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Abstract: Martin and Silva (1994) studied nine existing 
unconditional methods for compm'ing two proportions 
(independent samples), selecting Z methods (based on the 
classic chi-square statistics) and FI (based on Fisher's 
exact test) as the optimals, because their power is a higher 
than that of their competitors in computation time, and not 
too much lower than Bamard's optimal method (the 
original B or its approximation B'). However Z or F1 are 
optimals depending on the value of K (which depends on 
the imbalance of the sample sizes), which means that a 
program is need which deals with both methods. In this 
paper the authors study thirteen new methods and show 
that the new method based on Fisher's mid-p value is a 
solution halfway between methods Z and F1 (for every 
values of K), which it frequently s ~  in power, and 
approaching tile B and B' methods, especially in large 
samples (where B and B' can not be applied). The authors 
conclude that the an'angenmat based on Fishers exact test 
mid-p value (for one- and two-tailed versions) is the 
optimal, because it maintains n adequate balance between 
its power and the computation time required. 
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1. Introduction 

If xi ( i - l ,  2) are observed values of two indepen- 

dent binomial random variables xi---> B(ni;pf), Pi the 
probability that an individual of the population i 
verifies the characteristic being studied and yi-ni-xi, 
it is usual to refer to such an experience as a 
comparative tr/al (whose practical importance in all 
experimental sciences is well known). The aim is to 

test Ho: p~-~ (=p), for which two possible meth- 
odologies can be employed: the conditional (Fisher, 
1935) and the unconditional (Bamard, 1947). In this 

paper we adopt the unconditional point of view, but 

any reader interested in the debate should refer to 
the revisions by Martin (1991) and Sahai and 
Khurshid 0995). 

Under Ho, the probability of a result (xl, x2) is: 

P(xt,x2)= Inl/(n2/p =' (l-p) "2, (1) 
k x l A x z )  

with a,= xt+x2 and a2- yl+y2. If CR is a critical 
region formed by different pairs (xl,x2), then the 

type I error of the test (for a given p) is ct(p) - 
ZcaP(xl,xz) and its size will be a" = maxo~, a(p). 
The difficulty of obtaining a" has delayed the 
development of the unconditional method for many 

years, but the diffusion and improvements in com- 

puting have allowed us to advance quite far in the 

last decade. The unconditional method posed two 
questions: 

1) How can we reduce the computation time for the 
value a '? ;  and 

2) How can we form the CR to obtain an optimal 
test? 

The first question has been resolved recently by 
Silva and Martin (1997). The second is the object of 
this work. A combination of both questions has been 
analyzed by Berger (1996). 
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Basically, our objective consists in defining an 

arrangement criterion for the pairs (xl,x2) of the 
sample space (which will define their order of entry 
in the CR), and which will greatly influence the 
computation time. Martin and Silva (1994) revised 
the procedure of the nine arrangement methods 
proposed in existing literature, among them method 
B (Bamard's original, 1947), method B' (a simplifi- 
cation of method B), method Z (arranging from the 
largest to the smallest value of the chi-square 
statistics: Garside and Mack, 1967) and method F1 
(arranging from the smallest to the largest value of 
Fishers exact test one-tailed p-value: Boschloo, 
1970). These authors have shown that the more 
powerful method is B, closely followed by B' 
(which requires 8 or 9 times less computation time). 
Unfommately both methods can require an 
excessive computation time in tables with moderate 
values of 1~. Searching for alternative methods, 
Martin and Silva selected the Z and FI methods as 
the most powerful among the remaining seven 
methods in the study. Unfortunately, however, these 
were not found to be advisable in any given 
situation: Z was only found to be optimal when K-  
max n i/mill ni is small and the method F1 when K is 
large. The advantage is that their computation times 
are 10 times lower than those of B' (even more so 
with moderate or large-sized samples). 

The aim of this article is to find an arrangement 
method comparable in computation time to methods 
Fl and Z, but with a similar or greater power than 
any of them (for each value of K). This would allow 
us to carry out one test (instead of two) without any 
loss of power. To this end, 13 new arrangement 
methods are proposed, which will be compared 
amongst themselves and then against the methods 

previously stated: B, B', Z and F1. 

