©

The curvesXo(n)/K and X1(n)/K have good reduction mad p €
SpecA[n~1)). In order to introduce this result, we consider these curves as
moduli varieties of Drinfeld modules. Details of the facts that we present
here are in [17], [21] and [20]. We will deal with the caseXaf(n); the case
of the curveXy(n) is analogous.

Letn = (f) be a prime ideal oA and letS be a scheme ovet[n—]
with canonical morphisni: A[n=1] — HOY(S, Oy). A pair (E, ¢), where
E is a group scheme ovefand¢ : A[n~1] — Ends(E) is a morphism
from A[n~1] to the endomorphism ring & as group scheme, is a Drinfeld
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module of rankd over S if there exists a covering of by affine open
subscheme® = Spe¢R) such thatE; >~ SpecR[x]) and

d

¢ (T)lspecry = UDT° + D a7,
i=1

wherer is theg-power Frobenius endomorphism, € R andey is a unit
in R.

Let (E,¢) be a Drinfeld module overS. We consider the sub-
scheme ofE of n-division points,E,, = ker¢(f). A level n structure
on¢ is an isomorphism

oa:(m /A x4 S~ E,
as group schemes ovsr

Remark 1.2.The group schemg, or more precisely, its sheaf of sections, is
an invertible sheaf ove$. There exist sections € H°(S, EY~%") such that
si|lspecr) = @;. Furthermore, ifx is a leveln structure andi € (n=1/A)4,
thena (1) defines a section, € H°(S, E).

The functor

M (0)(S) = { Set of isomorphism classes of Drinfeld modu}es

over S of rankd with leveln structure

is representable by an affine schemfi$(n) smooth over [n1]. Ford = 2,
the fibers of the morphism/2(n) — SpecA[n~1]) are affine curves.

From now on, we will assumé = 2. Let¢, be the universal module of
rank 2 over the schem#?(n) with leveln structurex : (n=1/4)? — E,,
where E is the line bundle on/?(n) associated withp,. The sections
s1, 82, e, considered in Remark 1.2 satisfy

+1 -1 21 0/g2
5177 /52, s1€17, 508t € HO (M m), Orpza))-

The groupGL(2, A/w)/Z(F,) acts as a group of automorphisms on the

schemeM?(n) and the quotient by this action jﬁs}‘[n,ll. The natural pro-

jection M?(n) — Ai\[n_ll is given by the sectiori = sZ*l/sz on M?(n).
The action ofGL(2, A/n)/Z(F,) on the sections;e! * ands,e? Lis the
following: if y € GL(2, A/n), then

a=1yr _ ¢ 41 ?-Lyy _ o 471
(s1€f77)" = s1e, and (sgel %) = sz, .
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Remark 1.3.The global sectionsy, s, j, s1¢f > andsye? * on M2(n)
define functions on each fibMZ(n),, of the morphism

M?(n) — SpecA[n))

We denote both, sections &#?(n) and functions od/2(n),, with the same
symbol, if there is no risk of confusion.

The schemeM?(n) has a canonical compactificatio?z(n) smooth
and proper over A[n~!'] (cf. [20], Lecture 9). The group
GL(2, A/n)/Z(F,) acts onﬁz(n) and the quotient of this action]]’%wlr

Let us now consider the subgro@f (n) of GL(2, A/n), where

Hl(n)={<‘c‘fl> € GL(2, A/n):a:l,c:O} . @)

We denote byH:(n) the image ofH;(n) in GL(2, A/w)/(Z(F,)). The
schemeﬁi(n) = Hl(n)\ﬁz(n) is smooth and proper ovet[n~']. The
fibers of the morphisnﬁi(n) — Spec¢A[n~!]) are absolutely irreducible

curves. We will explain this last claim.
Let M?(n) o, be the generic fiber of the morphism

M?(m) — SpecA[n~1)).

