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Abstract. — The complete Lie algebra of classical infinitesimal symmetries of the nonlinear
two-dimensional (2D) diffusion-absorption equation is presented. The functional forms of ab-
sorption for which the two-dimensional diffusion-absorption equation can be fully reduced to
an ordinary differential equation by classical Lie simmetries are derived. The two-dimensional
optimal system is used to generate some new reductions of the 2D partial differential equation to
ordinary differential equations. Some of these ordinary differential equations can be interpreted
in terms of finite-time blow-up processes for the radial and the one-dimensional problem.

Introduction. — Nonlinear reaction-diffusion equations in their diverse forms serve as
mathematical models to a number of interesting physical phenomena occurring in various
research fields, as neurodynamics, developmental biology, chemical reactions, ecology, plasma
physics etc. The generalised diffusion equation

T; = (D1(T)Tz)z + a(D2(T)) + b(z, ) D3(T), 1)

where T'(z,t) denotes the temperature at a point, a is an arbitrary constant, D,, Dy and Dj
are arbitrary functions of temperature T and b(z,t) is another arbitrary function of z and ¢,
has been analysed via isovector approach, and some pew exact solutions have been obtained
by Bhutani [1]. For the case where D,(T') = rg, a constant parameter, b(z,t) = k, a constant
and D3(T) = T(1 — T*), 0 < ap < 00, (1) reduces to the generalized Fisher’s equation
T: = roT:» + kT (1 — T°); this equation describes the nonlinear evolution of population T in
one-dimensional habitat. On taking D,(T) =1, b(z,t) =landa=01 in (1), we arrive at the
reaction-diffusion equation

Tt =T + D3(T)1 (2)

that has many applications in the area of biomathematics. A complete group classification for
(2) was derived by Dorodnitsyn [2]. Classical and nonclassical symmetries of (2) are considered
by Clarkson and Mansfield [3] by using the method of differential Grobner bases, and by Arrigo
et al. [4] constructmg several new exact solutions.

In [5] a grqup clasmﬁcatlon problem for the nonlinear dlffusmn equatlon with absorption

a.nd conveétnbh A
= @R g™+ f)utu, (3
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was solved, by studying those spatial forms which a.dmlt the cla.sswal éymmetry group Wﬁen
m = 8+ 1 and mg(z) = f'(z), eq. (3) can be written in a conserved form and potential
(nonlocal) symmetries were derived in [6]. Nonclassical symmetry reductlons, as well as exact
solutions have been obtained in [7] for (3) when f = 0. '

Although classical point symmetries as well as nonclassical symmetnes of reaction-diffusion
. equations with two spatial dimensions have ‘been obtained [3! [9], very few of these have been
used to reduce the equation to ODEs, as well’as to obtaif exact solutions. These symmeétties
have only led to PDEs among a reduced number of variables. The model equation to be
considered here is

uy =“zz+“yy+f(“)a s 4)

which is a diffusionzabsorption equation. The third term on the right side is a nonlinear
reaction rate f(u) which represents volumetric absorption that in the case of plasma is caused
by radiation to which plasma is trasparent. The machinery of Lie group theory provides the
systematic method to search for group-invariant solutions. For PDEs with three indepéndent
variables, like eq. (4), a single grou? reduction transforms the original PDE into another
PDE with two independent variables! However, if the two-dimensional nonlinear absorption-
diffusion equation has two nontrivial symmetries X and Y, which are compatible because they
obey the simple commutation property [X,Y] =Y, then thls equation can be fully reduced to
an ODE by classical Lie symmetry reductions. These ODEs are generally easier to solve than
the original PDE. Besides, some important properties of a certain class of solutions can be
derived from those equations and the similarity variables that reduce the PDE in a particular
ODE. Most of the required theory and description of the method can be found in [10], [11].

The structure of the work is as follows: In the second section we study the Lie symmetries of
eq. (4) and we list the functions f{u) for which we obtain the Lie group of point transformations
admitted by the corresponding equation, its Lie algebra as well as the corresponding one-
dimensional and two-dimensional optimal systems. In the third section we report the reduction
to ODEs obtained from the two-dimensional optimal system of subalgebras. Some of these
ODE:s can be related with finite-time blow-up for the radial and the one-dimensional problems;
we derive for these cases solutions describing blow-up processes with the property that, if we
interpret u as a concentration, the associated mass is finite in a bounded region near a blow-up
point.

