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Abstract. In this paper new symmetry reductions and exact solutions are presented for the porous
medium equation with convectionut = (un)xx + f (x) us ux . Those spatial forms for which the
equation can be reduced to an ordinary differential equation are studied. The symmetry reductions
and exact solutions presented are derived by using the nonclassical method developed by Bluman
and Cole and are unobtainable by Lie classical method. The asymptotic behaviour of some of the
new solutions is analysed.

1. Introduction

The quasi-linear parabolic equation

ut = (un)xx + f (x)usux (1)

with n 6= 0 is a mathematical model for many physical problems that corresponds to nonlinear
diffusion with convection. The second term on the right-hand side of (1) is of convective
nature. In the theory of unsatured porous medium, the convective part may represent the
effect of gravity. Whenf (x) = constant, we arrive to the Boussinesq equation of hydrology,
involved in various fields of petroleum technology and ground water hydrology.

The importance of the effect of space-dependent parts on the overall dynamics of (1) is
well known. Nevertheless, more often that not, the spatial dependent factors in (1) are assumed
to be constant, although there is no fundamental reason to assume so. Actually, allowing for
their spatial dependence enables one to incorporate additional factors into the study which may
play an important role. For instance, in porous medium this may account for intrinsic factors
like medium contamination with another material or in plasma. This may express the impact
that solid impurities arising from the walls have on the enhancement of the radiation channel.

It is a well known fact that non-negative solutionsu of (1) may give rise to interfaces
(or free boundaries) separating regions whereu > 0 from ones whereu = 0. These fronts
are relevant in the physical problems modelled and their occurrence is essentially due to slow
diffusion (n > 1) or to convective phenomena dominating over diffusion(s < n− 1). In this
case ifs 6 0 ands < n− 1 there is a great contrast with pure diffusion phenomena [1].

For s = 1 we obtain a particular case of the generalized Hopf equation. Lie symmetries
for this equation were obtained by Katkov [12]. Whenn = 1 in (1) we obtained the Burgers
equation. Nonlocal symmetries and Lie–Bäcklund symmetries for this equation are well
known [2,11–13]. The generalized diffusion equation

Tt = (D1(T )Tx)x + a(D2(T ))x + b(x, t)D3(T )
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whereT (x, t) denotes the temperature at a point,a is an arbitrary constant,D1,D2 andD3 are
arbitrary functions of temperatureT andb(x, t) is another arbitrary function ofx andt , has
been analysed via isovector approach, and some new exact solutions have been obtained by
Bhutaniet al [4]. We recover some of the results obtained by them whenDi(u), i = 1, 2, 3
have a power law dependence.

Motivated by the fact that symmetry reductions for many potential differential equations
(PDEs) are known that are not obtained by using the classical Lie group method, there have been
several generalizations of the classical Lie group method for symmetry reductions. Bluman
and Cole developed the nonclassical method to study the symmetry reductions of the heat
equation; Clarkson and Mansfield [6] presented an algorithm for calculating the determining
equations associated with the nonclassical method. The basic idea of the method is that the
PDE (1) is augmented with the invariance surface condition

pux + qut − r = 0 (2)

which is associated with the vector field

V = p(x, t, u) ∂
∂x

+ q(x, t, u)
∂

∂t
+ r(x, t, u)

∂

∂u
. (3)

By requiring that both (1) and (2) are invariant under the transformation with infinitesimal
generator (3) one obtains an overdetermined, nonlinear system of equations for the
infinitesimalsp(x, t, u), q(x, t, u), and r(x, t, u). The number of determining equations
arising in the nonclassical method is smaller than for the classical method, consequently the set
of solutions is, in general, larger than for the classical method as in this method one requires
only the subset of solutions of (1) and (2) to be invariant under the infinitesimal generator
(3). However, the associated vector fields do not form a vector space. These methods were
generalized by Olver and Rosenau [14,15] to include ‘weak symmetries’, ‘side conditions’ or
‘differential constraints’, although their methods are too general to be practical.

In previous works, for the porous medium with convection and absorption we have derived
Lie classical symmetries [7], as well as nonlocal potential symmetries [8]. We also have
obtained nonclassical symmetries for the porous medium with absorption [9]. The study of
another equation of type (1) appears in [10].

