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In this work, we study the expansion of a product function U related to the
Drinfeld discriminant 2(z); U is the analogue of the classical '-function. The main
result is the formula given in Theorem 3.1. From this formula, we derive the fact
that the expansion of U is lacunary for q>2 (Theorem 3.3) and the expansion (up
to a certain bound) of U valid for any q, as in [Gekeler, Invent. Math. 93 (1988),
667�700]. � 1999 Academic Press

INTRODUCTION

There is a classical formula for the discriminant function 2(z),

(2?)&12 2(z)=q `
n�1

(1&qn)24,

where q=e2?iz. The coefficients of the q-expansion of (2?)&12 2 are given
by the Ramanujan function {(n). This function has been extensively
studied, although no explicit formula is known for {(n).
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In this context, it is natural to consider the expansion of the '-function,
where '=>n�1 (1&qn). Here, the situation becomes much more simple,
and an explicit formula can be given as

`
n�1

(1&qn)= :
n�0

(&1)n qn(3n\1)�2. (1)

This expansion was studied already by Euler in the frame of the theory
of partitions.

In [1], Gekeler obtains the following formula for the Drinfeld discrimi-
nant function (see Section 1 for notations),

?� 1&q 2 2(z)=&tq&1 `

a monic
a # A

fa(t) (q2&1)(q&1)=&tq&1 } U(t) (q2&1)(q&1). (2)

As a first step in the study of the expansion of 2, we consider the expansion
of the product U (Eq. (4)).

In Section 1, we introduce the notations used along the work. In Section
2 we get recursive formulas related with U. In Section 3, we get a formula
for U (Theorem 3.1). This formula does not give the explicit expansion of
U, but we get from it the fact, that the expansion is lacunary, that is, with
growing degree the rate of nonzero coefficients goes to zero (Theorem 3.3).
This property is also satisfied by the expansion of the classical '-function
(Eq. (1)). Finally, in Section 4, we give the expansion of the product U up
to a certain bound.

We express our gratitude to Ernst-Ulrich Gekeler who proposed to prove
the lacunarity of the expansion of U. We thank him also for his encouragement.

1. PRELIMINARIES

Let A=Fq[T] be the ring of polynomials over the finite field Fq in the
variable T. Consider a field k such that there exists a monomorphism A � k.
Let k[{] be the ring of non-commutative polynomials over k, where { is the
Frobenius endomorphism. The ring k[{] can be identified with the ring of
q-additive polynomials �l

i=0 :iXqi
, where the product is given by substitution.

Definition 1.1. A Drinfeld module of rank r over k is an Fq-morphism
,: A � k[{] given by

,T=T{0+ :
r

i=1

: i{i,

where :i # k and :r {0.
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Let K=Fq(T ). We consider the field K�=Fq((1�T)), its algebraic
closure K� � and the completion C of K� � .

An A-lattice in C of rank r is a discrete, finitely generated A-module
4/C such that dimK K4=r. We can associate with a lattice 4 a function

e4(z)=z `
* # 4&[0]

(1&z�*).

Through the function e4(z), we can construct a Drinfeld module ,4 of
rank r. This construction establishes a bijection between lattices in C and
Drinfeld modules over C.

In the rank one case, we have the Carlitz module given by

\T=T{0+{=TX+Xq.

Let L=?� A be the lattice corresponding to \. The element ?� is well defined
up to an element of Fq*. We consider the functions

t(z)=eL(z)&1 and s(z)=t(z)q&1. (3)

The function s(z) is an analogue to the classical function e2?iz.
The A-lattices of rank two inside C are of the form u(zA+A), where

u # C* and z # C&K� . Since homothetic lattices correspond to isomorphic
Drinfeld modules, any Drinfeld module of rank two is isomorphic to one
of the form

,T=T{0+ g(z) {+2(z) {2,

where z # C&K� . The function 2(z) is called the Drinfeld discriminant
function.

In Eq. (2), 2(z) is written as a product function with respect to the
parameter t(z). The polynomials fa which appear in this formula are
defined as follows. Let a # A; consider the polynomial \a(X). Then we
define

fa(X)=\a(X&1) Xq deg a
.

Observe that we can consider fa as polynomial in the variable s=Xq&1.
In the following sections, we will study the expansion of the product

U= `

a monic
a # A

fa (4)

as a formal power series in s.
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2. RECURSIVE FORMULAS

Following [2], we consider the following factors of U,

Ud= `

a monic
deg a=d

fa . (5)

For practical purposes, we consider also the polynomials

Vd= `

a monic
deg a=d

\a . (6)

There exist recursive formulas for Ud which allow us to give some informa-
tion about the expansion of Ud ; especially Corollary 2.6 will be used
several times in the paper. We prove the formulas for the polynomials Vd ,
and then we easily deduce the corresponding formulas for Ud . First, we
define some intermediate products.