Lie symmetries and optimal systems. — We consider the classical Lie group symmetry
analysis of the class of the (2D) equation (4). Invariance of this equation under a Lie group
of point transformations with infinitesimal generator

V = p(z,y,t,u)0: + q(z,y,t,u)dy + s(z,y,t,u)d; +r(z, y,t u)8y (8)

leads to a set of determining equations which are linear partial differential equations in p, g, s
and r. For totally arbitrary f(u), the only symmetries are the group of the space and time
traslations and the group of rotations which are defined by the infinitesimal generators
d 7] o 7] o ’
5z’ 2 a ) 3 t’ ‘74 Y= Sz z ) y

The only functionals forms of f(u) with fu) # constant a.nd flw) nonhnear which have extra
symmetries are the followmg listed in table I. We must remark that cases i = 1 and 1 = 3
with b # 0 are missing in [2], [9]. Unlike the two-dimensional diffusion-convection equation,
that cannot be reduced to an ODE by classical Lie symmetries except for some cases involving
constant diffusivity, the nonlinear two-dimensional diffusion-absorption equation can be fully

Vi = (6)
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TABLE L. — Symmetries.for the 2D difuaiomabsomtiow-equation. o

F(w) e . v
c(au+b)" a " V5=Ia‘%+y%+2t§+i—2—n(u+«%)%
'ce(“"”) | Vs = IT +y8y + 2t— - E%

cu(log(au) + b) Vs =et L — %:i“‘%

cu(log(au) + b) Ve = e :y - CZ y"é"

cu(log(au) + b) Ve = e“”a‘i‘

reduced to an ODE by classical Lie symmetry reductions for all the functionals forms of f(u)
listed in table 1.

We desire to minimize the search for group-invariant solutions to that of finding non-
equivalent branches of solutions, which leads to the concept of optimal systems of group-
invariant solutions, from which every other solution can be derived. For further details and
proofs see [12], [13], [10]. The one-dimensional optimal system for f(u) = c(au + b)" and
fu) = ce®*? is

{aVi + 8V3, aV3+8Vy, oV, + BV} (7)

with a and 8 arbitrary constants.

In order to construct the two-dimensional optimal system, we form a list of two-dimensional
algebras G {w;, wa}. For each element w in (7), we set w; = w and choose w, as a linear
combination of all elements of Nor(w,)/w;, where Nor denotes the normalizer. Each pair of
elements of the list of two-dimensional algebras will be simplified as much as possible using
the adjoint transformation Adexp (cv) (w) = e " we*”, which contains information about how
group-invariant solutions transform under the action of other groups. In the multidimensional
case the new elements can be, in general, linear combinations of the transformed elements. For
the two-dimensional case we construct the adjoint transformation matrix, and we separate the

TABLE II. - Each row shows the mﬁmteszmal genemtars of the optimal system, the corresponding

stmzlanf ;anable& and similarity solutions comspondmg to flu) = —(au+b)". Heren—1 =5 and

v=a®

) Ui Zi u; ODE

1 (Vi Vs—2TVa} /=282 (T-8 @) ~L " +(1-3)¥~
~16—(ag)*' =0

2 (Vb Vs—2TVs} Iz (T-073(x) -2 26"~ 2¢' — 26~ 2ag)"* =0

3 {(V,aVa+pBVa} PBy—aot #(z)— 2 , ag’ +f%¢" — (ag)**' =0

'S

{(Vs,aVa+BVs}  alog(z®+y%)  $(2)(22+4°) "2 =& 475%¢" —8asg’ + 44—

O .
é—2ﬂatan (l)”""”!;fl‘}ii! ,_“ AT —32(0’4’) +1 -9
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TABLE III. - Each row shows the infinitessmal: generators .of the optimal system; thc comapondm’g
similarity variables and similarity solutions. co:reapondmg to f(u).=ce®*. Herey =a?+ 3%, y

5
,?‘

iU P . ' ~ ODE
L Wl B SlegT-n+4e) ¢+ (E-5) -
—ace™®+1=0
2 {Ve,Vs} == —1(10g(T — t) + $(2)) 20" —2z¢' —2ace™® +2=0
3 {(Vi,aVa+BVs} fBy—at (z) (a+B)¢' + 829" +ce*® =0
4 {VaaVa+fBls}  alog(a®+y)-  ¢(z) - oK) 479" + ce®t =
—2fa tan (%)

/ . :
list of two-dimensional algebras into equivalence classes under the adjoint action. The two-
dimensional optimal systems for f(u) = c(au+b)", f(u) = ce®®*? and f(u) = cu(log (au)+b)
are, respectively, listed in tables II, IIT and IV.

Reductions to ODEs and ezact solutions. — In order to obtain similarity solutions of eq. (4)
we are interested in symmetry reductions to ODEs. This can be done with the members of the
two-dimensional optimal system. Let H(w;,w2)€ G denote the Lie algebra that is spanned by
the vector fields wy,ws € G. To perform this reduction we need to construct the invariants
of the two groups which will then become the new variables. We calculate the invariants of
the first of the two groups by solving the characteristic equations for that group. Next, the
second group is written in terms of these invariants, which must be possible since the reduced
equation is invariant under this second group. The integration constants from this second set
of characteristic equations are then invariants of both groups and are the similarity variables.
Tables II, IIT and IV list the similarity variables as well as the ODEs to which eq. (4) is reduced
for each of the nontrivial symmetries from the optimal systems. As far as we know all these
reductions are new.

