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Abstract

A model was developed to determine the optimum height in cylindrical geometry samples, to measure by gamma
spectrometry a given fraction of the maximum number of possible detections. The method was applied to samples of
water and seabed sediment of the Bay of Cádiz (Southwestern Spain). The influence of sample density was also studied.
An important goal of this method is to avoid measuring the different efficiencies for multiple heights. The method was
validated in the usual energy range for environmental samples (100—1700 keV). ( 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The measurement of the radioactivity in environ-
mental samples is generally a low-level counting
technique, therefore it is important to minimize the
radiation coming from outside, using an adequate
shield, and to maximize the detections coming from
the sample itself, using the most optimum geometry
to increase the counting efficiency (high source vol-
umes and short detector-source distances).

For sediment samples, it is usual to employ cylin-
drical geometry in short detector-samples distan-
ces. In such a geometry, and for a fixed diameter,
the detection rate increases as the column height of

sediment grows. However, a column “limit-height”
is reached beyond which the improvement in detec-
tion rate is insignificant. The reasons for this are
due to self-absorption and worsening geometry for
extended column layers. Knowledge of such a limit
height can suppose an important time-saver in
sample gathering and preparation.

This paper presents a method that relates the
number of detections, D, and the height of a cylin-
drical sample, h. It will be shown that the number of
detections approaches a limit although D(h) is an
increasing function. So, for a given fraction of the
number of maximum detections it is possible to
determine the optimum height in the sample.

Although the method was developed to study
column height in cylindrical geometry samples, it is
applicable to other geometries, like the Marinelli
beaker.
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Fig. 1. Photon generation for a cylindrical geometry to be used
in Monte Carlo method.

2. Theoretical basis

The fundamental hypothesis of the method is the
homogeneization of the sample, including the
radioisotopes in it. Consider a sample containing
a specific radioisotope of activity A, with a charac-
teristic gamma-ray yield ½, measured over a time t.
Then the number of emissions N is

N"A½t. (1)

Let e be the efficiency of the sample—detector sys-
tem. Then the number of detections, D, is

D"eA½t (2)

or

D"eN. (3)

Equivalently,

e"
D

N
. (4)

In our model, we calculate a theoretical total
sample—detector efficiency e

5
by generating photons

in a random point of the sample and simulating
their possible trajectories and interactions with the
sample and detector. If N photons are emitted over
a time t, and D photons are detected, then the
theoretical total efficiency e

5
is

e
5
"

D

N
. (5)

In the Monte Carlo method [1], each point of
the sample is equally probable, as well as every
starting direction to the trajectory. For the kth
generated “primary-decay” photon to escape the
sample, it must travel a distance x

k
inside the

sample (Fig. 1). If k
M

is the sample attenuation
coefficient for a considered energy, the probability
that the photon goes through the sample without
interaction is e~kMxk. If the path intercepts the de-
tector, the probability of photon—detector in-
teraction is 1!e~kDwk, where k

D
is the attenuation

coefficient of the detector and w
k
is the pathway of

the photon inside the detector. So, the probability
for the kth photon to be detected is

p
k
"e~kMxk ) (1!e~kDwk) (6)

and, the total efficiency of the system for N gener-
ated photons inside the sample is

e
5
"

D

N
"Sp

k
T"

1

N

k/N
+
k/1

e~kMxk ) (1!e~kDwk ). (7)

The attenuation correction in the path between
sample and detector has not been considered be-
cause the photon attenuation coefficient for the air
is thousand times less than the attenuation coeffic-
ient for the water or the sediment, so that the
corrections would be less than the precision of our
model, as we will show. The photon attenuation for
the polyethylene cylindrical container and the win-
dow detector has either not been considered, be-
cause their thicknesses are negligible with respect to
the dimensions of the sample and the detector.

A numerical model for calculating the photopeak
efficiency would be much more complicated be-
cause there are multiple interactions contributing
to the photopeak.
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Fig. 2. b function shape.