In this paper, which is part of a program to study the symmetries of the porous medium
equation, we consider nonclassical symmetries of the porous medium equation with convection
(1) by using a method due to Bluman and Cole [5].

Although most papers studying nonclassical symmetries include the classical ones, in this
paper we consider nonclassical symmetries of equation (1), which are unobtainable by the Lie
classical method and find conditions onf (x) as well as the special values ofn ands for which
these reductions can be derived.

In each section we list the functionsf (x) and the parametersn ands for which we obtain
nonclassical symmetries. We also report the reduction obtained as well as some new exact
solutions.

2. Nonclassical Symmetries

To apply the nonclassical method to (1), we require (1) and (2) to be invariant under the
infinitesimal generator (3). In the caseq 6= 0, without loss of generality, we may set
q(x, t, u) = 1. The nonclassical method applied to (1) gives rise to the following determining
equations for the infinitesimals

0= ∂2p

∂u2
u− n∂p

∂u
+
∂p

∂u
(4)
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0= −2f
∂p

∂u
us − n

(
∂2r

∂u2
− 2

∂2p

∂u∂x

)
un−1− (n− 1)n

∂r

∂u
un−2

+(n− 1)nrun−3− 2p
∂p

∂u
(5)

0= −
(
f
∂p

∂x
+
∂f

∂x
p

)
us+2− f r(s − n + 1)us+1− n

(
2
∂2r

∂u∂x
− ∂

2p

∂x2

)
un+1

−2(n− 1)n
∂r

∂x
un +

(
2
∂p

∂u
r − 2p

∂p

∂x
− ∂p
∂t

)
u2 + (n− 1)pru (6)

0= −f ∂r
∂x
us+1− n ∂

2r

∂x2
un +

(
∂r

∂t
+ 2

∂p

∂x
r

)
u− (n− 1)r2. (7)

Solutions of this system depend in a fundamental way on the values ofn, s and on the
functionf (x). By solving (4) we obtain

p = p2(x, t)u
n − p1(x, t)

n

and we can now distinguish several cases depending onn ands.

2.1. Case I:n 6= −1,− 1
2, s 6= −1,−(n + 1).

Solving (5), we obtain

r = a1u
s+2 + a2u

n+2 + a3u
n+1 +

r2

un−1
+ a4u

2 + r1u

where

a1 = −2fp2

(s + 1)(s + n + 1)
a2 = −2p2

2

(n + 1)(2n + 1)
a3 = 1

n

∂p2

∂x
a4 = 2p1p2

n(n + 1)
.

Substitutingp andr into (6) and (7), we obtain thatp1, p2, r1, r2 andf (x) are related
by two conditions. The special values for which new symmetries different from Lie classical
symmetries can be obtained, are depending onn ands, the following.

2.1.1. Case I(a):n 6= 1, 1
2 .

Case I(a)1:s 6= n. We recover classical symmetries [7].

Case I(a)2:s = n. From the determining equations we obtain thatr2 = 0 and thatp2 adopts
any of the following forms:p2 = 0, p2 = f (x)/(3n− 1) or p2 = −f (x).

In the first two cases we recover the classical symmetries obtained in [7]; in the third case
if f = c wherec is a constant we getp1 = r1 = r2 = 0, p = −cun and the solutions are
defined implicitly by

x + ctun + h(u) = 0

with

uh′′ + (1− n)h′ = 0

therefore

u =
(
k1− nx
n(ct + k2)

)1/n

. (8)
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2.1.2. Case I.(b):n = 1.

Case I(b)1:s 6= 1. We observe classical symmetries [7].

Case I(b)2: s = 1. From the determining equations we can distinguish the following
subcases:

(i) If p2 = f/2, it follows that f (x) = constant and (1) becomes the Burgers equation.
Nonclassical symmetries for this equation have been obtained by Pucci [?] and Arrigoet
al [3].

(ii) If p2 = 0 it follows thatr1 = r1(t) andp1, r1, r2 andf are related by the following
conditions

f r1 + f
∂p1

∂x
+
∂f

∂x
p1 = 0

f r2 − ∂
2p1

∂x2
+ 2p1

∂p1

∂x
+
∂p1

∂t
= 0

−f ∂r2
∂x

+
∂r1

∂t
+ 2

∂p1

∂x
r1 = 0

−∂
2r2

∂x2
+
∂r2

∂t
+ 2

∂p1

∂x
r2 = 0.

