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Abstract 

We report on a phenomenon observed in a driven nonlinearly damped oscillator when two control parameters, the frequency 
of the external excitation and the nonlinear damping coefficient, are varied simultaneously. An interior crisis locus and a 
boundary crisis locus, corresponding to two different chaotic attractors, intersect in a point of the parameter space. There 
exists an interchange in the type of crisis that each attractor suffers after crossing the intersection point. 

1. Introduction 

In the theory of nonlinear dissipative systems stud- 
ies are usually made by changing only one single con- 

trol parameter. The majority of the physical systems 

involves two or more of these parameters and a great 
variety of phenomena may appear when more than one 

of them is varied simultanously. 
One of the most interesting aspects which should be 

considered in the study of nonlinear dissipative sys- 
tems involving two varying control parameters is the 

crisis locus, i.e., the locus of those parameters where 
boundary crises or interior crises occur [ 11. A bound- 

ary crisis appears when a chaotic attractor collides 

with an unstable orbit which lies on the boundary of 
its basin of attraction and then disappears. An interior 
crisis appears when a chaotic attractor collides with 
an unstable orbit, which is in the interior of its basin, 

and suffers a sudden change in size. To determine a 
crisis locus one has to vary two parameters simulta- 
neously, one is needed to assure the existence of the 
crisis and the other one is used to follow the evolution 
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of the crisis in the parameter space. 
Among the nonlinear systems that have been the 

object of more extensive studies are nonlinear driven 
oscillators [ 2-41, exhibiting a great richness of phe- 

nomena, crises among them [ 5,6]. A model system 

in which these last phenomena appear is that corre- 
sponding to the description of current-fed Josephson 
junctions taking into account interference effects, or 

its mechanical analogous, a driven nonlinearly damped 
pendulum [ 7,8]. 

This model has four control parameters, one of them 

is related to the nonlinear damping and another refers 
to the frequency of the external excitation. The purpose 
of this paper is to report on some phenomena occurring 

when these two parameters are varied simultaneously. 
An interior crisis locus and a boundary crisis locus 

corresponding to two different attractors appear, they 
intersect in a point of the parameter space where two 
crises occur simultaneously. There is an interchange 
of the type of crisis that each attractor suffers after 

crossing this point. 
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2. Model equations 

The nonlinear evolution equations that are the object 
of our study read 

dxt 
dt= x2, (1) 

d-G - = -cr(l+ycosXI)X2-sinXt+Isinwt, 
dt 

(2) 

where (Y, y, I, o are control parameters. 
These equations describe the dynamics of a driven 

pendulum with nonlinear damping effects. They are 
adequate to model the evolution of a Josephson junc- 
tion under the excitation of a radio frequency current, 
and in this case the variable X2 represents the differ- 
ence of the potential between the two superconductors 
of the junction. The term ycosXr represents the in- 
terference effects between the quasiparticle-pair and 
quasiparticle currents, which is usually called “cos +” 
term. Most work on driven Josephson tunneling junc- 
tions has neglected this interference term and some 
problems persist in relation to it, for example, the ex- 
isting theories predict relative signs of the quasiparti- 
cle and quasiparticle-pair currents which are in con- 
tradiction with some experimental results [ 91. 

In previous works [ 7,8] we considered the interfer- 
ence term with a value for y in the range supported 
by the experimental results. Our results showed that 
its inclusion gives rise to a substantial modification 
of the dynamics as, for example, the appearance of a 
boundary crisis and of interior crises involving broken- 
symmetric chaotic attractors, etc. 

In our study we have chosen cy and I as fixed param- 
eters, with the values cr = 0.4, I = 0.8, and as varying 
parameters we have chosen y in the range -1 < y < 
1, and w in the range 0.1 < w < 1. Within these ranges 
we can find possible sets of representative values for 
a Josephson junction [ IO]. Eqs. ( 1) and (2) have 
been resolved in double precision arithmetic using a 
fourth-order variable-step-size Runge-Kutta method. 
Poincare sections have been obtained by sampling the 
solutions once every period of the forcing term. 

3. Crisis loci 

In a previous paper [8] we showed the existence 
of a boundary crisis for w = o, N 0.665, y = -0.8, 
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Fig. 1. Global bifurcation diagram for the variable X2 with 
y = -0.8. 

LY = 0.4 and I = 0.8. This phenomenon consists in the 
collision of a chaotic attractor with an unstable period- 
three orbit located on the basin boundary, originating a 
discontinuous disappearance of this chaotic attractor. 
Fig. 1 shows the bifurcation diagram corresponding to 
the variable X2 for y = -0.8. Previous to this crisis 
we can appreciate the coexistence of two attractors, a 
chaotic attractor and a stable period-three orbit. 

