Formation of Platinum–Tin Bond by Tin(II)Chloride Insertion¹

László Kollár,^{2, 6} Serafino Gladiali,³ Manuel Jimenez Tenorio,⁴ and Walter Weissensteiner⁵

Received January 16, 1998

The first ¹¹⁹Sn NMR evidence for the presence of direct platinum-tin bond in solution has been obtained for PtCl(SnCl₃)(bdpp) complex (bdpp = (2S,4S)-2,4-*bis*(diphenylphosphino)pentane). Various PtCl₂(L₂) complexes (L₂ = heterobidentate P-P, P-O, P-N, P-S chelating ligands) have been reacted with tin(II)chloride resulting in the formation of the corresponding PtCl(SnCl₃)(L₂) derivatives. Tin(II)chloride has been inserted into the Pt-Cl bond *trans* to the harder donor atom of the L₂ ligand.

KEY WORDS: NMR; tin(II)chloride; insertion; platinum; platinum-tin bond.

INTRODUCTION

The importance of tin(II)halide additives in various homogeneous platinumcatalyzed reactions is well known. Tin(II)chloride has been used for a long time in hydrogenation reactions carried out in the presence of chloroplatinic acid [1].

The hydroformylation of various functionalized and unfunctionalized alkenes with platinum-phosphine-tin(II)chloride "preformed" and "*in situ*" systems is also well documented [2-6]. The most often used systems contain $PtCl_2(diphosphine)$ and $PtCl(SnCl_3)(diphosphine)$ precursors.

¹ This paper is dedicated to the 70th birthday anniversary of Prof. László Markó, in recognition of his contribution to cluster chemistry, coordination chemistry, and homogeneous catalysis.

² Department of Inorganic Chemistry, Janus Pannonius University, Pécs, Hungary.

³ Dipartimento di Chimica, Università di Sassari, Sassari, Italy.

⁴ Departamento di Qumica Inorganica, Universidad de Cadiz, Puerto Real, Spain.

⁵ Institut für Organische Chemie, Universität Wien, Wien, Austria.

⁶ To whom all correspondence should be addressed at Janus Pannonius University, Department of Inorganic Chemistry, H-7624 Pécs, Ifjúság u. 6. P.O.Box 266, Hungary. E-mail: kollar@ttk.jpte.hu

^{1040-7278/98/0900-0321\$15.00/0 © 1998} Plenum Publishing Corporation

Although the investigation of "tin chloride-free" ionic systems [7–10] are of increasing importance, the application of the platinum-tin systems of the above type is still overhelming.

In spite of the wide application of platinum catalysts in hydroformylation in the past two decades, the reaction mechanism has still some open questions. The details of the reaction mechanism, especially the role of tin(II)halides in various steps of the reaction mechanism, have been discussed on the basis of NMR investigations using suitable model compounds [11-13] and HP NMR under "real oxo-conditions" [14, 15].

The NMR has proven to be extremely useful in determining the geometry of platinum-tin complexes in solutions [16]. Tin has three different isotopes with I = 1/2 that are observable by NMR spectroscopy. Two of these, ¹¹⁹Sn and ¹¹⁷Sn, have reasonable natural abondances (8.6% and 7.6%, respectively). For determination of NMR patterns either by direct detection or their coupling to other NMR active nuclei can be considered. Due to its slightly higher receptivity, ¹¹⁹Sn is usually the isotope that is observed. Since tin chemical shifts are notoriously solvent and temperature dependent, especially the coupling constants give important information on the relative geometry of NMR active nuclei.

Although the existence of a direct platinum-tin bond in $PtX(SnCl_3)(L_2)$ complexes (where X = I, Cl; $L_2 = mono$ or bidentate neutral ligand) has been shown by the presence of tin satellites in ³¹P NMR ($J(^{117,119}Sn, ^{31}P)$ coupling constant) [17] and by X-ray structural determination [18], to the best of our knowledge, direct ¹¹⁹Sn NMR-based proof for these catalytically important species containing chelating diphosphine has not been obtained yet.

