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Basic parameters for the short-range order 
of amorphous ternary alloys with applications 
to practical cases 
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A procedure was considered for determining theoretical expressions of the area under the first 
radial distribution function (RDF) peak, and of the relative co-ordination numbers, n~j which 
depend on the co-ordination hypotheses and on the numbers of bonds between elements of 
a single type of pair. In this method, two important facts were taken into account. First, the 
products of atomic factors are functions of s (the scattering vector module) and so they cannot 
always be considered constant; they were therefore approximated by polynomic functions which 
best fitted the results obtained from the atomic factors given in international tables. Secondly, 
consideration of the influence of the structural hypotheses (co-ordinations, existence of certain 
types of bond) on the area and co-ordination numbers mentioned enabled the most probable local 
order to be postulated. In order to test the reliability of this method, the method was applied to 
a set of alloys, quoted in the literature, and the theoretical results obtained agreed very 
satisfactorily with the experimental values. 

1. Introduct ion 
Knowledge of amorphous solids is one of the most 
active fields of research in the physics of condensed 
materials today [1]. The great interest in these mater- 
ials is largely due to their ever increasing applications 
in modern technology. Their possibilities in the 
immediate future are huge, based on characteristic 
properties such as electronic-excitation phenomena, 
chemical reactivity and inertia, and superconductivity. 

An amorphous solid is a material which does not 
have the long-range order (periodicity) characteristic 
of crystalline materials, although it does have a certain 
local order in its bonds with its first neighbours. 
Amorphous and non-crystalline are therefore syn- 
onymous terms, whereas a glass is a non-crystalline 
material exhibiting a characteristic transition temper- 
ature [2] from the more energetic glass phase to the 
minimal-energy crystalline phase. The temperature at 
which the glass-crystal transition takes place is pro- 
portional to the average co-ordination of the material 
[3], so an understanding of its local order is very 
important, as this can be related to other physical 
properties of the material. 

The method which, to date, has proven to be most 
efficient for structural research in all types of solids is 
the interpretation of the diffraction phenomenon of 
radiation diffracted by the solid. Although several 
types of radiation are used for detecting atomic posi- 
tions, the most frequently used is X-ray radiation, 
because of its simple technology. X-rays were used to 
obtain structural information on the glassy materials 
considered in this work. 

When interpreting the radial atomic distribution 
function (RDF), obtained from the X-ray diffraction 

(XRD) intensities of a glassy solid, the area under the 
first peak of the curve is related to the relative co- 
ordination numbers, nq, in order to postulate the 
short-range order of the material. It is a well-known 
fact that this area also depends on the atomic numbers 
of the constituent elements of the alloys, when the 
products of the atomic scattering factors, 
R~j(s) =fi(s)fj(s)/[~ixifi(s)] 2, remain practically con- 
stant and equal to ZiZH(~ixiZi) z throughout the 
whole interval of s (the scattering vector module) in 
which the measurements are carried out. This is not 
always true, as in some cases Rij(s) varies considerably 
with s [4]. 

This work takes into account that the atomic scat- 
tering factors are functions of Bragg's angle [4] and 
the co-ordination hypotheses for a certain element in 
the alloy. These two considerations made it possible to 
calculate, using the literature [5-8], theoretical ex- 
pressions of the parameters which depend on the 
alloy, and of the co-ordination hypotheses which ap- 
pear in the theoretical expression of the area under the 
first peak, and in those of the average co-ordination 
numbers. The theoretical results were applied to an 
analysis of the short-range order of different glassy 
alloys; the results agree with the experimental values. 

