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In this paper we consider a loss system where the arrivals can be classified into different groups
according to their arrival rate and expected service time. While the standard admission policy
consists of rejecting only those customers who arrive when all servers are busy, we address the
problem of finding the optimal static admission policy (with respect to a given reward structure)
when customers can be discriminated according to the group they belong to, thus customers of
some groups might be automatically rejected (even if some servers remain idle) in order to
enhance the global efficiency of the system. The optimality of a cu-rule is shown, from which
finite-time algorithms for the one- and two-server cases are derived.

(Algorithms; Multichannel Queues; Nonlinear Programming; Optimization)

1. Introduction

Motivated by real-world applications, there has been an
increasing interest in the optimal design and control of
queueing models (see, e.g.,, Crabill et al. 1977, Harel
1990, Hillier and Lieberman 1990, Mendelson and
Whang 1990, Viscolani 1993, Walrand 1988, Zipkin
1986, and the references therein), where the set of pa-
rameters that optimize a certain performance measure
is sought. In these problems, the controllable parame-
ters are usually the number of servers, the arrival and
service rate, and the capacity of the system.

Finding the optimal values of the controllable param-
eters is usually reduced to solving a mathematical pro-
gram, where the controllable parameters play the role
of decision variables, and the objective function to be
optimized is the performance measure. The determi-
nation of such optimal parameters provides operation
rules that optimize the performance of the system.

In this paper we address a design problem for a loss
system with heterogeneous arrivals, where it is sought
the optimal coverage with respect to a given cost struc-
ture: any accepted (respectively, rejected) customer in-
duces a cost or disutility r (respectively, 7), with r < 7,
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and the performance measure is the expected disutility
per unit time.

A direct application of this model appears when one
has a queueing system with hierarchical service facili-
ties: a primary and a back-up facility. Suppose that the
nature of the service is such that no queue is allowed at
the primary facility; hence, any customer finding the
primary facility busy must be rerouted and served at a
higher cost by the back-up system. Then, minimizing
the overall cost does not mean allocating to the primary
facility all the customers finding some of its servers
available, but finding an optimal allocation rule. This
situation appears, e.g., when one introduces mobile
emergency units to serve a certain community, where
one has different points, representing populated areas
(towns, . . .); according to their own features, each area
has its own arrival rate and service time, related with
the distance from the home location of the servers to the
area (Chiu and Larson 1985). Any call finding all the
units busy is served by an exogenous system (at a
higher cost). Since service times are dependent of travel
times, it should be intuitively obvious that the optimi-
zation of the system performance—e.g., by maximizing
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the expected number of calls served—would imply to
serve just those customers close enough to the facility,
condemning the outliers to be systematically served by
the exogenous server.

Applications of this approach to Computer Science
can be found in Xu et al. (1992). See also Miller (1969)
for another rejection model in loss systems.

In spite of their practical interest, these rejections pol-
icies have not been extensively considered in the liter-
ature (some exceptions are Batta 1988, Lippman and
Ross 1971), mainly due to the mathematical difficulties
inherent to such models. Needless to say also that a
much harder to analyze dynamic control of the system,
taking into account the number of busy servers and
their remaining processing time is to outperform a static
policy, which decides whether to accept or not accord-
ing to just the group the customer belongs to and the
existence of idle servers. Nevertheless, there are situa-
tions where obtaining in real time the information
needed by dynamic rules is so costly or difficult that
one can use a static model as an approximation to the
much less tractable dynamic models.

The rest of the paper is organized as follows. In §2
the model is formally introduced, and some properties
of the corresponding mathematical program are dis-
cussed. Section 3 is devoted to the statement of opti-
mality conditions and localization results on the opti-
mal solution, which are used in §4 to design resolution
procedures. The paper ends presenting some conclu-
sions and extensions in §5.