The insertion of SnCl₂ into metal-halide bonds which is one of the fundamental reactions in coordination chemistry has been reviewed [19]. It is known for a long time, that both *cis*- and *trans*-PtCl₂(L₂) (L = monodentate phosphine) complexes react with tin(II)chloride yielding exclusively trans-PtCl(SnCl₃)L₂ [20]. Due to the applicability of platinumdiphosphine-tin(II)chloride systems as homogeneous catalysts, the structure of the corresponding PtCl(SnCl₃)(diphosphine) precursors has been studied in detail by ³¹P NMR spectroscopy. The $PtCl_2(L_2)$ complexes contain mainly bidentate ligands of C₂ symmetry (L₂), like the chiral diop [21-23], chiraphos [24], bdpp [25], etc. or achiral PPh₂(CH₂)_nPPh₂-type diphosphines [26]. There are also some applications for diphosphines possessing two different diphenylphosphino groups like prophos [27], bppm [28]. The successful application of a heterobidentate phosphine-phosphite ligand with binaphtyl skeleton in rhodium-catalyzed asymmetric hydroformylation [29, 30] focused attention to the importance of heterobidentate ligands [5].

Platinum—Tin Bond

In the present paper, we report on the first ¹¹⁹Sn NMR of a $PtCl(SnCl_3)(diphosphine)$ complex and the selectivity of tin(II)chloride insertion into $PtCl_2(L_2)$ complexes containing heterobidentate ligands.

EXPERIMENTAL

Chemicals

The diphosphine ligand, *bdpp* were purchased from Strem and has been used without further purification. Anhydrous tin(II)chloride was prepared from $SnCl_2 \cdot 2H_2O$ by reacting it with acetic anhydride and washing with ether. The heterobidentate ligands, 1–4 were prepared as described previously [31–34]. All $PtCl_2(L_2)$ complexes were prepared according to the literature using $PtCl_2(PhCN)_2$ as starting complex [35]. All complexes gave satisfactory elemental analysis.

Instrumentation

¹H and ³¹P NMR spectra were recorded in CDCl₃ on a Varian Unity 300 spectrometer at 300 and 121.4 MHz, respectively. Chemical shifts are reported in δ ppm, referred to TMS (tetramethylsilane) as internal standard and to orthophosphoric acid (85%, higher fields refer to lower chemical shifts) as external standard. ¹¹⁹Sn NMR were recorded in CD₂Cl₂/CH₂Cl₂ on a JEOL GSX-270 spectrometer at 100.6 MHz. ¹¹⁹Sn chemical shifts are reported in ppm relative to tetramethylstannane.

RESULTS AND DISCUSSION

¹¹⁹Sn NMR of PtCl(SnCl₃)(bdpp) (bdpp = (2S,4S)-2,4-*bis*(diphenylphosphino)pentane)

The above complex containing a diphosphine ligand of C_2 symmetry (Fig. 1) has been used succesfully in enantioselective hydroformylation and its structure was determined by usual analytical methods [18]. The characteristic ${}^{2}J_{cis}({}^{117,119}Sn, {}^{31}P)$ and ${}^{2}J_{trans}({}^{117}Sn, {}^{31}P), {}^{2}J_{trans}({}^{119}Sn, {}^{31}P)$ coupling constants of 180 Hz and 3933 Hz, 4115 Hz, respectively, obtained from ${}^{31}P$ NMR spectrum, refer to the presence of a direct platinum-tin bond. The two-bond coupling of tin to the *trans* phosphorus atom is more than an order of magnitude larger than that to a *cis* phosphorus, as it is expected. It is worth noting, that the determination of a ${}^{2}J(Sn, P)$ coupling

Fig. 1. The structure of PtCl(SnCl₃)(bdpp) complex.

constants from a ${}^{31}P$ NMR requires a very high signal to noise ratio, because of the low intensity of the tin satellites. (They are as small as ca. 4% of the intensity of the main peak (central line) of the multiplet.)

Unfortunately, the ¹⁹⁵Pt NMR measurements did not result in a spectrum of satisfactory quality giving the exact coupling information.