2. Theoret ical  background 
The classical theory of electromagnetic-wave diffrac- 
tion, for a spatial configuration of atoms, makes it 
possible to deduce a relationship between the diffrac- 
ted intensity in a given direction and the relative 
positions of the atoms in the material. When this 
relationship is applied to a glassy material in which it 
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is possible to postulate that the positions are random- 
ly oriented, the intensity diffracted in each direction, 
expressed in electronic units (e.u.), is given by Debye's 
equation [9] 

- -  sin sr.m 
I .... = L f . f , .  (1) 

n, m Srnm 

where s = (47t/Z)sin 0, f .  and fm are the scattering fac- 
tors of atoms n and m, respectively, and r.m is the 
distance between those atoms�9 

The problem of obtaining structural information on 
a glassy solid involves determining the relative posi- 
tions between the atoms of the material from a set of 
diffracted intensities, and in this sense Zernicke and 
Prins [10] applied a Fourier transformation to a func- 
tion of the diffracted intensities, thus obtaining an 
expression for the variation of the atomic density with 
the distance to an arbitrary atom in the material�9 

A strict evaluation of Debye's equation involves 
considering the atomic scattering factors as functions 
of Bragg's angle via the magnitude s, a consideration 
which was taken into account by Finbak [11], and 
later by Waser and Schomaker [12] and even later by 
Warren [4] According to Warren, the following rela- 
tionship is found for the RDF 

2r_  n o 
- - ~ x i - - P o ( r )  = 4r(r2po + rG(r)  (2) 
it, i j  rij 

~vhere x~ is the atomic fraction of element i, G(r) is the 
Fourier transformation of the interference function, Po 
is the average atomic density of the material, r,j is the 
distance between an/-type atom and a j-type atom, 
and the function Pu(r) is defined by 

~s,. f~(s)fj(s) coss(r - rods  (3) 1 

Pij(r) = 2Jo I~ixifi(s)12 

where sm is the maximum value of s for which experi- 
mental data are available. By defining a function, 
p(r) = (2xEr)- 1 ~ . .  xinijr-~r Pij(r), representing the lo- 

�9 . l J  

cal atomic density affected by the Fourier transforma- 
tion of the atomic factor products, Equation 2 changes 
into 

4xr29(r) = 4xr2po + rG(r) (4) 

which represents the average number of atoms sur- 
rounding a reference atom at a distance r. 

When evaluating the average number of first neigh- 
bours of an arbitrary atom (that is, its average co- 
ordination), it is necessary to obtain the area under the 
first RDF peak given by the expression 

2~ nijl I 
Area = - x i - -  r P~i(r) dr (5) 

i j  rij 

where a and b are the abscissae of the limits of the 
peak. 

Some authors ignore this expression, since they 
consider that the traditional relationship of the area as 
a function of the atomic numbers of the elements is 
equally accurate in all possible cases; but this is true 
only when the atomic scattering factors, J~, can be 
considered to be independent of s and therefore to be 

constant and equal to the atomic numbers Z~. There 
are, however, practical cases in which it may be ob- 
served that the approximation of considering the func- 
tions Rij to be constant and equal to ZiZj(~ix iZ  f is 
sufficiently inaccurate to influence the short-range or- 
der postulated for the material. In relation to this, 
Fig. 1 [4] shows Rij versus s for all possible pairs of 
elements in amorphous SiO2. The traditional rela- 
tionship of the area, based on the constancy of the 
atomic scattering factors, is obviously a good approx- 
imation for the pair Si-O, but is very inaccurate for 
the pairs Si-Si atad O-O. A relatively broad, though 
not complete, analysis of cases such as amorphous 
SiO2 seems to make it advisable to express the prod- 
ucts Ru(s ) by mathematical functions which best fit the 
results obtained from the atomic scattering factors 
given in international tables. In this sense, Vfizquez 
and Sanz [5] have developed an analytical method for 
evaluating the area under the first RDF peak in which 
the products R,j(s) are expressed by n-order poly- 
nomials in s. When these polynomials are of the first 
order, as is frequently the case, Vfizquez and Sanz [5] 
proposed the following expression: 

Area = 2 ~ x i n  OAij (6) 
x q 

with 

Ai j  = rPij(r)  dr  

1 
- 2rij[B~j + BE~j + rij(B3~j + B4u)-I 

and the addends, Bkij(k = 1, 2, 3, 4), being given by the 
relationships 

COS Sma[j --  COS smbi~ 
B l i  j = (AoljS m + a l i j )  

Sm 
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Figure 1 Representation of the functions Rij(s) in amorphous SiO 2. 