Notation 2.1. Let i, n # N, i<n. We denote by Gn, &1=\T n and Hn, &1

= fT n , and by Gn, i and Hn, i the products

Gn, i = `
(c0 , ..., ci ) # F q

i+1
\Tn+ci T

i+ } } } +c0
,

Hn, i = `
(c0 , ..., ci ) # F q

i+1
fTn+ci T

i+ } } } +c0
.

Observe that Vd=Gd, d&1 and Ud=Hd, d&1 .

Consider the following operators ;k , defined recursively by

#(Y, Z)=Yq&YZq&1,

;1(X1 , X0)=#(X1 , X0),

;k(Xk , Xk&1 , ..., X0)=#(;k&1(Xk , Xk&2 , ..., X0),

;k&1(Xk&1 , Xk&2 , ..., X0)).

The ;k satisfy the following property which is proved using an easy induc-
tion on k.

Lemma 2.2. Let c # Fq . Then

;k(Y+cZ, Yk&1 , ..., Y0)=;k(Y, Yk&1 , ..., Y0)+c;k(Z, Yk&1 , ..., Y0).
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Lemma 2.3. Let b=T n+cn&1T n&1+ } } } +c i+1T i+1 be a polynomial
in A. Then

`
(c0 , ..., ci ) # F q

i+1
\b+ciT

i+ } } } +c0
=;i+1(\b , \T i , ..., \1).

Proof. By induction on i. We have

`
(c0 , ..., ci ) # F q

i+1
\b+ciT

i+ } } } +c0
= `

ci # Fq
\ `

(c0 , ..., ci&1) # F
i
q

\b+ciT
i+ } } } +c0+

= `
ci # Fq

;i (\b+ci T
i , \T i&1 , ..., \1)

= `
ci # Fq

;i (\b+ci\T i , \T i&1 , ..., \1).

By Lemma 2.2, the last product equals

`
ci # Fq

(;i (\b , \T i&1 , ..., \1)+ci; i (\Ti , \T i&1 , ..., \1)).

This finishes the proof. K

The following proposition gives a recursive formula for the products
Gn, i , and in particular, for Vd . It is a consequence of Lemma 2.3.

Proposition 2.4. Let Gn, i be as in Notation 2.1. We have that

Gn, i=Gq
n, i&1&Gn, i&1Gq&1

i, i&1 .

Now, let Hn, i be as in Notation 2.1. Recall that fa can be considered as
a polynomial in the variable s=Xq&1.

Corollary 2.5. We have that

Hn, i=H q
n, i&1&Hn, i&1H q&1

i, i&1sq i (qn&qi ).

Proof. The statement follows from the identity fa(X)=\a(X&1) Xq deg a

and Proposition 2.4. K

Corollary 2.6. We have that

Ud=1+usq 2d&1&q 2d&2
,

where u # A[s].

Proof. This follows from Corollary 2.5. K
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Remark 2.7. We have that

degs U1U2 } } } Ud=
q(qd&1)(qd+1&1)

(q&1)(q2&1)
.

By Corollary 2.6, we have that Ud+1=1+usq2d+1&q2d
, u # A[s]. For q>2,

the number q2d+1&q2d is larger than q(qd&1)(qd+1&1)�(q&1)(q2&1).
This implies that the expansion of U in s has gaps between q(qd&1)
(qd+1&1)�(q&1)(q2&1) and q2d+1&q2d.

3. A FORMULA FOR U

The product V0V1 } } } Vd satisfies the following formula.

Theorem 3.1. Let Vd be as in Eq. (6). Let Sd+1 be the group of permu-
tations of the numbers [0, 1, ..., d]. Then

V0V1 } } } Vd= :
_ # Sd+1

sign(_) \q_(0)

1 \q _(1)

T } } } \q _(d)

T d =det(\q j

T i) i, j=0, 1, ..., d .