H. Old and new simplified arrangement 
methods 

In order to decide easily the arrangement by which 
the pairs (x,,x2) are successively entered in the CR, 
it has been traditional procedure to employ either 
the habitual asymptotic statistics (the case of Z) or 
the exact conditional test (the case of FI). In this 
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paper, other less habitual statistics and conditional 
versions will be obtained. The following will outline 
the old optimal F1 and Z methods and the other 13 
new methods. 

Bamard (1947) pointed out how useful it would be 
for an arrangement method to verify the properties 
of convexity- if (xl,x2) belongs to the CR, this also 
should be true of (xl+l, x2) and (xb x2-1) in the case 
of Hi: pl> P2- and of symmetry -if (xt,x2) is of the 
CR, this also should also be true of (yt,y2) in the 
case of Hi: PI¢P2. It can be shown that all the 
methods defined here verify the above properties 
(except the F2 and FM2 which do not verify 
convexity: this then has to be imposed as a priority 
condition so that they may perform coherently). 

2.1 Methods related with the chi-square statistic 

It is known that, under H0, the statistic 

fi, - l i ,  --~ N(0;1) , (2) 

I Plql + P2q2 
nl n2 

with Pi " x j n i  and qi- 1-pi. Here and from now on, 

it is assumed that Pl > P2. As under Ho is PI-P2-P, 

it is usual to estimate p for ~ -al/n (with n-  nl+ n2), 

and thus the denominator in (2) becomes D - 

{~K] (I / n I + 1 / n2)} 1/2 , with q -1- ~ so obtaining 

the classic statistic Z (pooled) and the Garside and 

Mack's arrangement Z method (1967). From here 

onwards, we will place the Z arrangement method in 

the chi-square format (which is more convenient), 

by which Z alludes to the arrangement based on: 
2 

XZz = (xty 2 - x2y ') n / a # 2 n , n  z . (3) 

Goodman (1964) proposed estimating Pi 
individually, whereby which D-{  Plql / nl + 
~2t~2/n2 }1/2 and the method (known as Z 

unpooled) will become as G method and be based 
on: 

X~ = (x lYz-  xzY,)Zn,n2/{nz3xtYl + n3x2yz} • (4) 

The method was adopted as an unconditional 
arrangement by Suissa and Shuster (1985) and 
studied by Haber (1987) against the classic Z. Here, 
it is adopted once more, placing it alongside those 
methods to which it is conceptually close. 
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For reasons of asymptotic power, Sathe (1982) 

proposed the permutation of the sample sizes so that 

D -  {Plql / n2 + P2¢]2 / nx)} ~2 and the new S 

method is determined by the arrangement based on: 

X~ = (xlY2 - xzYl)"/{n2xtYl + ntx2Y2} • (5) 

A similar possibility consists of permuting the 
estimations of q i or of ~ .  One option is to 
associate the largest Pi qj product with the smallest 
ni. Supposing that nl_< n2, and given that it has 
already been agreed that Pl >P2 we would then 
obtain D - { ~ , ~ 2 / n , +  p2¢]t/n2 } It2 and the new 

method N1 will then be given as a result of the 

arrangement based om 

X~l = (xlY2 - x2Yl)2/{n2xly z + nlx2y l}. (6) 

If, on the other hand, Pi qj is associated with the 

largest r~, the new N3 method is obtained with an 

arrangemem based on: 

X~3 = (xlY~ - x , Y l ) : / { n : x 2 Y t  + n lx tY:} .  (7) 

It can be seen that if nl-n2 then G--=S and NI-N3. 

Shuster (1992), in the case of 2><2 multinomial 
trials, used the Yams' statistic as an arrangement 
criterion for the exact test, showing in this way that 
better results can be obtained than with the classic 
arrangement Z. In the present case, there are many 
possible continuity corrections, but one of the most 
effective, and one which alters the order given by Z 
(Martin and Silva, 1996), is that of Schouten et al. 

(1980), which results in the following US method: 

X~s {]xty~ - x ' y ' l -  m l n ( n ' n ' ) / 2 } 2 n  
= (8) 

ata2n~n2 

2.2 Methods related to the Student's statistic 

If the random variable X is defined by 0 or 1 
depending on whether the characteristic under study 

IS or IS NOT verified, the test for I-Io: p~- P2 

becomes a test for the comparison of two means 

(I-Io~lX~-tt2) and, under Ho, is: 

---> N(0;1), (9) °g ~1 + 02 ~ 

n2 
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with ol 2 the populational variances of X in each one 

of the groups. The pooled parallel solution to (3) 
was proposed as an asymptotic method by 
D'Agostino et al. (1988), thus giving the chi-square 

statistic (x:y2- x2y02{(n-2)/n}/{n2xlyl + ntx2y2} 
which, being equal to (5) (except for the constant 
factor), results in the same arrangement as the S 
method. 