6599 



B2ij = Aoijln !ai~l 
b[j 

B3u = I~'isinsmXdx 
3% x 

[ 1 - c o s s m b [ j  1 - - c o s  S,nai~-J 
B~.ij = Aou b~} a[j 

where Aoq and AIu are the slope and the zero-ordinate, 
respectively, of the straight regression line corres- 
ponding to the product of the scattering factors of 
atoms, i, j; and ais = a -  ru; and bi} = b -  r u. In 
relation to this, Fig. 2 [13] shows the function Ru(s ) 
for possible pairs of elements in amorphous 
Alo .zoAso .2oTeo .6o  �9 

Equation 6 is, as may be observed, a function of the 
relative co-ordination numbers, n u, and therefore it is 
a function of the number of the chemical bonds, a u, 
between the /-type and j-type elements of the alloy. 
This fact made it possible to develop analytical 
methods [6, 7] for expressing the area under the first 
RDF peak as a function of the co-ordination of one 
type of element in the material and of the number of 
bonds between pairs of atoms. 

2.1. Basic parameters which depend 
on the alloy and on the co-ordination 
hypotheses 

A theoretical evaluation of the average co-ordination 
of a glassy alloy, from its RDF involves determining 
the area under the first peak of this function as accu- 
rately as possible. This parameter will influence the 
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Figure 2 Straight regression lines fitted to the values of Ru(s ) in the 
alloy Alo.2oAso.2oTeo.6o. 

formulation of short-range-order hypotheses, so it is 
useful to relate this area to a parameter representing 
the postulated co-ordination for some element in the 
alloy. This will enable a co-ordination to be attributed 
to a certain element, according to its properties and to 
the co-ordination proposed in the literature for the 
same element in similar alloys. The postulated co- 
ordination is substituted in the theoretical expression 
of the area, and the value obtained for this magnitude 
is compared to the area enclosed by the first experi- 
mental RDF peak. If the difference between the two 
values is within experimental error, the co-ordination 
hypothesis may be considered adequate; otherwise, 
the hypothesis should be rejected and another one is 
tested. On the other hand, it is a well-known fact that, 
in glassy alloys, the absence of bonds between certain 
types of elements may be postulated, either because of 
the low concentration of one of the elements, or be- 
cause the energy of that type of bond makes its occur- 
rence very improbable in comparison with other 
bonds. It is therefore very important that the theoret- 
ical expression for the area should reflect the existence 
or non-existence of the possible bonds between the 
different pairs of elements in the compound, in order 
to compare the experimental area to the theoretical 
areas obtained through different hypotheses on 
bonded elements. In this sense, Vfizquez et al. [7] 
proposed theoretical expressions for the area which 
reflect both the co-ordination hypotheses for a certain 
element, and the possible absence of different types of 
bond in the material. 

The structural information obtained from the ana- 
lysis of the experimental RDF, together with some 
physical-chemical properties of the alloys and their 
elements, permits hypotheses on the local order of 
amorphous materials. Consider a ternary glassy alloy, 
Aa' 1 Bal Da;, for every 100 atoms of material the 
hypotheses are as follows. 

1. Element A has co-ordination N, no matter what 
the composition of the alloy, and the average co-ordi- 
nation numbers of this element with all those bonded 
to it are proportional to their respective percentage 
concentrations. 

2. The total number of/-type bonds, a~, is given by 

ai = 2au + ~ a u (7) 

where aij is the number of chemical bonds between 
/-type and j-type elements. 

3. If the' normal co-ordinations of the different ele- 
ments in the sample are called Ci, and it is assumed 
that element A has a coordination N(N~C1), the 
number of bonds of this type of atom is 

al = Na~ = Cla'l +_ Ixl 

Ix] being the variation in the number of bonds of the 
element, when its co-ordination changes from C1 to N. 