The previous equations are too difficult to be solved in general, nevertheless special
solutions will be considered. Settingr1 = r2 = 0 we obtain thatp1 = c/f andf
must satisfy the following equation:

2c
∂f

∂x
+ 2

(
∂f

∂x

)2

− f ∂
2f

∂x2
= 0

whose solution is

f = − c√
k1

tanh(
√
k1x + k2) (k1 > 0).

Consequently,

p = −
√
k1

tanh(
√
k1x + k2)

(k1 > 0)

and we obtain the nonclassical reduction

z = − log cosh(
√
k1x + k2)

k1
− t u = h(z) (k1 > 0)

whereh(z) satisfies the following ordinary differential equation (ODE):

∂2h

∂z2
+ ch

∂h

∂z
+ k1

∂h

∂z
= 0.

Its solution is

h(z) = 1

c
(2ck3 + k2

1)
1/2 tanh

(
1

2
(2ck3 + k2

1)
1/2z + k4

)
− k1

c

which is an exact solution of (1).



Nonclassical symmetry reductions of a porous medium equation 1465

(iii) If p2 = −f , it follows thatp1 = −f ′/f , r1 = r2 = 0 andf must satisfy the following
equation

f 2f ′′′ − 5ff ′f ′′ + 4(f ′)3 = 0.

Dividing by f 3, integrating once with respect tox and making the change of variable
f = 1/g leads tog′′ − kg = 0. Solving this equation we obtain:

f =

(k2x + k3)

−1 if k = 0
(k2 sin(k1x) + k3 cos(k1x))

−1 if k = −k2
1

(k2 sinh(k1x) + k3 cosh(k1x))
−1 if k = k2

1

.

Consequently

p =



− u + k2

k1(x + k2)
if k = 0

k1(k3 sin(k1x)− k2 cos(k1x))− u
k2 sin(k1x) + k3 cos(k1x)

if k = −k2
1

k1(k3 sinh(k1x)− k2 cosh(k1x))− u
k2 sinh(k1x) + k3 cosh(k1x)

if k = k2
1

.

(a) Fork = 0, the family of invariant solutions is defined, implicitly, by

k2x
2 + 2k3x + 2(t + h)(u + k2) = 0

with h(u) a solution of(u+ k2)h
′′ + 2h′ = 0, i.e.h = (k4u+ k5)(u+ k2)

−1. Therefore
a nonclassical reduction is given by

u = −k2x
2 + 2k3x + 2k2t + 2k5

2t + 2k4
.

(b) Fork < 0, the family of invariant solutions is defined, implicitly, by
1

k2
1

(log(−k1k3 sin(k1x) + k1k2 cos(k1x) + u))− t − h = 0

with h(u) a solution of

k2
1(
∂h

∂u
)2 +

∂2h

∂u2
= 0

which is given by

h(u) = k5− 1

k2
1

log(k2
1u + k2

1k4)

therefore a nonclassical symmetry reduction is

u = −k1(k3 sin(k1x)− k2 cos(k1x) + k1k4 exp(k2
1t + k2

1k5))

k2
1 exp(k2

1t + k2
1k5)− 1

.

(c) Fork > 0 a nonclassical symmetry reduction is

u = −k1(k3 sinh(k1x)− k2 cosh(k1x) + k1k4 exp(k2
1t + k2

1k5))

k2
1 exp(k2

1t + k2
1k5)− 1

.

2.1.3. Case I(c):n = 1
2 .

Case I(c)1:s 6= 0,− 1
2,

1
2 . We observe classical symmetries [7].
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Case I(c)2:s = − 1
2 . By arranging the coefficient of the several powers ofu in equations (4)–

(7), it follows thatp2 = 0 andp1, r1, r2 andf are related by the following conditions:

p1r1− 8p1
∂p1

∂x
+ 2

∂p1

∂t
= 0

2p1r2 − ∂r1
∂x
− 2

∂2p1

∂x2
+ 4f

∂p1

∂x
+ 4
∂f

∂x
p1 = 0

2
∂r1

∂t
+ r2

1 − 8
∂p1

∂x
r1 = 0

2
∂r2

∂t
+ 2r1r2 − 8

∂p1

∂x
r2 − ∂

2r1

∂x2
− 2f

∂r1

∂x
= 0

−∂
2r2

∂x2
− 2f

∂r2

∂x
+ r2

2 = 0.