However, the ¹¹⁹Sn NMR obtained in CD₂Cl₂/CH₂Cl₂ displays a characteristic multiplet at -21.95 ppm. The central dd pattern, due to the coupling of ¹¹⁹Sn nuclei to two chemically nonequivalent phosphorus of *bdpp*, is flanked by platinum satellites of ca. 17% intensity as a consequence of the 33.8% natural abundance of ¹⁹⁵Pt (I = 1/2). Both ² J_{cis} (¹¹⁹Sn, ³¹P) = 187.1 Hz and ² J_{trans} (¹¹⁹Sn, ³¹P) = 4090 Hz coupling constants can easily be determined. The difference between ² J_{cis} (Sn, P) coupling constants obtained in ³¹P (*vide supra*) and ¹¹⁹Sn NMR measurements are due to the overlapping of ¹¹⁷Sn and ¹¹⁹Sn satellites in ³¹P NMR resulting in a much broader satellite than usual.

The ${}^{1}J({}^{195}\text{Pt}, {}^{119}\text{Sn})$ coupling constant (16945 Hz) is an unquestionable proof for the direct platinum-tin bond. For the above square planar complex, the magnitude of the tin-platinum coupling constant is in agreement with the presence of a phosphine *trans* to the tin atom.

NMR Investigation of the SnCl₂ Insertion into the Pt-Cl Bond of PtCl₂(Heterobidentate Ligand)-Type Complexes

Although the $PtCl(SnCl_3)(c_2\text{-diphoshine})$ complexes have been characterized carefully and their formation as a function of electronic and steric parameters of the phosphine has been usually discussed together with their catalytic investigation, a little is known about $Pt-SnCl_3$ complexes containing various heterobidentate ligands. Therefore, $PtCl_2(L_2)$ complexes (where L_2 stands for 2-diphenylphosphino-1,1'-(1-dicyclohexylphosphino-1,3-propanediyl)ferrocene (1), 1-diphenylphosphino- α -N,N-dimethylamino

Platinum—Tin Bond

[2,3]tetramethyleneferrocene (2), 2-diphenylphosphino-2'-diphenylphosphinyl-1,1'-binaphthyl (3), and S-methyl 2-diphenylphosphino-1,1'-binaphthyl-2'-thiol (4)) were reacted with a stoichiometric amount of tin(II)chloride in chloroform or dichloromethane (Scheme 1). (All ligands were used in racemic form.) The formation of the corresponding $PtCl(SnCl_3)(L_2)$ has

Scheme 1. The reaction of $SnCl_2$ with $PtCl_2(L)$ complexes containing heterobidentate P-P, P-N, P-O, P-S chelating ligands (L) (in complexes **1a**, **1b**, and **1b**': $P^1 = PCy_2$, $P^2 = PPh_2$).

Complexes"	δP ppm	¹ J(¹⁹⁵ Pt, ³¹ P) Hz	$\frac{J(P^1, P^2)}{Hz}$	² J(³¹ P, ¹¹⁷ Sn) Hz	² J(³¹ P, ¹¹⁹ Sn) Hz
$PtCl(SnCl_3)(1) (1b)^b$	0.2	3446	15	205 ^d	d
	53.7	2921		3630	3812
$PtCl(SnCl_3)(1) (1b')^c$	8.5	2931	16	4220	4408
	59.4	3426		193 ^d	d
$PtCl(SnCl_3)(2)$ (2b)	2.0	3933	_	186	195
$PtCl(SnCl_3)(3)$ (3b)	16.7	3812		185 ^d	d
	48.3	_			
$PtCl(SnCl_3)(4)$ (4b)	11.6	3753	—	200 ^d	d

Table I. ³¹P NMR Data of Pt Complexes Containing Heterobidentate Ligands

" For structures of 1b-4b see Scheme 1.

^b SnCl₃ moiety *trans* to PCy₂.

^c SnCl₃ moiety trans to PPh₂.

^d ¹¹⁷Sn and ¹¹⁹Sn satellites (${}^{2}J_{cis}$ (^{117,119}Sn, ³¹P) coincide.

been observed in all cases. The presence of trichlorostannato moiety in the complex has been proved by NMR. Both the changes of the ³¹P chemical shifts in $PtCl_2(L_2)$ complexes and the presence of the tin satellites in ³¹P NMR indicate it (Table 1).