2. The Model

Let ] = {1, 2, ..., n} represent n types of customers re-
questing service of a system consisting of a finite num-
ber ¢ of identical servers. Customers of type i (hereafter
called i-customers) arrive following a Poisson process
with rate A; > 0, the arrival processes of the different
groups being independent. The duration of each i-
customer service is modelled as a random variable with
mean s; (0 < s; < ®). No queue is allowed, which means
that an arrival that finds the ¢ servers busy is referred
to a back-up service system. In addition, any i-customer
that arrives when at least one facility is idle is accepted
(and its service starts immediately) with probability x;,
and is rejected (rerouted) with probability 1 — x;, the
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x;'s being controllable variables. Any accepted (respec-
tively, lost) i-customer induces a cost to the system of r;
(respectively, 7;) monetary units, where r; < #,.

Under the assumptions above, the goal is to deter-
mine the value of x = (x, ..., x,,) that minimizes the
expected cost per unit time.

Obviously, given x € [0, 1], this system behaves as
an M/G/c/c system with arrival rate A\(x) and mean
service time s(x) given by

)\(x) = 2 )\,-x,-,
i=1

5ONX;
s(x) = z —_— Si,
i1 M)
with the convention that s(x) = 0 if A(x) = 0.
Let p = (p1, - . ., pn) denote the vector of loads offered
by the different groups of customers, i.e.,

p,~=)\,-s,-, i=1,2,...,1’l.

Then, the fraction of time that at least one out of the ¢
servers is idle is given by ¥.(p-x), where u-v denotes
the usual scalar product in R" and W.(t) is the fraction
of time that an M/ G/ ¢/ ¢ system with offered load t has
at least one server idle, (see Kleinrock 1975), i.e.,

Ltk /K

Vel =5

The expected number of i-customers per unit time
that enter into the system is given by \x; ¥ (p - x), and
the expected number of rejected i-customers per unit
time equals M(1 — x;) + Nxi(1 — U(p-x)) = N(1
— x%.(p-x)). Hence, the expected total cost per unit
time is given by

\Ilc(p'x) z )\,'r,'x,' + 2 )\,f,(l — x,-\I’C(p'x)). (21)
i=1 i=1
Foreachi =1, 2, ..., n, define the rejection surcharge
A; as the difference between the individual cost of re-
jected and accepted i-customers, i.e.,

Ai = ﬁ — t;.
In terms of these parameters, the main result of the
paper—Theorem 3.4—states that the optimal policy is

a cu-rule, since it discriminates groups according to the
ratios (4;)/s;, i.e., customers are sorted according to a
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single measure: the rejection surcharge per unit service
time.
Since (2.1) turns out to be

n

z Nify — Ue(p-x) Z NAX;,

i=1 =1

determining the vector x minimizing the expected cost
per unit time is equivalent to solving the following max-
imization problem

n

max U {p-x) 3 NAx,

=1
st x € [0, 1]".

To simplify the notation, we first transform the cost
structure into an equivalent one by making the two fol-
lowing assumptions.

ASSUMPTION Al. We assume that

A=1 Vi=1,...,n (A1)

Assumption Al supposes no loss of generality. In-
deed, if Al did not hold, one could define for each i
=12...,n

¢

i = NA,
S~f = Si/Ail-

Aizl

(2.2)

Then, it is easily seen that the system with parameters
\, S A gives for all x € [0, 1]" the same value of the
performance measure as the original system.

ASSUMPTION A2. We assume that

§p << Sy < v v < 8. (A2)

Assumption A2 supposes no loss of generality. In-
deed, if s; = s; for some i, j, i # j, we can construct an
equivalent system with n — 1 types of customers, where
groups i and j are mixed in one group with arrival rate
\; + A\, and mean service time s; = s;, and, after rela-
belling the groups, if necessary, the Assumption A2 is
verified.

Hereafter, unless explicitely mentioned, we assume
that Assumptions Al and A2 hold, and stress that this
is done just for notational convenience; if they do not
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hold, one can always transform the original parameters
using (2.2) and sorting the service times.

Under such assumptions, the mathematical program
of interest is

max F(x) = (A x)¥e(p - x),
s.t. x € [0, 1]7, (P)

where A = (A, ..., \,).

As F is continuous and the feasible set is compact, the
maximum of (P) is attained at some x* € [0, 1]".

The case n = 1 (homogeneous arrivals) is straightfor-
ward: F(x) gives then the throughput of an M/G/c/c
system with expected service time s, and arrival rate
Ax1, which is concave (see Harel 1990) and obviously
increasing in x;. Hence, the optimal solution is x7 = 1,
which corresponds to the policy of rejecting only those
customers who find the ¢ servers busy.