Even though the previous equations are too complicated to be solved in general, special
solutions will be considered.

(i) Choosingp1 = k andr1 = 0 thenr2 = −2f ′ and we obtain the nonclassical reduction

z = x + 2kt u =
(
h(z) +

f (x)

2k

)2

wherek 6= 0 and after integrating twice with respect tox, we have thatf (x)must satisfy
the following Ricatti equation:

f ′ + f 2 − k2x − k1 = 0 (9)

wherek1, k2, are constants. Now, we can distinguish the following subcases.

(a) If k2 = 0, then we obtain

f =


√
k1 tanh(

√
k1(x + c)) if k1 > 0

(x + c)−1 if k1 = 0

−
√
−k1 tan(

√
−k1(x + c)) if k1 < 0

.

For any of these functionsf (x), we have thath(z) satisfies the following ODE:

2kh′ − 4k2h2 + k3 = 0

whose solutions are

h(z) =


− 1

2k(z + k4)
if k3 = 0

1

2k

√
k3 tanh(

√
k3(z + k4)) if k3 6= 0

that lead to the exact solutions

u =
(

1

2k
(
√
k1 tanh(

√
k1(x + c))−

√
k3 tanh(

√
k3(z + k4)))

)2

(10)

if k1 6= 0 andk3 6= 0, or

u =
(

1

2k
((x + c)−1−

√
k3 tanh(

√
k3(z + k4)))

)2

if k1 = 0 andk3 6= 0.
We will consider qualitative aspects of these solutions in section 3.
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(b) If k2 6= 0, we obtain that for anyf (x) which satisfies (9),h(z) must satisfy the
following Riccati equation:

2kh′ − 4k2h2 + k2 + k4 = 0.
Settingf = yx/y andh = wz/(2k w) we obtain thaty(x) andw(z)must satisfy the
Airy equationsy ′′ − (k2 x + k1) y = 0 andw′′ − (k2 z + k3) w = 0. Hence, we obtain
the nonclassical reduction

z = x + 2kt u = 1

4k2

(
wz

w
− yx
y

)2

where the solution is given in terms of the Airy functions.

(ii) Choosingp1 = p1(x), r1 = r1(x) andr2 = r2(x) we obtain

r = −4p′u +

(
5p′′1
p1
− 2fp′1

p1
− 2f ′

)√
u f = 3p′1

2p1
− p′′1

2p′1
+

k0

2p1p
′
1

andp1 must satisfy the following equation:

0= −p3
1(p
′
1)

3p
(5)
1 + (5p3

1(p
′
1)

2p′′1 − 6p2
1(p
′
1)

4)p
(4)
1 + 4p3

1(p
′
1)

2(p′′′1 )
2

+(−17p3
1p
′
1(p
′′
1)

2 + 18p2
1(p
′
1)

3p′′1 − 3p1(p
′
1)

5)p′′′1 + 9(p1)
3(p′′1)

4

−12p2
1(p
′
1)

2(p′′1)
3 + 9p1(p

′
1)

4(p′′1)
2 + 3(p′1)

6p′′1.

We observe that this condition is satisfied ifp1 satisfies the following condition:

p′1− apm1 − b = 0

with m = 2,m = −2 orm = 0 and we can distinguish the following subcases.

(a) If m = 2 andab 6= 0, we obtainp1 = −(d/a) tanh(d(x + c)), whered = √−ab
and we obtain

p = −d
a

tanh(d (x + c))

r = − 4d2u− 8ad2√u
a cosh2(d(x + c))

f = d 2 + cosh(2d(x + c))

sinh(2d(x + c))
.

If h(z) satisfies the following ODE

a2∂
2h

∂z2
+ (2d2h− 2ad2)

∂h

∂z
= 0

then
h(z) = k3 tanh(d2a−2k3z + k5) + a if

√
k1 6= 0.