Then,
M? ()0 xx C>~ (TM)\Q) x &,

whereE = GL(A?)\GL(n1A2/A?) (cf. [20], Lecture 8, Proposition 2.1
and Theorem 2.2). There is a natural bijection betwBeamd G L (2, A)\
GL(2,A/n). The map det: GL(2, A)\GL(2, A/n) — (A/n)*/F; is
a bijection. The grougi L(2, A/n) acts on(I'(n)\2) x ((A/n)*/IE“;;) as
follows. Each matrixy € GL(2, A/n) can be written as a product of two
matricesy anda in GL(2, A/n), y = pa, such that det € F; anda =

(33) with d € (A/n)*. For eacht € (A/n)*, we consider a matrix

GL(2, A)suchthatitsimag€in GL(2, A/n) equals(é §1> ut (é ?)

Now, if ([z], [£]) € (T(M)\) x ((A/n)*/F}), then
y (2], [§]) = ([0 (2)], [d §]) .

The map det Hi(n) — (A/n)* is surjective. Hence, iMf(n) = Hi(n)\
M?@m) and M?(n), is the generic fiber of the morphis#?(n) —
Spec¢A[n~1)), then

MZm) ) xx C =~ Hi(w)\ (M*(n) (0 xx C) ~ T\,
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wherel'j(n) = {y' € GL(2, A) : y € T'1(n)}. Thus, the fibed?(n) ) is
connected. Hence, the generic fikg (n) o, of the morphismz; (n) —
SpecA[n~1)) is connected; this implies that all the fibers of this morphism
are connected (cf. Corollary 11.5 of [14], p. 280). Being smooth, they are
irreducible.

Remark 1.4.The automorphism of2 given byz — 1/z induces an iso-
morphismI';(n)\Q ~ I';(n)\Q. Hence,M?(n) g xx C >~ I'1(n)\Q and

—2
Ml(n)(o) XK C> Xl(n).

2. Minimal bases for plane curves

Let P(x,y) € F,[x, y] be an absolutely irreducible polynomiat;(x, y)
defines a projective plane curve that we denot€ byhe places of C over
the algebraic closure df, can be represented by irreducible parametriza-
tions (xq(t), yq(t)) of P(x, y), wherex, (1), yq(t) € Fq((t)). The valuation
associated tq is denoted by,.

In the sequel, we will assume thB{(x, y) is monicandseparabldn y.
Let now R be the integral closure d,[x] in F,(C), whereF,(C) is the
function field ofC. The ringR is a frequ [x]-module of rank degP). An
integral basis foR is a basis as freﬁq [x]-module.

Let A be the projection

c 2 pt
(x,y) — x ’

The symbolg, andm  will denote the ramification index and the differential
exponent o atq, respectively. Ify is a place o such that,(¢) € Fq[[t]],
theneq = ord(x4 (1) —x4(0)) andmq = ord(x;(1)). If g is a place ol” such
thatxq(¢) & Fq[[t]], thene, = ord(1/x4(¢)) andmg = ord((1/x4(z))"). We
will denote by.A the set of placeg of C such thatcg(r) € Fq[[t]]; for each

a € Fq, we will denote byA,, the set of placeg of A such thatr,(0) = «.
Finally, A, will denote the set of placagsuch thatcy(z) ¢ Fq[[t]].

Next, we recall some facts concerning integral bases. For characteristic
zero, these results are in [3]; we will sketch the proofs (they are also valid
for characteristig).

Letn := deg,(P). Let {h, ..., h,} be a basis foff,(C) overF,(x).