4. When the co-ordination of element A changes, 
the co-ordinations of elements B and D may increase 
or decrease, so the number of bonds of these elements 
is given by 

ai = C~a~ + l lY~l, (i#l) 
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where l Yi[ represents the variation in the number of 
/-type bonds. 

Taking these hypotheses into account, V/tzquez et al. 
[8] have deduced the following relation using Equa- 
tion 5 and results in [6, 7]: 

Area 5-~[  + + 7Q ---- (h [~A22- 8Q)N (xA22 + 

i 1 i , j~e l , i~ j  

where h, ~, ]3, y and 6 are characteristic parameters of 
each alloy; P is a parameter equal to 2 when i = j in 
the variable au, and equal to - I  i f i # j ;  and Q is 
defined by the relationship 

O : ~ij ~ A U + (1 - -  ~ij) ~ Aij 
i , j r  l , i ~  j i=jq: l 

6ii is the Kronecker delta. 
The previous expression of the theoretical area en- 

ables, according to the experimental area, the vari- 
ation interval of the number of bonds between the 
elements of a certain pair to be found, for each co- 
ordination hypothesis. This fact is very useful when 
choosing the most adequate co-ordination for the 
elements which usually make up compounds with 
different co-ordinations. 

nu(i, j # l) as functions of the number of a u bonds: 

n22 = {~ + Y ( l -S i J )  + [ (~ - g3(1- ~ij))~a~k 

+ a'l (Supa; - qa N a + Pai~ a;)-  i 

n 2 3 = { I Y - ( S ~ a ~ + a ' ~ p a O N ( ~ a ~ ) - ~ l S u  

+ (1 - 3gij)aijt(a~)-i (9) 

{I 1( o)'1 , n33 = 7 - af, + alpa3 N k 1 -- 8i~) 

(1 ) t( -- -- 3r aii a3 I ) - - i  

condensing, by the symbol 5ij, the two possible expres' 
sions for each of the co-ordination numbers deduced. 
The fact that these numbers must be positive or zero 
makes it possible to find the variation of the number of 
bonds, au, for each value attributed to N. The intersec- 
tion of this interval with the interval deduced from the 
experimental area, is extremely useful for choosing the 
value of N which best agrees with the structural in- 
formation supplied by the RDF, when postulating the 
local order of the material. 

2.2. Relative co-ordination numbers 
The relative co-ordination numbers, n u, of the dif- 
ferent pairs of elements of a compound, are a very 
interesting set of parameters when postulating the 
short-range order of a glassy solid. These parameters, 
which represent the average number of j-type atoms 
surrounding an /-type atom, can be related to the 
co-ordination, N, attributed to a certain element; 
bearing in mind the restrictions imposed by the intrin- 
sically positive nature of n~, it is possible to choose the 
most adequate value for N. 

When postulating the absence of bonds between 
certain types of element, the corresponding nus are 
zero. As it is always possible to assign the subscript 
1 to one of these types, considering the hypothesis 
mentioned above to the effect that the average co- 
ordination numbers of this element with all the ele- 
ments, k, bonded to it, are proportional to their 
respective percentage concentrations, the following 
expressions are obtained: 

3. Application to practical cases 
The method described in the literature [8], for deter- 
mining the parameters enabling postulation of the 
short-range order of an amorphous solid, was applied 
to a relatively wide set of glassy alloys whose experi- 
mental data are quoted in the bibliography, shown in 
Table I. Different structural hypotheses were used, 
and the theoretical results obtained agree with the 
experimental data mentioned above, confirming the 
reliability of the theoretical method quoted. This work 
shows the theoretical analysis of the five alloys con- 
sidered to be most representative of the set studied; 
their experimental values are shown in Table I. The 
constituent elements of each alloy were given the sub- 
scripts 1, 2 and 3 in the order in which they appear in 
the alloy. The co-ordination hypotheses used for ob- 
taining the parameters which define the possible local 
order are shown in Table II, C'i (i = 2, 3) represents the 
co-ordination of element i in the compound. The exist- 
ence of bonds between all pairs of elements in all 
alloys was postulated, except in M2, where the ab- 
sence of A1-A1 bonds was presumed [13]. 

n, l k  
a;,N a~N 

- Za'; " - y a;, 

k k 

which depend on the co-ordination attributed to ele- 
ment A. Bearing in mind that the relative co-ordina- 
tion numbers are given by n u = au/a~, expressions can 
be deduced for the nij(i,j ~ 1) enabling the short-range 
order of the solid to be hypothesized. 