Unfortunately, these properties do not extend to the
case n > 1 and contrary to most models encountered in
the literature (Grassman 1983, Harel 1990, Harel and
Zipkin 1987, Viscolani 1993, Yao and Shantikumar 1987,
Zipkin 1986 among others), F is not concave, see Figure
1. This, at least at first glance, makes the optimization
process more difficult.

In spite of its lack of concavity, F enjoys interesting
mathematical properties (in fact some generalized con-

F Is Not Concave

Figure 1
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cavity), as shown in Theorem 2.1). We recall that a dif-
ferentiable function g on a convex set S is said to be
pseudoconcave iff

Vg(x)-(y —x) >0 wheneverx, y €85, g(y) > g(x).

See, e.g., Avriel et al. (1988) or Martos (1977) for further
properties on pseudoconcave functions.

THEOREM 2.1. F is pseudoconcave.

The proof can be found in the appendix.

See also Barros and Frenk (1995) for another “tracta-
ble” queueing model with nonconcave objective func-
tion.

3. Optimality Conditions

The purpose of this section is to state optimality con-
ditions for problem (P). Expressing F as in (7.1), we see
that (P) is a nonlinear fractional program with convex fea-
sible region (the n-cube [0, 1]") and pseudoconcave ob-
jective function (Theorem 2.1). The pseudoconcavity of
F enables the statement of optimality conditions in
terms of the gradient VF of F (see, e.g., Corollary 7.49
of Martos 1977). More precisely, if we denote by D(x)
the set of feasible directions at x € {0, 1], then

x € [0, 1]" is an optimal solution to (P) (3.1)
iff VF(x)-d =0 Vd & D(x).
The gradient of F is easily obtained,
VE(x) =\ (px) (3.2)

+ (A x)Pp-x)p Vxe€][0, 1]

We will combine (3.1) and (3.2) above to obtain op-
timality conditions. First we show that no interior point
x can be optimal.

LEMMA 3.1. Suppose that x = (xy, . .
solution to (P), and 0 < x; < 1. Then,

—‘Ilc(p 'X)
(Nx)Wi(p-x)

., X,) is an optimal

Sy =

PrROOF. Let ¢* be the vector with 1 at the kth coor-
dinate and zeros everywhere else. As 0 < x, < 1, both
e¥ and —eé* are feasible directions, which, by (3.1), im-
plies that
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VF(x) =0

By (3.2), the result follows. [
The next lemma shows that any optimal policy is de-
terministic except for at most one class of customers.

LEMMA 3.2. Ifx is an optimal solution to (P), then x has
at most one fractional component.

The proof is straightforward by the lemma above and
Assumption A2, [

This result leads to an interesting consequence about
the geometrical structure of the set of optimal solutions,
stated in the theorem below.

THEOREM 3.1. The set of optimal solutions to (P) is a

closed (possibly degenerate) segment contained in an edge of
[0, 1]".

PROOE. As, by Theorem 2.1, F is pseudoconcave, it
is continuous and quasiconcave (see Theorem 7.28 of
Martos 1977). Hence, the set S of optimal solutions to
(P) is a closed convex set. Furthermore, S is contained
in an edge of [0, 1]". Indeed, else, there would exist x’,
x* € S not contained in the same edge. By convexity of
S and the quasiconcavity of F, the whole segment with
endpoints x' and x> would consist of optimal solutions.
Then there would exist an optimal solution with at least
two fractional components, which, by Lemma 3.2, is a
contradiction. Hence, the result holds. O

COROLLARY 3.1. If c > 1, then the set of optimal solu-
tions to (P) is a singleton.
See the appendix for the proof.

REMARK 3.1. If ¢ > 1, the corollary above shows that
there exists a unique optimal solution. However, if ¢
= 1, (P) might have multiple optimal solutions. As a
simple example, taken =2, \; = Ay = 1,5 = 1,5, = 2.
Then, it is easily checked that the set of optimal solu-
tions to (P) is the closed segment with endpoints (1, 0)
and (1, 1). In fact, it will be shown in §4 that, for ¢ = 1,
the set of optimal policies consists of either one nonran-
domized policy or the set of mixtures of two nonran-
domized policies.