One can associate = {hq, ... , h,} the rational function

D(hy, ...  h,) = det(TrFq(C)/E(x)(h,-hj)) ,



64 B. Lopez

whichis called theiscriminantof B. A classical result says that {if, . .
h,} is an integral basis foR overF,[x], then

]

D1, ... h) =¢ [ ] (x —ayZacae™ (8

aelf,

for somez € F, .
Let nowh € R. We define

v(h) = min [w.,_(h)]

qeAso €q

Let{hy, ..., h,} be anintegral basis fak. Sincev,(x""’h;) > 0 for each
q € A, we have that

ordse D (x" "y, ..., x""h) = Y my,
qeAso

where ord, denotes the order of the expansion jo bf an element ir]i<_*‘q (x)
(as a formal Laurent series). On the other hand, it follows from equation (8)
that

Ortse D (x""hy, ..., x""p,)

= —200(h) + ...+ () = Y g

qeA
Hence, if{hy, ... , h,} is an integral basis foR, then
v(hy) + ...+ v(hy) < =1/2) myg.
qeC
Definition 2.1. An integral basigh, ... , h,} for R is a minimal basis if

v(hy) + ... 4 V() = =1/2) " my.
qeC

It is always possible to construct a minimal basisRoas it follows. We
will use Coates’ algorithm; a detailed description of this algorithm can be
found in [3].

Let{hi, ..., h,} be anintegral basis. We assume thatitfiehave been
permuted in such a way thath,) > v(hy) > ... > v(h,). For each;,
i=1...,n,and for eacly € A.,, we consider the expansion

xq ()" hi(xq(1), yq(1)) =Y biigs '

s>0
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Let A = {q1, ..., q,}. We now consider the x n matrix

b1.q1,0) - -+ bLareq-1 -+ D1q.0 -+ Dgreq -1

B = c : P :
b,q1,0 - - banareq,-1) - bn,a,,0) -+ Dn,aeq,-1)

If detB # 0, then{hq, ..., h,} is a minimal basis; this follows from the
properties of the discriminant defined above. If et 0, then there exist
B1, ..., B. € F, which satisfy the following: ifig = max{i : g; # 0}, then

v (ﬁlxv(hl)_v(hio)hl +...+ :Biohio) > U(l’lio) + 1

We can replace the basi8s, ... , h,} by the basishy, ... , h,}, where
hi = h; if i #io, andh;, = Prx" "R py + .+ Biohiy. Then,
v(h) 4 ...+ v(hy) > vh) + ...+ vh) + 1.

If {le, e fz,,} is a minimal basis, we stop. Otherwise, we repeat the previ-
ous argument. We find a minimal basis after a finite number of steps.

3. The plane modelC1(n)

Letp € SpecA[n1)). Letﬁf(n)p be the fiber corresponding joof the
morphismﬁi(n) — Spe¢A[n~1)). Letsied andsze?f*1 be the functions
onﬁz(n)IJ considered in Remark 1.3.

Proposition 3.1. The function field oﬁi(n)p is

-1 21
k) (Sle?O.,l/f)’ S2"<qo,1/f)) ’
wherek(p) is the residue field a.

Proof. First, we recall that{;(n) denotes the image df1(n) (cf. equation
(7)INGL(2,A/n)/Z(F,).
2

Sincesle(qofll/f) andszefoi/lf) arezinvariant under the fiberwise action of
Hi(n), the fieldk(p)(slez’ofll/f), Szezloi/lf)) is contained in the function field
of M3(n),.

Conversely, lety € GL(2, A/n)/Z(FF,) be such that” = h for any
function on Mﬁ(n)p. Then,

9-1 \y _ q-1
(s1€0,1/5))" = S1€0,/) -

This implies thaty € H;(n). Hence, the function field dt_/li(n)p is con-
. . -1 21
tained ink(p) (s1€(o 11 $2€(o1,7))- O
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Let us now describe the cusps ¥f(n) above the cusp oky(n) rep-
resented by 0 (cf. Proposition 1.1). It is possible to present explicit local
parameters at these cusps.