This gives us the nonclassical reduction
z = ad−2 log sinh(d(x + c)) + t u = (−h sinh−2(d(x + c))− h + 2a)2.

(b) If m = 2 andb = 0 thenp1 = −a/(x + c), and we recover a classical symmetry [7].
(c) If m = 0 thenp1 = (a + b)x + c and we recover a classical symmetry [7].
(d) If m = −2 andab > 0 we can obtainp1 implicitly from

d p1− a arctan(bp1/d)− bd(x + c) = 0
where

√
ab = d.

(e) If m = −2 andab < 0 we can obtainp1 implicitly from

2dp1− a log

(
bp1− d
bp1 + d

)
− 2bd(x + c) = 0

where
√−ab = d.
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(f) If m = −2 andb = 0 thenp1 = d(x + c)1/3 with d = (3a)1/3 and we obtain

p = −2d(x + c)1/3 r = ( 8
3)d(x + c)−2/3u f (x) = ( 5

6)(x + c)−1.

Hence a nonclassical reduction is

z = − 3

4d
(x + c)2/3− t u = h(x + c)−4/3

whereh(z) satisfies the following ODE

2h
∂2h

∂z2
−
(
∂h

∂z

)2

+ 16d2h3/2∂h

∂z
= 0

whose solution is

h(z) = k1

8d2
tanh2

(√
2k1d(z + k2)

)
with k1 > 0, that leads to the exact solutions

u = k1

8d2
tanh2

(√
2k1d(z + k2)

)
(x + c)−4/3.

(iii) Choosingp2 = r2 = 0 andp1 = p1(x), we obtainr1 = −4p′1 andf = (5p′1−2k1)/(2p1),
wherep1 satisfies

p2
1p
′′
1 + 2p1(p

′
1)

2 − 2k1p1p
′
1− k2p1 = 0

which leads to a classical reduction [7].

Case I(c)3:s = 0. From the determining equations we obtain thatp2 = 0 andp1, r1, r2 and
f are related by the following conditions:

2p1r1− f r1− 16p1
∂p1

∂x
+ 4f

∂p1

∂x
+ 4
∂p1

∂t
+ 4
∂f

∂x
p1 = 0

2p1r2 − f r2 − ∂r1
∂x
− 2

∂2p1

∂x2
= 0

−2f
∂r1

∂x
+ 2

∂r1

∂t
+ r2

1 − 84
∂p1

∂x
r1 = 0

−2f
∂r2

∂x
+ 2

∂r2

∂t
+ 2r1r2 − 8

∂p1

∂x
r2 − ∂

2r1

∂x2
= 0

r2
2 −

∂2r2

∂x2
= 0.

Settingr1 = 0 andp1 = p1(x) we obtainp1 = ax + b and we obtain

p = −2(ax + b) r = 6a2√u(ax + b)−2 f = 2(ax + b).

Therefore we obtain the nonclassical reduction

z = − 1

2a
log(ax + b)− t u =

(
3a

4(ax + b)2
+ h

)2

whereh(z) satisfies the ODE

h′′ + 2ah′ + 24a2h = 0

whose solution is

h(z) = k1 exp(4az) + k2 exp(−6az)

which leads to the exact solution

u = 1
16(ax + b)−4 exp(−8at)(4k2 exp(10at)(ax + b)5 + 3a exp(4at) + 4k1)

2.
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Case I.(c).4: s = 1
2 . The reduction obtained is a particular case of the one obtained in

case I(a)2.

2.2. Case II:n = −1.

2.2.1. Case II(a):s 6= −1. Forf (x) = (ax + b)m we recover the classical symmetries [7].

2.2.2. Case II(b): s = −1. For f = c, from the determining equations we obtain the
nonclassical symmetriesr = 0, p = −c/u. Then the solutions are defined implicitly by
xu+ ct − h(u) = 0 whereh(u) is a solution ofh′′ = 0 and therefore the solution it is given by

u = ct − k3

x − k1
.

It must be observed that this solution can in fact be obtained via classical symmetry reductions.

2.3. Case III:n = − 1
2 .

2.3.1. Case III(a):s 6= − 1
2 . Forf (x) = (ax + b)m we recover the classical symmetries [7].

2.3.2. Case III(b):s = − 1
2 . For f = c, from the determining equations we obtain that

r = 0, p = −c/√u. Then the solutions are defined implicitly byx
√
u + ct − h(u) = 0, with

h(u) a solution of 2uh′′ + h′ = 0 and therefore it is given by

u =
(
ct + k1

x − k2

)2

.