By the theorem above, any optimal solution x to (P)
must be either a vertex or a point on an edge of [0, 1],
thus the search of optimal solutions to (P) is reduced to
the 0- and one-dimensional faces of the n-cube [0, 1]".
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We state below the corresponding optimality condi-
tions. Define, for each x € [0, 1}" the sets I(x) and J(x)
as

Ix)=1{i:x;, =0}, J(x)=1{i:x, =1).

THEOREM 3.2. (optimality conditions at a vertex)
Let x # 0 be a vertex of [0, 1]". Then, x is an optimal solution

to (P) iff

. —W.(p-x
min s; = —C(p—)— = max §;.

33
i€l(x) Nx)T(p-x) i (3-3)

The proof can be found in the appendix.

THEOREM 3.3. (optimality conditions on edges). Let
x € [0, 1]" be such that 0 < x; < 1 for some k, and x; € {0,
1} Vi # k. Then, x is an optimal solution to (P) iff

. V. (p-x
min s; > 5, = {p %) > max s;.

—_ 34
i€l(x) (Ax)Ul(p-x)  iepw (34)

The proof of this theorem runs parallel to that of the
theorem above, just taking into account Lemma 3.1 and
Assumption A2. [

REMARK 3.2. Although the conditions (3.3) and (3.4)
have been obtained under Assumptions Al and A2,
they lead to a meaningful interpretation in terms of the
original setting: It is optimal to serve only those custom-
ers whose rejection surcharge per unit service time is
high enough.

The results stated so far suggest a naive procedure for
solving (P): Evaluate the 2" vertices of [0, 1], and solve
the n2""! one-dimensional nonlinear fractional pro-
grams obtained by optimizing F on each edge. How-
ever, we can go much further; as shown below, neither
all the vertices nor all the edges are true candidates to
contain optimal solutions.

For this purpose, let v', i =0, . . ., n be the vector with
1 at the first i coordinates and 0 everywhere else. Let «
: [0, n] = [0, 1]" be the natural parametrization of the
path through ©°, o', .. ., v” (see Figure 2 for an illustra-
tion of @ when n = 3).

The next theorem shows that any optimal solution
must be contained in the path «([0, n}), ie., since, by
Assumption A2, the service times are given in increas-
ing order, the optimal policy belongs to the class of cu
rules.

MANAGEMENT SCIENCE/ Vol. 44, No. 3, March 1998

Figure 2 The Set «([0, n]) when n = 3

(S

v? = (1,1,0)

v® = (0,0,0)

vt =(1,0,0)

THEOREM 3.4. If x is an optimal solution to (P), then
there exists some t, 0 < t = n such that x = a(t).

PrROOF. By Lemma 3.2, x has at most one fractional
component, thus either (3.3) or (3.4) apply.
Hence, A2 implies that
ifx; =0, thenx;=0Vj> i}

(3.5)
ifx; >0, thenx;=1Vj<i

thus x = «(t) for some . [

REMARK 3.3. The cu-rule optimality is no longer true
when one restricts the set of policies to nonrandomized
ones, i.e, when, instead of solving (P) one wants to
solve its {0, 1}-version (Png)

max F(x),

s.t.x € {0, 1}~ (Png)

For instance, if wetakec =2, n =3, M =1,51=1, \»
=10, s, = 2.5, A\; = 0.5, s3 = 0.75, it is easily seen that
the optimal solution to (Pyg) is the vector x* = (1,0, 1),
which is not in the path {a(t) : t € [0, 3]}.

The theorem above shows that (P) is equivalent to the
one-dimensional problem (P)

max E(t) = F(a(t)),
(s.t. t € [0, n]. (P)

As af-) is not differentiable at integer points, F might
not be differentiable, but it remains directionally differ-
entiable.
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Figure 3 The F Corresponding to £ of Figure 1
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What does not seem so intuitive is the fact that F(-)
is also unimodal. As an example, Figure 3 shows the F
corresponding to the function F of Figure 1.