Let G be the set of representativesiafin)/ 'y (n) Z(IF,,) defined in the
proof of Proposition 1.1. We have that

U:{b/d:yF(;iZ)eG} 9)

is a set of representatives of the cuspXefn) above the cusp 0 ofo(n).
Furthermore{d : y, € G} is a set of representatives i /n)*/F;. Let
w=0>b/d € U and letu € I'(1) be such thatt(w) = oo. Then,r(u(z)/f)
is a local parameter at the cusp(cf. [9], pp. 294-296 or [4], pp. 45-46).

We choose
_ (] —a
H= (d ~b)

Proposition 3.2. Letw = b/d be a representative of a cuspXf(n) above
the cus of Xo(n) and lett, = r(u(z)/f) be as above. The coefficients of
the expansionin, of the functiong (z)e(.1/5)(z)? "t andA(z)e.1/) (7)1
belong toA.

ab

Proof. Letw = u(z) and lety = (C d

) e I'(D). Then,

(€u(2))” = (cz+d) teuy (2).
By substitutingz = ©~1(w) in equation (5), we obtain the formula
T(—dw + fewo,1/f)(2)
= p(=d) /™ T]

ceA—{0}

(1 _ P(—d)(f(w/f)_l)> (10)
p)(t(w)™h) .

The (g — 1)-th power of the right side in equation (10) is a power series in
t(w/f) =In-

Pn the other hangg (y (2)) = (cz + d)71g(z) andA(y (z)) = (cz +
d)?”"~1A(z). Hence, the coefficients of the expansion(i) of the functions

@) (—dw+ £)11g(z) and(@) 1 (—~dw+ £)19°A(z) belong toA. O

The fiberﬁi(n)p has a simple plane model. To introduce this model,
we first define the polynomialg; (x, y) € k(p)[x, y] recursively:

Po=1, Py =i(T)P +xP! +yP’, (11)
wherei : A — k(p) is the natural morphism. Now, let

P(xay):Pm+amfle—1+...+ao,
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where they; € IF, are the coefficients of the polynomigl(cf. equation (4)).
The polynomialP (x, y) defines a plane curve that we denotethiyn).

Proposition 3.3. The functionsief;;,,, and 52511, ON M2(n), satisfy
the equation
-1 2.1
P(s1€{0.1/7) $2¢{0.175)) = 0.
Proof. This follows from the equatio, (e 1/5)) = 0, whereg, is the
Drinfeld module onM2(n),, defined byp, (T) = i(T)z° + s17 + 5272, O

From now to the end of Proposition 3.4, we will assume ghat (0); we
recall that the polynomiaP (x, y) and the curve”;(n) have been defined
for eachp € SpecA[n~1]).

The functionsg(z)e.1/7)(z)?~* and A(z)e(o_l/f)(z)qz‘l on the curve
X1(n) satisfy the equation

P(g(2ew1/p) ()7, A(Z)e(o,l/f)(z)qz_l) = 0.

This implies that the curv€;(n) has as a component a plane model of
X1(n). Indeed,C1(n) is a plane model oK;(n)/K:

Proposition 3.4. The curveC1(n) is absolutely irreducible.

Proof. Letw = b/d € U (see equation (9)). Assume that deg- I < m.
By equation (10),

T(—do + e = CHw/f)™ +...,
where¢ € ;. Since(m)1g(z) = 1+ ..., we have that

g@eoin @ =1/ + ... (12)

Hence, the place af'1(n) corresponding tav is on the line at infinity. To
simplify matters, we identifyw with the corresponding place 6f;(n).
Let Q € Clx, y] be an irreducible polynomial such that

0(2(@ewan@? L AR)ewn ) = 0.

The polynomialQ defines a projective plane curiewhich is a component
of C1(n) and a plane model of;(n).
Let us now consider the projection

Ci(n) -2 Pt
(x,y) — x ’

From equation (12), we get that the ramification indgxof A atw is ¢’.