The parallel asymptotic solutions to (4) and (5) were 
quoted by Martin et al. (1992) and now result in the 
arrangement methods L and M defined by: 

g [  = (xtY2 - x2Yt)2(nl - 1)(n2 - 1) (10) 

n] (n  2 - 1 )x ly  t + n~(n  I - 1 ) x , y  2 

X ~ =  (xtY2 - x 2 Y t ) ' ( n l  - 1)(n" - 1) (11) 
n l (n  I - 1 )x iy  I + n ~ ( n ,  - 1 ) x , y ,  

The parallel asymptotic solutions to (6) and (7), for 
the previous L and M methods, obtain the N2 and 
N4 methods respectively. 

(x ly  ~ - x , y l ) 2 ( n t  - l ) ( n  z - 1 )  (12) 
XN2 = ntn2{(n2 _ 1)xty 2 + (n I _ l ) x 2 y l }  

2 ( x t y ,  - x , y t ) 2 ( n t  - 1 ) (n ,  - 1) 
Xs4 = n # 2 { ( n "  _ 1)x2y t + (n I _ 1 ) x i Y , }  • (13) 

As before, note that when nl-n2 then I~M and 
N2zN4. 

2.3. Methods related to the arc sine trans- 
formation 

The arc sine transformation has been used in the 
present context fundamentally as a way of deter- 
mining sample sizes. As an arrangement criterion, 
this uansformafion would obtain the A1 method 
based on: 

X~l = (sen-'  ~ t  - sen-'  ~ ) Z 4 n s n 2 / n ,  (14) 

or, using Anscombe's improvement, the A2 method: 

Z~, = ( sen - '  ~'~'1-  sen-' ~'~'2 ) 2 (2nl + 1)(2ni + 1) 
n + l  

(15) 
with ~ - (xi+ 3/8) / (hi + 3/4). 
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2.4. Methods related to the Fisher's exact test 

The Fisher's exact test is based on the 
hypergeomeU'ic probability: 

e ( x l ) = ( n l / ( n 2 / / (  n ) x l  x2 al , (16) 

with r-max (0;am2) <_ x,<_ min (al;n0-s. If Pl >P2 
then xl > E-a,n,/n (the mean of xl), and the one- 
tailed p-value for the alternative HI: pl>P2 is: 

Fl(xj) = ~ P(i) , (17) 
|--X 1 

which thus results in the classic F1 method. For the 
two-tailed test (Hi: pl;ep2) the value x'l<E should 
first be determined so that P(x'l) -< P(x0 and 
P(x'l+l) > P(xI), thus the p-value will be: 

F 2 ( x , )  = ~ P(i)+ ~ P ( i ) ,  (18) 

. . t  

i=r i=x 1 

which, in a two-tailed test, gives a no more powerful 
arrangement than the F1 method (Martin and Silva, 
1994) and thus will not be considered here. 

As has already been mentioned, the F1 method 
(applied to one- or two-tailed test) produces an 
arrangement which is relatively effective in high 
values of K. Haber (1986) proposed the adaptation 
of Fisher's exact test to the criterion of Lancaster's 
mid-p-value (1952), thus obtaining Fisher's mid-p 
value, and Bamard (1989), Routledge (1992) and 
Upton (1992) supported the opinion. Here, we 
propose using the mid-p as a criterion of an 
unconditional arrangement, in the hope that it will 
improve the performance of the FI method (making 
it good for any value of K). 

In a general way, the mid-p consist in making the 
experimental point (xt) enter the CR with half its 
probability. Thus, for H~: PI>P2, Fisher's mid-p- 
value for the experimental value xl> E will be 
(Haber, 1986): 

FMI(x I ) P(I) + -~ P(x, ) ,  (19) 
| ~ l t l+ l  

this will then result in the FM1 arrangement method. 
For two-tailed test, Fisber's mid-p-value will be 
given by (Hirji etal., 1991): 
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FM2(x,)  = ~ P ( i )  + E P ( i )  
l= r  i=11 

+ {1P0(x ~) if P(xt)>P(x~) 
if P(x,) = e(x~) 

thus leading to the arrangement method FM2. 