If we call the activity per volume unit a, then we
can write Eq. (2) as

D"e»a½t, (8)

where » is the sample volume. To simplify the
analysis, we group the efficiency and volume terms
into a single parameter b

b"e». (9)

Now the number of detections can be written as

D"ba½t. (10)

We now concentrate all the geometrical depend-
ence in the number of detections on b. Let h be the
height of the cylindrical sample, and C a constant
independent of system geometry, then while hold-
ing the cylinder radius constant,

D(h)"b(h)C, (11)

b is an increasing function which has a finite value
at infinite height b(R), and is derived in the appen-
dix. Beginning at b(0)"0, the shape of the function
b is the one represented in Fig. 2, analogous to the
D(h) shape except for a factor C.

To find a particular sample height h
Q

that gives
a fraction Q(0(Q(1) of the maximum number of
detections, D(R), consists of resolving the equa-
tion:

D(h
Q
)"QD(R) (12)

or the equivalent one:

b(h
Q
)"Qb(R). (13)

It is known that for a given sample, the ratio
between the photopeak efficiencies, e, and the total
efficiencies, e

5
, depends on the energy, E, and is

nearly independent on the sample geometry and on
the detector—sample relative position [2]. So:

e(E, h)

e
5
(E, h)

"r (E) (14)

and considering the definition given in Eq. (9) we
can write:

b(h)"r ) b
5
(h) (15)

which if it is replaced in Eq. (13), it leads to the
equation:

b
5
(h

Q
)"Q ) b

5
(R). (16)

This equation needs to be solved the function
b
5
(h), so we can get the total efficiency of the system

using expression (7).
As we were interested in optimizing the height,

not only for a unique value but for a range of
energies, E

i
, employ Eq. (16) for every one of these

energies, obtaining the values h
Q
(E

*
) corresponding

to the values of an increasing function h
Q
(E).

3. Development of the method

We have applied the method to an integral pre-
amplifier- CANBERRA GC2020-7500SL p-type
coaxial HPGe detector system. The useful energy
range of this detector is from 50 keV to more than
10 MeV. The Peak/Compton ratio is 46 for the
1333 keV 60Co photon. The HPGe crystal is
50.5 mm in diameter and 46.5 mm in length. The
relative efficiency to a 3 in]3 in NaI(Tl) detector is
20% and the resolutions at 122 and 1332 keV of 1.1
and 2 keV, respectively. The detector—sample rela-
tive position is represented in Fig. 1. The
sample—detector distance is 8 mm, the shortest in
our case. The energy range we are interested is from
100 to 2000 keV.

We have developed a computer program that
uses Eq. (7) in order to calculate the total efficiency
corresponding to a given height of the sample, for
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Fig. 3. b
5
versus height, for three energies for a water sample.

a set of energies E
j
. So, if we consider n

)
heights and

n
E

energies for every height, we get the matrix:

[e
5
(h

i
, E

j
)]"

A
e
5
(h

1
, E

1
) e

5
(h

2
, E

1
) 2 e

5
(h

n)
, E

1
)

e
5
(h

1
, E

2
) e

5
(h

2
, E

2
) 2 e

5
(h

n)
, E

2
)

2 2 2 2

e
5
(h

1
, E

nE
) e

5
(h

2
, E

nE
) 2 e

5
(h

n)
, E

nE
) B (17)

which if multiplied by »
i
gives:

[b
5
(h

i
, E

j
)]"

A
b
5
(h

1
, E

1
) b

5
(h

2
, E

1
) 2 b

5
(h

n)
, E

1
)

b
5
(h

1
, E

2
) b

5
(h

2
, E

2
) 2 b

5
(h

n)
, E

2
)

2 2 2 2

b
5
(h

1
, E

nE
) b

5
(h

2
, E

nE
) 2 b

5
(h

n)
, E

nE
) B (18)

verifying for each element b
5
(h

i
,E

j
)"»

i
) e

t
(h

i
, E

j
)

"nR2
M
h
i
e
5
(h

i
, E

j
), where R

M
is the radius of the

sample (in our case 32 mm).
We have chosen 11 or 13 energies, E

j
, in which

we know the attenuation of the sample, and we

have taken 150 values for h
*
inside the range from

h"0 to the finite value in which b
5
(R) is reached.