The nonclassical reduction adopts the form (8) withn = 1
2.

3. Qualitative analysis of some solutions

In this section we will consider several qualitative aspects of some of the solutions we have
found.

In case I(c)2(ii) equation (1) becomes

ut = (u1/2)xx + 2
√
k1 tanh(

√
k1(x + c))(u1/2)x. (11)

These cases corresponds to fast diffusion and nonlinear and nonhomogenous convection.
The stationary solutions of equations (11) are solutions of the ODE

(û1/2)xx + 2
√
k1 tanh(

√
k1(x + c))(û1/2)x = 0.

If we setv = (û1/2)x thenv must satisfy

vx + 2
√
k1 tanh(

√
k1(x + c))v = 0.

The solutions of this equation are of the form

v = (û1/2)x = D

cosh2(
√
k1(x + c))

whereD is an arbitrary constant. Therefore,

û1/2 = D√
k1

tanh(
√
k1(x + c)) +E
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Figure 1. Solutions of (10) withk1 = k3 = 1, for several values oft and stationary solutions.

whereE is also an arbitrary constant. Consequently, the stationary solutions of (11) are of the
form

û =
(
D√
k1

tanh(
√
k1(x + c)) +E

)1/2

. (12)

Let us compare these stationary solutions with the solutionsu(x, t) of (11) given by (10). If
we setD = k1/k andE = −√k3/k, then we observe that limt→∞ u(x, t) = û(x) for every
x ∈ R. Therefore, the class of solutions (10) is a special class of solutions that continuously
evolves towards the bi-parametric class of stationary solutions (12).

In figures 1–3 we represent the values of the solutions of (11) for several values oft

altogether with the corresponding stationary solution. We easily observe that the family of
solutions (10) describes processes of annihilation and subsequent creation of exponentially
localized structures which asymptotically approach to a nonlocalized structure.

The class of solutions of equation (9) that is obtained fork1 > 0 is qualitatively different
to the one obtained fork1 = 0. In this last case we obtain a different class of equations of
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Figure 2. Solutions of (10) withk1 = 5 andk3 = 1, for several values oft and stationary solutions.

type (1), for which nonclassical symmetries appear.
Nevertheless, we can considerk1 as a parameter in equation (11) and in the solutions (10).

Let us observe that the second term in the right-hand side of this equation tends to zero as
k1→ 0. The limit equation is the classic porous medium equation

ut = (u1/2)xx. (13)

If in the right-hand side of (10) we letk1→ 0 then we obtain

u(x, t) =
(
−
√
k3

2k
tanh(

√
k3(z + k4))

)2

.

It is straightforward to check that this class of functions are solution of (13). This type of
solutions corresponds to wavefronts and apparently does not appear in the literature.
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Figure 3. Solutions of (10) withk1 = 1 andk3 = 5, for several values oft and stationary solutions.

4. Concluding remarks

In this paper, which is part of a program to study the symmetries of the porous medium equation,
we have derived the nonclassical symmetries of the quasi-linear parabolic equation (1) by
using a method due to Bluman and Cole [5]. In previous works, for the porous medium with
convection and absorption we have derived Lie classical symmetries [7], as well as nonlocal
potential symmetries [8]. We also have obtained nonclassical symmetries for the porous
medium with absorption [9]. Recognizing the importance of the space-dependent parts on the
overall dynamics of (1), we have studied those spatial forms as well as the different choices for
the constantsn ands for which equation (1) admits the nonclassical symmetry group. We have
then constructed new invariant solutions, as well as new ODEs to which (1) is reduced. These
new solutions are unobtainable by the method of Lie classical symmetries. In a forthcoming
paper we will deduce the symmetries of the porous medium equation in an inhomogeneus
medium, to see if the known symmetries are preserved as well as if new symmetries arise.

The stationary solutions of equation (11) have been obtained as limit of the class (10) of
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solutions of (11). A new class of solutions of the classical porous medium equation (13) is
also obtained as limit of some of our solutions.
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