(20) 

III. Selection of the optimal method 
3.1. Procedure for the selection. 
The comparison of a test with another (to equality of 
error ct) is made by comparing the power of both. 
The comparison of a test with another (to equality of 
error c0 is made by comparing the power of both. 
As the power varies according to the considered 
alternative (P~,P2), Martin and Silva (1994) defmed 
the concept of long term power O(t~) as the n~an 
power attained in all the parametric space, assuming 
that the parameters Pi will follow a uniform 
distribution. For the two-tailed test, 0(a) is 
proportional to the number of points in the CR; for 
the one-tailed test the expression is a little more 
complicated (an average of Fisher's p-values). As 
the power 0(ix) varies according to the value of the 
objective error or, the same authors suggested the 
computation of the mean power O(al,tXe), in 
determined intervals of the error a (in their article 
the appropriate formulae are indicated). Finally, 
considering determined values of n and of (cq,a2), 
Martin and Silva carried out the selection of 
methods B, B', Z and F1 in the way that was 
indicated in the introduction. 

In order to obtain comparable results, this article 
adopts the same work methodology and the same 
basic values used by Martin and Silva (1994). In this 
way, the average of the mean power of each method 
was obtained (for their subsequent comparison): a) 
For a one- or two-tailed test; b) For the intervals of 
a of (0%;1%), 0%;5%), (5%;10%); c) For values 
of n in the intervals of 6-14, 16-24, 27-33, 37-43 y 
48-52; d) For values of K in the intervals l; 1-1,25; 
1,25-1,50; 1,50-1,75; 1,75-2,25; 2,25-3; 3-4,25 y 
4,25 -6. 

The aim of the following points is two-fold: 
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A) Select the optimal method amongst 13 news pro- 3) 
posed methods; and 

B) Compare the above with Martin and Silva's 
optimals (1994) with comparable computation 
time (Z and Fi)  and evaluate the loss of power 
produced in the comparison with the optimals of 4) 
greater computation time (B and B'). 

3.2. Selection amongst the new methods 

The average of the mean power attained in each one 
of the previous specifications and by the eleven new 
methods (G, S, US, L, M, N1, N2, A1, A2 and FM1 
for one-tailed tests; these same, plus the FM2, for 
two-tailed tests) are shown in Table l(a) (the 
remaining tables are available from the authors). In 
order to make the comparisons easier, the previous 
data has been shown graphically. Figure l(a) is 
representative of the graph obtained in fltis way (the 
remainder are also available from the authors). 
Methods N3 and N4 performed worse (especially in 
not small values of K) than their homonyms NI and 
N2, and have thus been excluded from the tables 
and graphics in order not to complicate them 
further. Methods L, G and A1 have also been 
excluded from the graphs, as these performed worse 
than the others. 

The following general conclusions can be extracted 
from the analysis of such data: 

1) All the methods (except A1, which performed 
badly) have a very similar power to those values 
of K close to I, increasing their differences with 
the increase in K. 

2) From the one-tailed tests, and in a very general 

way, four groups of methods can be observed, 
which, when ordered from best to worst, arc: GI 

(FMI and A2), GII ('N2 and NI), GIII (US, S 

and M) and GIV (AI, G and L). The GIV group 
contains extremely bad methods. In the other 
groups, differences in power increase with K. 
So, it can be seen that the unpooled methods (G 
and L) performed very badly, but improve ap- 
preciably (moving up from GIII) if their ni are 
permuted (S and M methods) and still further 
(moving up from GID if their q i are permuted 

(N2 and N1 methods). 

I I I  

For two-tailed tests the sinjafion is more 
complex, as methods US and S (and the new 
FM2 method) are incorporated into GI and the 
methods of GII are now worse than those of 
GIII. 

Comparing method S (or the equivalent method 
D) with Martin and Silva's (1994) data for 
method Z (shown later), it can be seen that both 
methods are practically the same: the permu- 
tation of the t~ allows Z-unpooled (method G) to 
be transformed into an S method which is 
comparable with the classic Z. The continuity 
correction (US) improves the performance of the 
classic Z. 

With respect to the selection of the optimal method, 
the following can be concluded: 

One-~ailed test: 

In general, the most powerful method is FM1, 
although method A2 is close (especially when (x is 
moderate or when n or K is small). Methods N2 
and N1 (in that order) follow at a greater distance. 