In fact, as the next theorem shows, £ (+)is a direction-
ally differentiable (although non-differentiable) semilo-
cally pseudoconcave function on [0, n], i.e.,

E'(t; s—t) > 0 whenever F(s) > F(t), s, t € [0, n]

where F'(t; s—t) stands for the directional derivative of
F at t in the direction s—t. See Kaul and Kaur (1982) for
further results on this concept.

THEOREM 3.5. F(-) is semilocally pseudoconcave on

[0, n].
For the proof, see the appendix.

4. Finding an Optimal Rejection
Policy

In the section above we have shown that finding an

optimal policy is equivalent to solving the one-

dimensional problem (P),
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N

1.5

max F(t) = F(a(t)),

s.t. t € [0, n]. (P)

Furthermore, by Theorem 3.5 the objective function is
semilocally pseudoconcave, which enables the resolu-
tion (up to a prespecified accuracy ¢) of (P) by a variety
of well-known methods (see, e.g., Chapter 8 of Bazaraa
and Shetty 1979). An illustration is given in the next

example.

ExaMPLE 4.1. Consider a system with ¢ = 3 servers
and n = 8 classes of customers. The i-customers arrive
following a Poisson process with arrival rate \; = 1 and
have expected service time s; = i¥/10,i=1,...,8.

The graph of F is plotted in Figure 4, and Figure 5
represents the portion boxed in Figure 4. Note that F
attains its maximum at a noninteger point, i.e., opti-
mality is attained at a randomized rejection policy.

In order to solve (P), we have chosen the golden sec-
tion method (see, e.g., Bazaraa and Shetty 1979). For a
prespecified accuracy of ¢ = 0.001 we needed 18 itera-
tions; the results are shown in Table 1.
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Figure 4 The Graph of F
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Hence, we take as solution the point t* = 218013,
which gives F(#*) = 1.92477, and corresponds to the fol-
lowing policy: when an arriving i-customer finds at
least one server idle, it is rejected by the system with
probability 0 if i = 1, 2; with probability 3—t* = 0.81987
if 1 = 3 and with probability 1if i > 3. O

The methodology above applies for any value of c.
However, when ¢ = 2, the functions F and F have a
much simpler shape, which enables us to solve exactly
the problem (P) and also (P) in finite time.

We explore first the single-server case, ie., ¢ = 1.
Then, (P) takes the form

max F(x) = (A-x)/ (1 + p-x),
s.t.x € [0, 1]". (P)

This implies that (P) becomes a linear fractional pro-
gram, thus the objective function F is not only pseudo-

MANAGEMENT SCIENCE/ Vol. 44, No. 3, March 1998

R T S O PP
=)

concave but pseudomonotonic. See, e.g., Avriel et al.
(1988) or Martos (1977) for further properties on this
class of functions.

The single-server assumption enables to strengthen
or ease some of the results obtained in previous sec-
tions. For instance, we know from §3 that the set S of
optimal solutions to (P) might not be a singleton, but is
contained in an edge of [0, 1]". The pseudomonotonicity
of F implies that S must equal the convex hull of the
optimal vertices. Hence, S must have one of the two
following forms:

1. The singleton {a(k)} for some k € {1, 2, ..., n}.

2. The closed segment with endpoints {a(k)} and {a(k
+ D} forsomek € {1,2,...,n—1}.

In other words, there always exists some k such that the
nonrandomized policy consisting of automatically rejecting
all the i-customers (i > k) and serving every i-customer (i
=1,2,...,k)who finds idle servers is optimal. Hence, in
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F Attains Its Maximum at a Noninteger Point

Figure §

o4

order to find an optimal policy we can restrict our attention
to the set {a(1), a(2), ..., a(n)} as candidate points (ie.,
{of1), a2), ..., a(n)} is a finite dominating set, see Hooker
et al. 1991), which suggests the following approach: Eval-
uate F at (i) for all 7, and take as optimal solution the af(i*)
giving the highest value of F.