From Equation 7, V/tzquez et al. [8] deduced the 
following expressions for the co-ordination numbers 

TABLE I RDF characteristics of the alloys analysed 

Alloy First peak Area  Reference 
(atoms) 

a(nm) b (nm) 

M1, As0.35Seo.aoTeo.35 0.200 0.295 2.23 [14] 
M2, Alo.2oAso.soTeo.3o 0.210 0.300 2.36 [15] 
M3, Geo.osAso.2oTe0.75 0.235 0.305 2.05 I-I6] 
M4, Cuo.loAso.4oSeo.5o 0 .220  0.280 2.93 [17] 
M5, Cuo.osGeoll 5Teo.so 0.220 0.315 2.54 [18] 
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TABLE II Co-ordination hypotheses 

Alloy N C~ C 2 C 3 C2 C' 3 

M1 3 3 2 2 2 2 
M2 4 3 3 2 >3 >2 
M3 3 4 3 2 >3 >2 
M4 4 1 3 2 >3 >2 
M5 4 1 4 2 4 >2 

TABLE III Parameters related to the co-ordination hypotheses 

Alloy ~ 13 7 ~. 

M1 - 10 0 70 0 
M2 75 5 37.5 - 7.5 
M3 -101.56 2.89 165.80 3.95 
M4 21.11 - 1.11 94.44 -5.56 
M5 - -  95 - 5 155 - 5 

Bearing in mind the structural hypotheses men- 
tioned, and using the previously_ quoted theoretical 
expressions, the values shown in Table I l l  were cal- 
culated, corresponding to parameters that depend on 
the specific characteristics of each alloy and on the 
co-ordination variations of its elements. Table IV 
shows the average bond lengths used for calculating 
the parameters A,j and h (shown in Table V). 

Using Equation 8, and the set of parameters ob- 
tained, the theoretical expressions of the area shown in 
Table VI were deduced. These expressions, together 
with the experimental areas (Table I) with an error of 
__+ 0.1 atoms, made it possible to determine the vari- 

ation intervals for aij(i, j # 1), shown in Table VI. 
Equations 9 supply the relative co-ordination num- 
bers, which, due to their intrinsically positive nature, 
define the new limits for the magnitude a U, shown in 

Table VI, together with their intersections with the 
intervals corresponding to the margin of error of l~he 
experimental area. These co-ordination numbers are 
such that the sum of those corresponding to one type 
of element with all those bonded to it is equal to the 
co-ordination postulated for that element. Thus, in the 
case of the alloy M5, where tetra-co-ordinated copper 
is postulated and the electrons necessary for the sp 3 
hybridization of the copper are supplied by tellurium, 
the co-ordinations are: four for the copper and the 
germanium, and 35/16 for the tellurium. The same 
results are obtained by adding the nij with a fixed i and 
j = 1; 2, 3 for each element. 

TO illustrate the theoretical calculations, Fig. 3 
shows the theoretical areas obtained versus the num- 
ber ofa~j bonds (i,j # 1) for three of the alloys studied. 
Fig. 3 shows the intervals in which the theoretical 
areas are simultaneously compatible with the experi- 
mental area and the corresponding co-ordination 
numbers. 

The agreement between the theoretically deduced 
parameters and those obtained from the experimental 
data makes it possible to select the most adequate 
co-ordination hypotheses in order to establish the 
most probable short-range order of a glassy solid. 