Two-tailed te~t: 

In general, methods S, US, A2, FM1 and FM2 
were found to be the best. A more general 
selection would advise using A2 for values of 
K.~.I.5; S for 1.5 < K_<.2.5 and FM2 for values of 
K>2.5. Given that method FM2 usually performs 
appreciably better than the rest for large values of 
K, and only slightly worse in small and medium 
values of K, a choice coherent with the above 
results for one-tailed tests would be method FM2 
(although it shows a slight loss power around 
K-2, especially in high values of ¢t). 

Consequently, if there is a method able to compete 
with Z and FI for any value of K, it is method FM 
(in its versions FM1 and FM2 for one and two-tailed 
test). Particularly, for one-tailed tests, method FMI 
is much better than Z (since FM1 is optimal with 
respect to S and this is equivalent to Z). 

3.3. New versus old methods 

Table l(b) shows the average of the mean power 
attained by the classic optimal methods (B, B', Z 
and F1) and the new optimal methods (FMI or FM2 
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according to whether it is a one- or two-tailed test). 
Its graphic representation is shown in Figure 1 (b). 
Complete data can be requested from the authors. 
The following conclusions can be extracted from an 
analysis of such data: 

One- ta i l ed  test: 

1) Method Z is always the worst, although 
circumstantially (in values of K close to 1) it 
can perform slightly better than its 
competitors. 

2) Method F is slightly worse than FM1, B' and 
B, especially when n or a is large. 

3) Methods FM 1, B¢ and B have a similar power, 
although B is systematically better, followed in 
general by B¢ (except in large values of K, 
when FM 1 performs better). 

Two- ta i l ed  test: 

1) Methods B and B' (practically the same in 
themselves) are clearly the best, although B is 
slightly better than B¢. 

2) Of the other three methods, Z is best in K£3 
(but only slightly better than FM2) and FM2 is 
best in K>3 (and appreciably so), although for 
values a-0%-1%, method FM2 is always 
better. 

Consequently, for one-tailed tests it is clear that 
method FM1 is the optimal: a) Against its com- 
petitors in computation time (Z and F1), due to its 
greater power, b) Against higher computation time 
methods 03' y B), as it is only slightly less powerful 
than them. For two-tailed tests, method FM2 is the 
optimal against its competitors possessing the same 
computation time (Z and F1), but is slightly worse 
than the other two (B' and B, which are practically 
the same). 

IV. Discussion and Conclusions 

Barnard's unconditional method (B) for comparing 
two proportions through two independent samples 
presents the problem of the great computation time 
required. Martin and Silva (1994) resolved the prob- 
lem in two senses: a) Proposing an intermediate 
computation time method (B'), which is almost as 
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powerful as B (especially for two-tailed tests); and 
b) Selecting two other methods (Z and F1) of a more 
practicable computation time (from amongst those 
already published). The disadvantage of methods B 
and B' is that in large samples they are impractical. 
The disadvantage of methods Z and F1 is two-fold: 
on the one hand, their power is noticeably lower 
than that of methods B' and B; on the other hand, 
their relative performance depends on the value of K 
(the quotient of the sample sizes), for that reason 
one of these alone can not be selected as an optimal. 

In this paper, 13 new arrangement methods have 
been studied, all with a low computation time, with 
the result that the arrangement based on Fisher's 
exact test mid-p-value (in its one- or two- tailed 
versions) combines all the characteristics necessary 
for it to be considered the optimal: 

a) Its computation time is comparable to that of 
methods Z and F1; 

b) Its power is greater than that of Z and Fl in one- 
tailed tests and greater or nearly equal in the 
two-tailed tests; c) Its power clearly approaches 
that of methods B and B' (much more costly to 
evaluate), being practically the same in the one- 
tailed test and slightly lower in the two-tailed 
test. To sum up, the methods known here as 
FM1 (one-tailed test) and FM2 (two-tailed test) 
are the optimals, hearing in mind the balance of 
power/ computation time. The conclusions are 
reliable as they do not vary with the increase of n 
and the values of ¢t and K considered here are 
fairly exhaustive. 