The statistical uncertainty has been fixed below
0.3%, which implies a calculation time of 24 h to
determine the matrix [b

5
(h

i
, E

j
)].

4. Applications

4.1. Water sample

The optimization of the height has been made,
firstly, for water samples. The attenuation coeffi-
cients for the water and the germanium have been
taken from Ref. [3], and the energies we have used
in our calculations are: 100, 150, 200, 300, 400, 500,
600, 800, 1000, 1500 and 2000 keV.

We have represented the values of b
5

versus
height for three energies in Figs. 3 and 4. Above
1000 mm the value b

5
(R) is essentially reached for

all three energies (Fig. 4). b
5
(h) goes assymptotic to

b
5
(R) as h

*
PR.

From the set of calculated points, we have fit
b
5
to a polynomial curve of sixth degree without
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Fig. 4. b
5
versus height, for three energies for a water sample, h is extended to show b

5
(R).

independent term, employing minimum square
techniques

b
5
(h, E

j
)"

k/6
+
k/1

a
kj
hk. (19)

Knowing this expression, it is possible to solve
Eq. (16), to determine the height h

Q
of the sample

necessary to detect a fraction Q of the maximum
number of detections.

We represent, in Fig. 5, the results obtained for
desired detections fractions Q"0.75, 0.80 and 0.85.
For a given fraction Q the height h

Q
increases with

energy, and for a given energy, height h
Q

increases
with fraction Q.

Therefore, a water sample of height h
Q
"50 mm

assures the percent of detections is above Q"75%
for all energies '100 keV.

4.2. Sediment sample

The method has also been applied to a seabed
sediment sample, after being dried, powdered, and
less than 0.5 mm sieved in order to reach the homo-

geneity, whose attenuation coefficient was deter-
mined using the transmission method for the
photons emitted by a point source of 152Eu placed
above the sample [4].

In Fig. 6, the values of b
5
, obtained for 122, 867

and 1700 keV, are represented, and in Fig. 7, we
extend the height range for checking how the values
b
5
(R) are reached.
After the fit of b

5
to a polynomial curve, Eq. (19),

it is possible to solve Eq. (16) to optimize the
height.

So, in Fig. 8, for each energy, we represent, the
height values of sediment samples necessary to de-
tect 75%, 80% and 85% of the maximum number
of detections. We have to realize that the same
percentage of detected emissions requires a lower
height for the sediment sample than for the water
sample, because of the lower attenuation in water.

4.3. Influence of density

Making environmental analysis by gamma spec-
trometry, samples of similar composition but differ-
ent densities are often found [5]. So, they have the
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Fig. 5. h
Q

versus energy, for a water sample and Q"0.75, 0.80 and 0.85.

Fig. 6. b
5
versus height, for three energies for a sediment sample.
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Fig. 7. b
5
versus height, for three energies for a sediment sample, h is extended to show b

5
(R).

Fig. 8. h
Q

versus energy, for a sediment sample and Q"0.75, 0.80 and 0.85.
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Fig. 9. b
5
versus height, for two energies for sediment samples of density 1 and 2 g/cm3.

same mass attenuation but a different linear attenu-
ation. This happened with a set of seabed sediments
of the Bay of Cádiz, whose densities varied between
1 and 2 g/cm3. The lower-density samples have
larger h

Q
associated with a desired Q, as they have

a lower linear attenuation.
In order to study this effect, the b

5
(h) curves are

determined, for the densities o
1
"1 g/cm3 and

o
2
"2 g/cm3. In Fig. 9, we have represented the

results for energies 122 and 1408 keV and for
a height range from 0 to 200 mm. We can observe,
in this figure, how b

5
, for every energy and height, is

lower for the highest density, as a consequence of
the bigger self-absorption. We can also see that
when the limit value of b

5
(h) is reached for density

o
2
, the value of this function for o

1
still grows.