Hence,) ., ew = ‘1[[—2'"?’11 = deg,(P). Since)_, ., en < deg,(Q), we

have thatZ = C:(n). O
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Let us now consider the schenﬁi(u). We know that the group
GL(2, A/n)/Z(F,) acts onﬁz(n) and the quotient by this action]]”éj‘[n,l]
(cf.[20], Theorem 5.3, p.163). Hence, there is a natural projeﬁzé(m) —
]P’}‘[n,l]. By Proposition 3.2, the cusps &f (n)/K above the cusp 0 dfo(n)

are defined ovekK; we recall that these cusps are represented by the ele-
ments of the set defined in equation (9). Because of the isomorphism

Mﬁ(n)(o) ~ Xi1(n)/K, these cusps correspond to closed subschemes of
Mi(n) isomorphic to Spe@ [n~1]); these subschemes lie above the infi-
nite section oﬂ?}‘[n_l]. Hence, for each fibeﬁi(n)p, the elements of the

setU correspond td:T_ll k(p)-rational points orﬁi(n)p. For eachw € U,
we will denote byw,, the corresponding point oﬁi(n)p.

Remark 3.5.Let us denote by b,z and_ ¢;#. the expansions at a cusp
w € U (determined by the choice of the matrix see Proposition 3.2)
of g(z)e.1/1)(z)?* and A(z)e(o,l/f)(z)‘fzfl, respectively. For each <

SpecA[n1]), leti : A — k(p) be the natural morphism. The formal
Laurent seriesy i(bl-)t{LF and Zi(c,-)tfl’p are the expansions in a local

; q-1 q?-1 ;
parameter, , atwy of the functionsie(q 1, andsze(q 5, respectively.

4. Valuations at the places ofC;(n) at infinity

From now on, we assume thpt= (T); this hypothesis is needed in the
proof of Lemma 4.4. Nevertheless, Lemmas 4.1 and 4.3, and Corollary 4.2
are valid for anyp € SpecA[n~1]).

Let us denote by/, the set of places of'1(n) which correspond to the
cusps ofX;(n) above the cusp 0 dfo(n). The places o/, are on the line
at infinity of C1(n). The ramification of the projection

Ci(n) -2 P!
(x,y) — x
at these places is determined in the following Lemma.

Lemma 4.1. The ramification index of is ¢’ at exactlyq’ places ofU,,
fori=0,1,..., m—1

Proof. This follows from the proof of Proposition 3.4 and Remark 35.
Corollary 4.2. The curveC;(n) is absolutely irreducible.

Since Ci(n) is the curve which corresponds to the model
2 PR
k(p) (1€l 1) S2¢lo1,,) OF the function fieldk () (M (n)y), in the sequel

: _ a1 !
we will putx = s1eq ;. andy = sze(q 1.
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Lemma 4.3. Letq € U,. Letvg be the valuation associatedgolf vg(x) =
—q', thenvg(y) = ¢" —¢'(g + 1.

Proof. We have that

i@ = g(zx)r _ (g(R)e.ap)(2) T HHL
A(z) A(Z)e(o,l/f)(z)qz—l

By equation (3),j (z) = —t(z) "t + ... Hencep,(x4™/y) = —¢™. O

Lemma 4.4. Let P;(x, y) be the polynomials defined in equation (11). Let
q andvg be as inLemma 4.3We have that:

(@)ifvg(x) = —q' 1l <m=-2, thenvg (P;) > —(q'+q" 4. g,
fori=12..., m—1;

(b) if vg(x) = —g™1, thenvg(P;) > 0,fori =1,2,... ,m — 1,

Proof. To simplify matters, the local parametgy, atw, in Remark 3.5 will
be denoted by, and the point, will be identified with the corresponding
placeq € Uy. The coefficients of the formal Laurent series that we will
consider in this proof will be denoted by the symbolthese coefficients
belong tolF,.