Finally, we wish to point out that Berger (1996) has 
developed a procedure which is intended to improve 
the power of any arrangement method with a lower 
computation time. Basically, the procedure consists 
of obtaining a*, maximizing a(p) not in the 0<p<l 
interval, but in an exact confidence interval of p 
(although to compensate for the possible lack of 
precision, it is necessary to add to a" the error 13 of 
the interval). He applied this procedure to methods 
Z and F1, but it could be applied to any of the 
present methods, particularly to those selected as 
optimals. However Berger has not yet proved that 
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his method verifies the key property of  "convexity", 

and this means that for the present it is of  doubtful 

applicability. 
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T a b l e  1 

For each method (first column) and each interval o f  values for  K= n 2 / n t >1 (first row) within each 
subtable, the average o f  the mean powers 6 attained in all tables verifying the imposed conditions 

and for  27 < n < 33 y 1% < (t < 5% is given. Each interval for  K begins at the number 
that figures to its left and ends in the one indicated by its column. 

(Left = One-tailed test; Right = Two-tailed test) 

(a) 

P o w e r  o f  t h e  n e w  m e t h o d s  

Met/K -I.00 -<1.25 _<1.50 -<1.75 -<2.25 -<3.00 _<4.25 .~.00 

G 47.74-41.67 47.57-42.36 45.55-41.66 42.22-40.07 37.85-36.41 31.56-30.75 24.75-23.75 19.54-16.89 

L 47.74-41.67 47.55-42.35 45.39-41.59 41.95-39.94 37.27-36.02 30.51-29.89 :23.71-22.83 18.82-16.62 

S 47.74-41.67 47.79-42.46 47.41-42.29 45.97-41.76 43.71-40.48 40.73-38.41 36.86-35.21 28.86-28.88 

M 47.74-41.67 47.77-42.47 47.31-42.34 45.77-41.83 43.33-40.56 40.15-38.24 35.91-34.92 27.39-27.42 

US 47.69-41.59 47.83-42.19 47.47-41.99 46.54-41.58 44.62-40.23 41.46-38.55 37.73-35.54 30.88-35.58 

NI 47.74-41.67 47.94-42.31 47.44-41.82 46.72-40.82 44.82-39.12 41.98-36.19 38.12-32.23 31.96-26.36 

N2 47.74-41.67 47.94-42.31 47.44-41.79 46.71-40.75 44.82-39.08 42.01-36.19 38.13-32.22 32.00-26.34 

AI 42.34-37.06 40.63-36.56 40.24-36.16 38.20-36.01 36.05-34.49 32.88-31.91 29.20-27.77 25.07-21.34 

A2 47.94-42.01 47.88-42.59 47.71-42.40 46.94-41.70 45.54-40.14 43.25-37.67 40.02-34.15 34.82-28.69 

FM1 47.69-41.59 47.79-42.30 47.53-41.95 46.93-41.95 45.36-40.01 43.36-37.63 40.21-34.67 35.23-30.25 

FM2 -41.59 -42.34 -42.13 -41.59 -40.03 -38.39 -35.63 -31.51 

Ca) 
P o w e r  o f  t h e  o p t i m a l  m e t h o d s  p r e s e n t  a n d  t r a d i t i o n a l  

O N E  T A I L -  T W O  T A I L S  

- 1.00 

B 48. I 1-42.08 

B' 48.03-42.07 

Z 47.74-41.67 

F! 47.68-41.59 

FM1/2 47.69-41.59 

S 1.25 <- 1.50 S 1.75 <__ 2.25 -< 3.00 __< 4.25 -< 6.00 

48.28-42.87 47.98-42.71 47.29-42.19 45.82-40.88 43.65-39.02 40.37-36.30 35.29-32.20 

48.18-42.79 47.88-42.69 47.22-42.16 45.73-40.85 43.56-38.95 40.23-36.27 35.10-32.19 

47.79-42.46 47.41-42.29 45.97-41.76 43.71-40.48 40.73-38.41 36.86-35.21 28.86-28.88 

47.49-42.00 47.18-41.67 46.72-41.04 45.22-39.84 43.12-37.48 40.01-34.60 35.08-30.33 

47.79-42.34 47.53-42.13 46.93-41.59 45.36-40.03 43.36-38.39 40.21-35.63 35.23-31.51 
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Figure 1 

The average of  the mean power 0 is represented in function of  the value of  K= .~ / n/ >_! for each of  the 
tests and methods indicated (27 < n < 33, I% < a < 5%). Their order of  entry is that of  

their appearance, from the right, in the graph). 
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