We can calculate the optimization height, for
every energy and density, once we know the b

5
(h)

curves. In Fig. 10 the obtained results are repre-
sented, for densities o

1
and o

2
, corresponding to the

fractions Q"0.75 and Q"0.85, and we can con-
clude that for a sample height of 55 mm, we detect
more than 75% of the maximum number of detec-

tions, in all the sediments whose densities vary
between 1 and 2 g/cm3, and for the whole energy
range we have considered.

5. Experimental validation

The photopeak detections in a sediment sample
with different heights have been measured in order
to validate the theoretical method that we have
proposed.

The sediment used in the validation has a density
of 1.64 g/cm3 and has been injected with a mixed
source, whose energies are: 88.03 keV (109Cd),
122.06 keV (57Co), 661.66 keV (137Cs), 1173.24 and
1332.5 keV (60Co), and 1461 keV (40K). The former
radioisotope does not belong to the mixed source,
but appears like a natural emitter in the sediment.

The samples have been placed in 64 mm dia-
meter polyethylene containers, which have been
filled to 5, 10, 15 mm and so on to 70 mm height.

The mixed source has been homogenized in
the sample, and such an homogenization has been
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Fig. 10. h
Q

versus energy, for sediment samples, of density 1 and 2 g/cm3 and Q"0.75 and 0.85.

verified making several measurements after mech-
anical shaking and checking that the number of the
counts in every photopeak is constant, inside the
statistical uncertainties [6].

From the values of the experimental photopeak
efficiencies, for every energy and height, we can
calculate the b

%91
values, and we can fit these ones

to a polynomial curve, Eq. (19).
In order to compare the results of the model and

the experimental ones, we normalize the b functions
to the values found for the maximum height
(h"70 mm). So, we calculate the ratios:

b
%91

(h)

b
%91

(h
.!9

)
and

b
5
(h)

b
5
(h

.!9
)

(20)

represented in Fig. 11, Fig. 12, and Fig. 13, for en-
ergies 662, 1173 and 1332 keV, where we have
drawn the error bars in h and b

%91
(h)/b

%91
(h

.!9
),

although the latter are very small due to the good
statistics in our measurements. We can observe
here the agreement between the theoretical and the
experimental results.

In our initial hypothesis (Eq. (14)), we established
that the rate between the photopeak and total
efficiencies depends on the energy and is approxim-
ately constant with respect to the height. This ap-
proximation can explain the slight and systematic
deviation between both functions.

Nomenclature

a
kj

coefficient of b fit
A sample activity
C sample geometry independent constant
D number of detections
D

0
distance from the sample-bottom to the de-
tector-center

E photon energy
h sample height
h
.!9

maximum sample experimental height
h
Q

optimum sample height
n
E

number of energies for b calculation
n
)

number of heights for b calculation
N number of emissions
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Fig. 11. Normalized b functions, theoretical and experimental, for 662 keV energy. The dot lines represent the experimental function.

Fig. 12. Normalized b functions, theoretical and experimental, for 1173 keV energy. The dot lines represent the experimental function.

p
k

probability for the photon to be detected
p
1

probability for the photon to be emitted
toward the detector

p
2

probability for the photon not to be ab-
sorbed in the sample

p
3

probability for the photon to be detected
when it crosses the detector

Q fraction of the maximum number of detec-
tions

R
D

detector radius
R

M
sample radius

r ratio between the photopeak and the total
efficiencies

t counting time
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Fig. 13. Normalized b functions, theoretical and experimental, for 1332 keV. The dot lines represent the experimental function.

» sample-volume
w
k

distance travelled by the kth photon
through the detector

x
k

distance travelled by the kth photon
through the sample

½ characteristic gamma-ray yield
b beta quantity (defined on this work). Photo-

peak b
b
5

total b
b
%91

experimental photopeak b
e sample detector system efficiency. Photo-

peak efficiency
e
5

sample detector system total efficiency
e
*/5

intrinsic detector efficiency
eS sample-section detector system efficiency
k
D

detector attenuation
k
M

sample attenuation
o sediment density
X solid angle subtended at the sample section

by the detector
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Appendix A.