ODE 1 and its corresponding self-similar variables are found when one is looking for solutions
of (4) with f(u) = —(au + b)™, describing finite-time blow-up at the origin in problems with
radial symmetry. In this case using the variables z; and 7 = —log (T' — t), solutions with
blow-up at t = T behave when t - T (r — 00) as solutions of a stationary equation which is
precisely ODE 1.

A particular solution of this equation is ¢(z) = al(ﬁg)fz‘% or, equivalently,

u(r,t) = % (i) e Ly @)

as? a

where 7 is the radial coordinate r = \/z2 + 2. If we define M (R) as the mass in the disk
D(0,R), i.e.

M(R) =2=x /R u(r, t)rdr,
A 3
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TaABLE IV. - Each 1ow shows the mﬁmtestmal generators of the optimal system, the corresponding
similarity variables and similarity solutions corresponding to f(u) = cu(log(au) +b), 9(z) = 4(a+e"‘)
and I' = —1+2b+2 log a.

1 Ui zi Cowg . ODE

1 {aVi+Vs, W} az—t 8(z) a?¢" + ¢ + cp(log(ag) +b) = 0

2 {VaVs} y s O] 26" — 2(¢')? + 2c¢ — eI = 0

3 (VW) NCET IO ¢ + 24" — czp(log (ag) +b) =

4 {\,V} y #(=) ¢" + co(log(ag) +b) =

5 {aVi+VeVe) e H I 200 beg(I — 26) — doe =0

6 {(VitaVs,Vg} az-—t g—ﬂiz-é 20%(¢" — ¢'*) +2¢' +2cp —c'=0

it is clear that solution (8) has a finite mass if and only if n > 2; in this case

1
1 4 \* =s
M(R)=;(a—sf) pyT

We realize that, multiplying by ¢ and making ¢ = vT-Ln, ODE 1 can be transformed into

R*™% - 27rR2‘
a

1 =z 1 a*tl
1,2 1z 12 _
(0 — 1)v; +vv,. + (z 2) vuz + 5v 3 0, 9)
where § = ——, which is a particular case of the Euler-Painlevé equation
—a(y')* + f(Z)yy +9(2)y° + by +c=0. (10)

Equation (10) is an extension of the class of nonlinear ODEs which have been studied by
Euler and Painlevé [14] and was introduced in [15] for describing the self-similar solutions of
generalized Burgers equations. Performing a Painlevé analysis [16], it can be deduced that
(9) is not of the Painlevé type and it is not to be expected that it can be solved in terms
of elementary trascendents or elliptic functions. The parficular solution v = —%z of (9)
corresponds to solution (8) of (4).

In the same way as above, ODE 2 describes the sta.tlona.ry solutions of the one-dimensional
problem with finite-time blow-up at an arbitrary point zg. In this case a particular solution is

=12 (§+1)} )
or equivalently
u(z, £) =% [% (;42—+§)]}(m-—zo)_% —%, (11)

solution with finite- mass if and only xf n> 3 as we can easxly see:

ZoHd '1142*231,3 2b
kMk(J)—/zo—J u(z t)dz"a'[_ (3—2+;)] :2-6 '—;5.
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Making the same~tfansfonnat10ns that in tlié‘\prév*ious case “ODE 2 takes® the form of the

Euler-Painlevé equation. A particular séldﬁﬁﬁ 15 Hiow v'= 73(%3%35@.?1 corrmponds to

solution (11) of (4). For the case n = 3, we-have-been able to find another-particular solution:
v=2Az— thh A= -7- The correspondmg solution of (4) is then

__ 2V/2(z - =0)
T (z-30)2—-6(T —t)
Analogously to the case studied in table II, ODEs 1 and 2 follow the behaviour of stationary

solutions describing finite-time blow-up in a problem with radial symmetry and a in one-
dimensional problem, respectively.
-

Concluding remarks. — As far as we know, this is the first symmetry analysis of the nonlinear
diffusion-absorption equation in two spatial dimensions in which (4) have been fuily reduced to
ordinary differential equations for several functional forms of absorption. These functions have
been listed, some of them were missing in previous works. The two-dimensional optimal system
has been used to obtain these reductions. We must point out that the two-step procedure did
not yield new results, however we found classical reductions for the original eq. (4) that are
nonclassical reductions for the intermediary equation. We finally remark that choosing the
two-dimensional optimal systems in an appropiate form, some of our results can be interpreted
in terms of finite-time blow-up processes for both the radial and the one-dimensional problem.
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