Two accessible period-three saddle orbits [ 111 ex- 
ist, one of them is accessible from the basin of attrac- 
tion of the chaotic attractor and the other one is acces- 
sible from the basin of attraction of the period-three 
orbit. In Fig. 2 we show two-dimensional Poincare 
sections of all the attractors which exist for o = 0.666, 
the largest full circles represent an unstable period- 
three orbit that was created for larger values of w, the 
smaller full circles and the open circles represent, re- 
spectively, the stable and the unstable period-three or- 
bit created after a saddle-node bifurcation. We have 
superimposed the basins of attraction of the coexis- 
tent attractors. We represent in blank the basin of the 
chaotic attractor and with black points the basin of at- 
traction of the period-three orbit. We can see that the 
chaotic attractor is about to collide with an accessible 
saddle orbit, announcing a boundary crisis. After the 
collision, points of the chaotic attractor will eventually 
come close to the saddle point, passing it along the 
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Fig. 2. Basins of attraction in the plane (Xl, X2) for the chaotic 
solution (blank) and the coexistent period-three solution (shaded), 
for w = 0.666 and y = -0.8. Also shown are the Poincare sections 
of the chaotic attractor, its accessible saddle orbit (centers of the 
largest full circles), the period-three orbit (centers of the smallest 
full circles) and its associated accessible saddle orbit (centers of 
the open circles). 

unstable orbit which lies in the basin of attraction of 
the stable period-three attractor, and then the chaotic 

attractor is destroyed. 
By decreasing w below wC, the remaining attrac- 

tor suffers a sequence of bifurcations creating a three- 

piece chaotic attractor. This attractor ultimately suf- 
fers an interior crisis when it collides with the unsta- 
ble orbit created at the saddle-node bifurcation. Fig. 3 

shows two-dimensional Poincare sections prior to this 
interior crisis. 

A study similar to the previous one may be done 

for differents values of the parameter y. In this way 

it is possible to construct the crisis loci correspond- 
ing to the two types of crises just mentioned. We have 
considered the interval of y values -1 < y 6 -0.8, 
which is in the range supported by experimental re- 
sults in Josephson junctions [ 121. Exploration with 
values of y larger than -0.8 is not necessary, since the 
boundary crisis soon disapear and there is no crisis lo- 
cus. Fig. 4 shows two different crisis loci correspond- 
ing to the two coexistent chaotic attractors. The two 
curves intersect in a point located roughly at ( y, w ) N 
( -0X&0.669). In Fig. 5 we show the phenomenon 
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Fig. 3. Two-dimensional Poincare sections for o = 0.659 and 
y = -0.8. The centers of the open circles represent the unstable 
orbit which is close to colliding with the three-piece chaotic 
attractor. 
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Fig. 4. Crisis loci in the plane [y, o) The centers of the squares 
represent the crisis locus of the three-piece chaotic attractor, and 
the centers of the triangles the crisis locus of the other chaotic 
attractor. Open symbols indicate interior crises and full symbols 
boundary crises. 

: 

J 



F. Palmero et al./Physics Letters A 201 (1995) 186-190 189 

0 

x” 

-1 

/ * t I I ! I, 

-3 -2 -1 0 3 2 3 

XI 

Fig. 5. Basins of attraction in the plane (Xl, X2) for the one-piece 
chaotic attractor (blank) and the coexistent three-piece chaotic 
attractor (shaded), for w = 0.6695 and y = -0.88. Also shown 
are the Poincd sections of these two chaotic attractors and their 
accessible saddle orbits (centers of the full circles and centers of 
the open circles, respectively). 

of simultaneous coincidence of crises. We have rep- 
resented the basins of attraction of the two coexistent 

chaotic attractors, their Poincare sections and their ac- 
cessible saddle orbits. The stable manifolds of each 
accessible saddle orbit are situated along the border- 
line of the basin boundary, and the two chaotic attrac- 

tors lie on the closure of their respective unstable man- 

ifolds. As crises are approached both attractors col- 
lide with their respective accessible orbit, their stable 
and unstable manifolds become tangent and cross af- 
ter collision. Then, points of each attractor pass along 

the boundaries appearing only one large chaotic at- 

tractor. This jump in size can be appreciated in the 
global bifurcation diagram represented in Fig. 6. 

As y decreases below this critical value, there exists 
an interchange in the type of crisis that each attrac- 
tor suffers, that is, the three-piece attractor undergoes 

boundary crises, and the one-piece attractor interior 

crises. This new behavior of the system can be visu- 
alized in the global bifurcation diagram of Fig. 7. 

By considering the crisis locus of each attractor sep- 
arately, the intersection point delimits two branchs, 
one corresponds to interior crises and the other one to 

Fig. 6. Global bifurcation diagram for the variable X;l with 
y = -0.88. For this value of y two crises occur simultaneously. 
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Fig. 7. Global bifurcation diagram for the variable X2 with 
y = -0.95. 

boundary crises. This point is not a vertex in the sense 

of Gallas, Grebogi and Yorke [ 131, that is, a point of 
a boundary crisis locus where a chaotic attractor un- 
dergoes an interior crisis and simultaneously its basin 
suffers a metamorphosis [ 11 I. Similar phenomena, in- 
volving changes in accessible boundary orbits, have 
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been found in a twin-well Duffing oscillator [ 141. 

4. Conclusions 

In this paper we have described, by analyzing the 
parameter space of a driven nonlinearly damped os- 
cillator, the dynamics along crisis loci. We have found 
that two crises loci, corresponding to two differents 
chaotic attractors, intersect in a point of the parameter 
space. At this critical point both attractors interchange 
the type of crisis they suffer. 

Our study has been restricted to situations involving 
just two parameters. It is expected that for more than 
two parameters these types of phenomena will be more 
complex. 
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