4. ConcluSion 
The theoretical method quoted enables different struc- 
tural hypotheses to be tested in relation to the co- 
ordinations or the absence of some types of bond, 
since the expressions for the relative co-ordination 
numbers and for the area under the first RDF peak 
depend on these hypotheses. On the other hand, when 
deducing this area polynomial functions were used 
which best fitted the products of the atomic factors in 
those cases in which the magnitudes differ greatly 
from the approximate values, Z~Zj(~xiZi)2; this fact 

TABLE IV Average bond lengths for each alloy 

Pair rij (nm) Reference 

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 

1-i 0.249 0.286 0.251 0.258 0.258 [19] [23] [27] [30] [30] 
1-2 0.238 0.243 0.244 0.253 0.239 [20] [24] [27] [31] [20] 
1-3 0.262 0.253 0.258 0.242 0.253 [21] [20] [20] [31] [20] 
2-2 0.234 0.249 0.257 0.257 0.251 [20] [19] [28] [28] [27] 
2-3 0.254 0.268 0.258 0.238 0.258 [20] [25] [28] [20] [20] 
3-3 0.271 0.283 0.260 0.234 0.271 [22] [26] [29] [20] [22] 

TABLE V Values of the parameters A~j and h obtained s,, = 120 nm-1 

Alloy A,i h 

1-1 1-2 1-3 2-2 2-3 3-3 

M1 0.9551 1.0574 1.8666 1.1449 1.6364 3.1249 41.5489 
M2 0.1744 0.5242 0.8184 1.3318 2.3689 3.9239 -20.6958 
M3 0.6959 0.7017 1.1604 0.7423 1.2002 1.9377 3.3202 
M4 1.2631 1.4828 1.4683 1.6928 1.6232 1.5726 13.2693 
M5 0.5335 0.5684 1.0231 0,6797 1.0858 1.9951 2.6934 
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T A B L E  VI Theoretical results obtained for the different alloys 

Alloy Theoretical area Co-ordination 
numbers nu(i, j # 1) 

Variation intervals for the Parameter au(i,j v~ 1) 

Defined by the Defined by the limits 
n u parameters of error of the 

experimental area 

Intersection of 
intervals 

M1 2.1791 + 0.0127a33 n22 = ( - 4.75 + 2a33)/30 
n23 = (33.25 - 2a33)/30 
n 3 3  = 2a33/35 

M2 2.5369 - 0.0033a23 n22 = (112.5 - a2a)/50 
n23. = a23/50 
na3 = (37.5 -- a23)/30 

M3 1.9770 + 0.0036aaa n22 = ( -- 84.64 + 2aaa)/20 
n23 = (142.7 -- 2a3s)/20 
n33 = 2a33/75 

M4 2.9290 + 2.42 • 10 -4 aa3 nzz = (20.67 + 2aa3)/40 
nEa = (96.68 -- 2aa3)/40 
n33 = 2aaa/50 

M5 1.9904 + 0.0064aa3 n22 = ( - 102 + 2a33)/15 
n23 = (159 - 2a33)/15 
n33 = a33/40 

2.37 < aa3 < 16.62 

0 _< a23 _< 37.5 

42.32 _< a33 _< 71.35 

0 ~ a33 -< 48.34 

51.0 < a33 < 79.5 

0 _< a33 < 11.88 

23.30 < a23 -< 83.91 

0 _< aaa -< 48.06 

0 _< a33 < 417.36 

70.25 < a33 < 101.5 

2.37 < aaa < 11.88 

23.30 _< a2s -< 37.5 

42.32 _< a3a -< 48.06 

0 < aa3 < 48.34 

70.25 _< aa3 < 79.5 

2.33 
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2.23 
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Figure 3 Area of the first RDF peak versus the number of a u bonds (i, j 4: 1) for the alloys (a) M1, (b) M2, and (c) Mh. 

is of great interest when accurately evaluating the 
average number of first neighbours in a glassy alloy. 

Because of the procedure used, it is possible to 
postulate certain structural characteristics and to ob- 
tain the average theoretical co-ordination of a solid 
from them; this was compared to the experimentally 
determined co-ordination. If the difference is within 
the experimental error; it may be considered that the 
hypotheses describe the most probable local order of 
the material. 
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