The first terms of the expansion ofin r depend only on the factor
p(—ld)(t(a)/f)’l) of T(—dw + f)ew.1/5) (z) in equation (10). Ifvg(x) =
—q', then

_ ) -1 ) -1
X =19 470 p poagT e el

Assume that <m — 2. Letj = x?*1/y. Then, fori <m — (I + 2), we
have that ,
¥+ = p_ 1 mod (1),

i.e., considered as formal Laurent seri;é'si"*qi andP; 1 coincide modulo
an element irf, [[7]].
Let nowi > m — (I + 1). We claim that

m—(142) m—2 m—2
PR A (* A e T )

= P, mod (1).

We first prove the case= m — [. The expansion of 1is

m

. m m—1 m
JT = 0" gt g Tt

Hence,

m—l m—1

m—1
x0T = Cl 4w 4t Tetat
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. 2
Now, sinceP,,_; = xPn‘jf(Hl) + yP,?HlH), we have that

xl+__'+qm—(l+1) <*tqm—l o+ >l<tqm—1+_,,+1 4. ) = mel mod (1)

Finally,

m—(+1) m—1

m—1
Get?" 4 et )
m—2 m—2
=% 4 %19 4. w? et

xq

Fori > m — [, the claim is proved by induction, using the same argument.
For the casé = m — 1, it follows that

m—2 m—2
w4 xt? 4 wgd Tetetly = p
fori > 1. O

Let us state the main result. We use here the notations of section2. Let
be the integral closure @, [x] in F,(C1(n)). SinceCy(n) is smooth in the
affine part (cf. [16], Lemma 2, p. 2627), we have tRat= I, [x, y]. Hence,
the setB = {1, y,...,y" '}, wheren = deg (P) = ";_ﬁll is an integral
basis forR.

Theorem 4.5. Let R be the integral closure df,[x] in F,(C1(n)). There
exists an integral basig, ... , h,} for R, where

lo pl1 Im—1
hp=y°P - P77,

and the exponents, I, ... , [,,_1 satisfy:
(a)deg,(h) =1 —1,1; < g?fori > landly— 1 < % <o
(b) v(hy) > —lo.

Proof. Property (b) follows from property (a) and Lemmas 4.3 and 4.4: let

q € Uy be such that,(x) = —¢*. If s = m — 1, thenvg(h;) > —log™ L.
If s <m —1, then

va(h)) > lo(@" — ¢ ™ =) — (@ + ... +¢" DU+ ... + ).

By property (@)/1 + ... + lu—1 < (g% — q)lo. Henceq(h)) > —log®.

Let us now obtain for fixed, 0 < I < n, exponentSo, 1, ... ,L,_1
which satisfy property (a). Let; := deg,(P)); note thats; 1 = ¢%5; + 1,
fori=1,2,...,m — 1. We considet,,_1, €,,_1 € N such that

I =1p 10m-1+ €n_1,
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with qif; <é€n1 < ;,{_; + 81 femq—1< qi’% then the exponents
lo=¢n_1,0,...,0,1,_1 satisfy property (a). I% < €,-1— 1, thenwe
consider,,_» ande,,_» such that

€m—1= lm725m72 + €m—2,

with 11”:;2# S€p-2= lm_;z# + 5m—2- If €m—2— 1 = lm_qu%v then the
exponentsy = €,,_2,0,...,0,1, 2, 1,1 satisfy property (a). Otherwise,
using the previous argument, froe_, ands,,_3, we getl,,_3 ande,,_s.

This process finishes after a finite number of steps (at masto

Example 4.6.Letq = 3 andm = 3. The number$_, v(h;) corresponding
to the basis3 = {1, y, ..., y""}, the basis of Theorem 4.5 and a minimal
basis are

—4095 —-164 and — 117,

respectively.
In general, the numbery_, v(h;) corresponding to the basl$ and a
minimal basis are
-1 20, m __ 1 m—1 _ 1
_nn=D g 4 (q2 )(q )
2 (¢°—D@ -1

respectively. For the basis of Theorem 4.5, we have the inequality

> () = =L+ 1/q)mn.

1
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