The b quantity, defined in Eq. (9), verifies the
following properties:

(1) Let us consider a sample—detector system,
and we suppose two zones inside the sample, 1 and
2, as it can be seen in Fig. 14. The whole system will
have an efficiency, e, and a volume ». Besides, the
radioisotope must be homogenized inside the
sample, and we call a to the activity per volume
unit. The total number of detections comes from
region 1 and 2. We can define an efficiency for every
one of these regions, e

i
"D

i
/N

i
, with N

*
the number

of emissions in the region i and D
i
the number of

detections for these emissions. So,

N
i
"A

i
½t"»

i
a½t, (A.1)

where ½ is the gamma-ray yield and t is the count-
ing time. So, the number of detections coming from
each region can be written like:

D
1
"e

1
»

1
a½t, D

2
"e

2
»

2
a½t. (A.2)

We can write for the number of detections coming
from the whole sample and from each region, the
following expressions:

D"ba½t, D
1
"b

1
a½t, D

2
"b

2
a½t, (A.3)
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Fig. 14.

Fig. 15.

Fig. 16.

where we have used b for the whole sample and
b
i
for region i. As D"D

1
#D

2
, we get

b"b
1
#b

2
. (A.4)

This property is not satisfied for the efficiency.
From the previous expression, we can get:

e"
»

1
»

e
1
#

»
2

»

e
2

(A.5)

which it shows the non-additive relationship be-
tween efficiencies.

Eq. (A.4) is completely general and does not
depend on the geometry or the composition of the
sample (it can even be heterogeneous). However, we
have employed homogeneity of the radionuclide
inside the sample.

(2) For cylindrical geometry, b(h) is an increas-
ing function and it has a finite limit. So, the follow-
ing properties are satisfied:

b(h
1
)(b(h

2
) if h

1
(h

2
, (A.6)

0(b(R)(R where b(R)"b(hPR).

(A.7)

Property A.6 comes directly from Eq. (A.4). In
Fig. 15, we represent the cross-section of a cylin-
drical sample with two possible heights, h

1
and h

2
,

which limit the regions 1 and 2. As b(h
1
)" b

1
and

b(h
2
)" b

1
# b

2
, we have that b(h

1
)(b(h

2
), as

b quantity is positive.
In order to demonstrate Eq. (A.7), we consider

a cylindrical sample in which height h
2
is infinite, as

we can see in Fig. 16. As b(h
2
)" b

1
# b

2
, we only

have to show that b
2

is finite. For this reason, we
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consider the differential sections db in region 2, and
we write by the additive property of b:

b
2
"P

h/=

h/h1

db (A.8)

We can write db like:

db"eS(h) d»"eS(h)nR2
M

dh (A.9)

where eS(h) is the section efficiency, d» is the section
volume and R

M
is the sample radius. If we choose

h
1

large enough, we can write eS(h) like a product of
three probabilities, eS(h)"p

1
p
2
p
3
, where p

1
is the

probability for the photon to be emitted from the
section toward the detector in the solid angle )(h),
p
1
" )(h)/4p; p

2
is the probability for the photon

not to be absorbed in the pathway to the detector,
p
2
"e~kMh; and p

3
is the probability for the photon

to be detected when it crosses the detector, also
known as the intrinsic efficiency, p

3
" e

*/5
which

only depends on the detector and the energy of the
photon, but not on the sample geometry. For
a given section of sample, a pR2

D
detector surface is

seen, where R
D

is the detector radius, and h#D
0

is
the distance from the section to the detector, and
D

0
is the distance between the sample-bottom and

detector—center (Fig. 16). So,

p
1
"

R2
D

4(h#D
0
)2

(A.10)

and we can write

db"
p
4

R2
M
R2

D
e
*/5

e~kMh

(h#D
0
)2

dh (A.11)

So, considering Eq. (A.8), we get

b
2
"

p

4
R2

M
R2

D
e
*/5 P

h/=

h/h1

e~kMh

(h#D
0
)2

dh (A.12)

and as the integral in this equation has a finite
value, b

2
is also a finite quantity.
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