Two isomers, **1b** and **1b'** have been formed in a ratio of ca. 60/40, when diphosphine (1) possessing two different donor phosphorus has been used as bidentate ligand. The signal of the phosphorus possessing ${}^{1}J({}^{195}\text{Pt}, {}^{31}\text{P})$ less than 3000 Hz can be assigned to phosphorus *trans* to the trichlorostannato ligand. The structure can also be verified considering the presence of the corresponding tin satellites on the phosphorus signals. In the prevailing trichlorostannato complex (**1b**) the tin(II)chloride insertion takes place *trans* to the more basic dicyclohexylphosphino moiety. It is worth noting that similar selectivity was obtained with PtCl₂(prophos) (prophos = 1,2-bis(diphenylphosphino)propane), where tin(II)chloride insertion took place *trans* to the slightly more basic phosphorus adjacent to CH(CH₃) moiety of the phosphine backbone [27].

Surprisingly high selectivity has been obtained for the reaction of $PtCl_2(2)$ (2a), $PtCl_2(3)$ (3a), $PtCl_2(4)$ (4a), with tin(II)chloride resulting in the formation of 2b, 3b, and 4b, respectively. In these cases, where the basicity of the two donor functionality is substantially different, tin(II)chloride insertion into Pt-Cl bond takes place selectively *trans* to the harder donor ligand.

Platinum—Tin Bond

In case of **2b** the *cis* position of the phosphorus and the trichlorostannato ligand has been proved by the characteristic ${}^{2}J_{cis}({}^{117,119}\text{Sn}, {}^{31}\text{P})$ coupling constant in ${}^{31}\text{P}$ NMR. The coordination of nitrogen was proved by the Pt satellites of the proton signals $({}^{3}J({}^{195}\text{Pt}, {}^{1}\text{H}) = 26 \text{ Hz}, {}^{3}J({}^{195}\text{Pt}, {}^{1}\text{H})$ = 30 Hz) of the diastereotopic NMe₂ methyl groups.

In complex **3b** the tin satellites are in similar position indicating the *cis* arrangement of P and Sn. The absence of both platinum and tin satellites on phosphinyl phosphorus is due to the coordination P = O moiety to platinum through oxygen [36].

The bidentate coordination of the phosphino-thioether ligand, **4** in **4b** is proved both by ³¹P and ¹H NMR. While the typical ${}^{2}J_{cis}({}^{117,119}Sn, {}^{31}P)$ refers to the phosphorus *cis* to trichlorostannato moiety, the ${}^{3}J({}^{195}Pt, {}^{1}H) = 39$ Hz coupling on SCH₃ clearly shows the sulfur coordination, and additionally, the ${}^{4}J({}^{117,119}Sn, {}^{1}H) = ca. 51$ Hz appearing as week satellites, is an indication for the Sn-Pt-SCH₃ *trans* arrangement.

CONCLUSIONS

We have shown that the insertion of tin(II)chloride into platinumchlorine bond in $PtCl_2$ (heterobidentate ligand) complexes takes place selectively. The selectivity is substantially determined by the electronic properties of the donor ligands: tin(II)chloride inserts into the Pt-Cl bond *trans* to the harder donor ligand. This fact could be explained by the labilization of the appropriate chloro ligand. It is in accordance with earlier findings, which propose the coordination of tin(II)chloride to the halogen of the Pt-Cl bond [37, 38]. The Pt-Cl-SnCl₂ intermediate is probably rearranged to Pt-SnCl₃ through a triangular intermediate with a platinumtin bridging halide.

ACKNOWLEDGMENTS

L.K. thanks the Hungarian National Science Foundation for financial support (OTKA T23525) and the Ministry of Education for grant FKFP 0818

REFERENCES

- 1. G. W. Parshall and S. D. Ittel, *Homogeneous Catalysis*, 2nd Ed. (J. Wiley & Sons, New York, 1992).
- 2. C. Botteghi, S. Paganelli, A. Schionato, and M. Marchetti (1991). Chirality 3, 355.
- 3. G. Consiglio, in I. Ojima (ed.), Catalysis Asymmetyric Synthesis (VCH Publishers, New York, 1993), 273.