Proof. More generally, one can prove

Gi+1, iGi+2, i+1 } } } Gn, n&1=det(Gq+

i+1+&)&, +=0, ..., n&(i+1)

by induction using the formulas from Proposition 2.4. But, as Goss pointed
out to us, the theorem is also an immediate consequence of the Moore
determinant formula (cf. [3, Corollary 1.3.7])

det \
w0

wq
0

b
wqd

0

} } }
} } }
} } }
} } }

wd

wq
d

b
wqd

d
+= `

d

i=0

`
ki&1 # Fq

} } } `
k0 # Fq

(wi+ki&1wi&1+ } } } +k0 w0)

taking wi=\T i . K

Corollary 3.2. Let Ud be as in Eq. (5). Then

U1 U2 } } } Ud= :
_ # Sd+1

sign(_) f q_(0)

1 f q _(1)

T } } } f q_(d)

T d s$(_),

where $(_)=(1�q&1) �d
i=0 (q2i&qi+_(i)

).

An immediate consequence of this formula is that the expansion of U can
be given independently of q (cf. Section 4).
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Next, we estimate the number of non-zero terms of the expansion of U
in s for q>2.

Theorem 3.3. Let the expansion of U=> fa be given as �i�0 cisi and
let Cm=[i�m: ci {0]. Suppose that q>2. If :>- 3e (where e is Euler's e)
and m>>0, then

*Cm�:2mlogq :.

In particular, because q>- 3e, we have that

lim
m � �

*Cm

m
=0.

Proof. The number of non-zero terms of the expansion of U1U2 } } } Ud

in s equals the number of non-zero terms of the expansion of V0V1 } } } Vd

in X because of fa(X)=\a(X&1) Xdeg a. Now, the polynomials \T l are of
the form

\T l=T lX+a1(T) X q+ } } } +al (T ) X ql
.

Thus, by Theorem 3.1, the set of exponents of non-zero terms in V0V1 } } } Vd

is a subset of

Bd=[q_(0)+q_(1)+k1+ } } } +q_(d)+kd: _ # Sd+1 , 0�kj� j].

As 0�_( j)+kj�2d, we have that

*Bd�\(2d+1)+(d+1)&1
d+1 +=\3d+1

d+1 + .

Consider the sequence bd=( 3d+1
d+1 ). We have that

bd+1

bd
=

(3d+4) } } } (2d+3)
(d+2)!

}
(d+1)!

(3d+1) } } } (2d+1)

=
3d+4
d+2

}
3d+3
3d+1

} } }
2d+3
2d+1

�3 \1+
2

2d+1+
d+1

.

Therefore,

lim sup
d � �

bd+1

bd
�3e.
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Let ;( # R) be such that ;>3e. If d>>0, then

bd�;d.

Now, by Corollary 2.6, we have Ud+1=1+usq2d+1&q2d
, u # A[s], so it

follows that *C(q&1) q 2d&1�bd . Hence,

*Cq 2d�;d.

Thus, if m # N and m>>0, then

*Cm�;1+1�2logq m. K

4. SOME TERMS OF THE EXPANSION OF U

In this section, we consider the expansion of U in s up to the term
q5+q3. Our calculations extend the table given in [2, p. 691], and also
correct some of the values given there. The calculations were made with a
computer program based on the formula of Corollary 3.2; in fact, we
obtained the product U1U2 U3 U4 with this program, but the calculations
are too large to be included here.

The following table is valid for any q>2 and the coefficients of the
expansion are expressed in terms of the polynomials [n]=Tqn

&T, for
n # N.

i ci i ci

0 1 q3+q2&1 2[2]&[1]
q&1 &1 q3+q2 &[1][2]

q [1] q3+q2+q&1 &[2]2+[1][2]
q3&q2 &1 q3+q2+q [1][2]2&[1]2 [2]
q3&1 2 q5&q4 &1

q3 [3]&[2]&[1] q5&q4+q&1 1
q3+q&1 &[3]&[2]+[1] q5&q4+q &[1]

q3+q [1][3]+[1][2]&[1]2 q5&q2 2
q3+q2&q&1 &1 q5&1 &2

i ci

q5 [5]&[4]&[3]+[2]+[1]
q5+q&1 &[5]+[4]+[3]+[2]&[1]

q5+q [1][5]&[1][4]&[1][3]&[1][2]+[1]2

q5+q3&q2&1 &2
q5+q3&q2 &[5]&[4]+[3]+[2]+[1]

q5+q3&q&1 2
q5+q3&1 2[5]+2[4]&4[2]

q5+q3 [3][5]&[2][5]&[1][5]+[3][4]&[2][4]&
[1][4]&[3]2+[2]2+2[1][2]+[1]2
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Observe that different terms in the expansion may be equal for fixed q. For
example, for q=2, we have that q3+q&1=q3+q2&q&1. But of course,
if one looks at a finite part of the expansion (as in the given table), this can
only happen for finitely many q's.
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