- 4. R. Noyori, Asymmetric Catalysis in Organic Synthesis (J. Wiley & Sons, New York, 1994).
- 5. S. Gladiali, J. C. Bayón, and C. Claver (1995). Tetrahedron: Asymmetry 6, 1453.
- 6. F. Agbossou, J.-F. Carpentier, and A. Mortreux (1995). Chem. Rev. 95, 2485.
- 7. P. W. N. M. van Leeuwen, C. F. Roobek, R. L. Wife, and J. H. G. J. Frijns (1986). J. Chem. Soc. Chem. Commun. 31.
- 8. P. W. N. M. van Leeuwen, C. F. Roobek, and J. H. G. J. Frijns (1990). Organometallics 9, 1211.
- 9. C. Botteghi, S. Paganelli, U. Matteoli, A. Scrivanti, R. Ciorciaro, and L. M. Venanzi (1990). *Helv. Chim. Acta* 73, 284.
- C. Botteghi, S. Paganelli, A. Perosa, R. Lazzaroni, and G. Uccello-Barretta (1993). J. Organomet. Chem. 447, 153.
- 11. A. Scrivanti, A. Berton, L. Toniolo, and C. Botteghi (1986). J. Organomet. Chem. 314, 369.
- 12. H. J. Ruegg, P. S. Pregosin, A. Scrivanti, L. Toniolo, and C. Botteghi (1986). J. Organomet. Chem. 316, 233.
- 13. M. Gomez, G. Muller, D. Sainz, J. Sales, and X. Solans (1991). Organometallics 10, 4036.
- 14. I. Tóth, T. Kégl, C. J. Elsevier, and L. Kollár (1994). Inorg. Chem. 33, 5708.
- 15. T. Kégl, L. Kollár, and L. Radics (1977). Inorg. Chim. Acta 265, 249.
- P. S. Pregosin, in J. G. Verkade and D. L. Quin (eds.), *Phosphorus-31 NMR Spectroscopy* (VCH Publishers, Deerfield Beach, Florida, 1987), pp. 465–530.
- P. S. Pregosin and R. W. Kunz, ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes (Springer Verlag, Heidelberg, 1979).
- 18. E. Farkas, L. Kollár, M. Moret, and A. Sironi (1996). Organometallics 15, 1345.
- 19. M. S. Holt, W. L. Wilson, and J. H. Nelson (1989). Chem. Rev. 89, 11.
- 20. L. Y. Al't, E. N. Yurchenko, and A. P. Chernyshev (1980). Koord. Khim. 6, 1085.
- C. U. Pittman, Y. Kawabata, and L. I. Flowers (1982). J. Chem. Soc., Chem. Commun. 473.
- 22. P. Haelg, G. Consiglio, and P. Pino (1985). J. Organomet. Chem. 296, 281.
- 23. L. Kollár, G. Consiglio, and P. Pino (1987). J. Organomet. Chem. 330, 305.
- 24. G. Consiglio, F. Morandini, M. Scalone, and P. Pino (1985). J. Organomet. Chem. 279, 193.
- 25. L. Kollár, J. Bakos, I. Tóth, and B. Heil (1988). J. Organomet. Chem. 350, 277.
- 26. Y. Kawabata, T. Hayashi, and I. Ogata (1979). J. Chem. Soc., Chem. Commun. 462.
- 27. M. Scalone, PhD thesis, ETH-Zurich, 1983.
- 28. G. Parrinello and J. K. Stille (1987). J. Am. Chem. Soc. 109, 7122.
- 29. N. Sakai, S. Mano, K. Nozaki, and H. Takaya (1993). J. Am. Chem. Soc. 115, 7033.
- 30. N. Sakai, K. Nozaki, and H. Takaya (1994). J. Chem. Soc., Chem. Commun. 395.
- 31. G. Kutschera, C. Kratky, W. Weissensteiner, and M. Widhalm (1996). J. Organomet. Chem. 508, 195.
- 32. B. Jedlicka, C. Kratky, W. Weissensteiner, and M. Widhalm (1993). J. Chem. Soc., Chem. Commun. 1329.
- 33. F. Ozawa, A. Kubo, and T. Hayashi (1992). Chem. Lett. 2177.
- 34. S. Gladiali, A. Dore, and D. Fabbri (1994). Tetrahedron: Asymmetry 5, 1143.
- 35. F. R. Hartley (1970). Organomet. Chem. Rev. A 6, 119.
- 36. R. Wegman, A. G. Abatjoglu, and A. M. Harrison (1987). J. Chem. Soc., Chem. Commun. 1891.
- 37. M. Elder and D. Hall (1969). Inorg. Chem. 8, 1273.
- 38. B. R. James (1979). Adv. Organomet, Chem. 17, 319.