This simple algorithm runs in O(n®) time, which is
acceptable for moderate values of n. If n is so large that
even an O(n?) computing time should be considered as
prohibitive, more subtle procedures can be used. In-
deed, as shown in Hansen et al. (1991), it is possible to

Table 1 Solving (P) by the Golden Section Method
Iterat. Accuracy Optimal Interval
1 3.05573 (0.00000, 4.94427)
2 1.88854 (0.00000, 3.05573)
3 1.16718 (1.16718, 3.05573)
4 0.72136 (1.88854, 3.05573)
5 0.44582 (1.88854, 2.60990)
16 0.00224 (2.17719, 2.18082)
17 0.00138 (2.17858, 2.18082)
18 0.00086 (2.17943, 2.18082)
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use binary search techniques to obtain an overall com-
plexity of O(n) time and space.

We examine now the case ¢ = 2. It is rather easy to
find the integer k such that the optimal solution to (P)
either is k or belongs to the open interval (k, k + 1).
Indeed, such conclusion can be obtained after checking
the optimality conditions at vertices and performing
some iterations of, for instance, a binary-search proce-
dure. If k is optimal to (P), then a(k) is optimal to (P).
On the contrary, if the optimal solution is t* € (k, k
+ 1), then, by the semilocal pseudoconcavity of E t*is
the unigue root in (k, k + 1) of the nonlinear equation

E'(t) = 0. (4.1)

By (7.5), it is easily seen that when ¢ = 2, (4.1) can be
written in the form Q(t) = 0, where Q is a polynomium
of degree not greater than 3. Hence, the optimal solution
to (P) is the unique root of Q in (k, k + 1), which, as is
well-known, can be obtained exactly.

5. Conclusions

In this paper we have addressed a design problem as-
sociated with a loss model with heterogeneous arrivals,
where the decision variables represent the probability
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that a customer of each class is rejected by the system
when he finds some servers idle.

After imposing a cost structure on the model, the
search of a cost-optimal policy is reduced to solving a
nonlinear mathematical program. The objective func-
tion of the problem addressed may not be concave; nev-
ertheless, we state some properties of the problem (op-
timality of a cp-rule) that enable us to reduce the
optimization to solving an equivalent unimodal one-
dimensional problem for which several well-known res-
olution techniques can be applied.

Finally, we have shown that an optimal policy for the
two-server case can be found as a root of a polynomial
function of degree 3, whilst the one-server case leads to
a linear fractional program with a simple structure,
which can be solved in O(n?) time by straightforward
techniques, and in linear time by binary search.

Extensions of these results to systems governed by
dynamic state-dependent policies, or to M/ G/ 1/ sys-
tems are interesting questions which remain open.'

! The research of the authors is partially supported by Spanish DGI-
CYT grant PB93-0927. This support is gratefully acknowledged.

Appendix

LEmMMA 7.1.  The function 1/ W.(-) is convex on [0, =), Moreover, if ¢
> 1 then 1/ W.(-) is strictly convex on [0, <),

PROOE. The case ¢ = 1 is straightforward (1/¥:(f) = 1 + t), so we
consider only the case ¢ > 1. As

Sioo /K

VW) = S

— 1= )

and the function t — #U,._,(t) is concave (see, e.g., Corollary 1 of Harel
1990), it follows that 1/ ¥.(-) is convex. In order to check that it is also
strictly convex, observe that, otherwise, 1/W¥.(-) should be a poly-
nomial of degree at most one in some nondegenerate interval [, i.e.,
there would exist @, 8 such that

i o /K
m:at + 8 Vtel

Equating coefficients, one would obtain @ = 0 = 1/¢, which is a
contradiction. O

PROOF OF THEOREM 2.1. Observe that

A-x

By Lemma 7.1, the function t — 1/W.(t) is convex. Hence, its com-
position with the linear function x — p-x is convex. Hence, F is the
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quotient of a nonnegative linear and a positive convex function, thus
F is pseudoconcave, as asserted. O

PROOF OF COROLLARY 3.1.  Suppose, on the contrary, that (P) has
at least two different optimal solutions x, y. Then, by the theorem
above, both x and y belong to the same edge of [0, 1]".

Within the interval I of endpoints x, y, one deduces from Theorem
5.17 of Avriel et al. (1988) and our Lemma 7.1 that F is strictly pseu-
doconcave on I, which is a contradiction with the simultaneous opti-
malityof xand y. O

PROOF OF THEOREM 3.2.  First, observe that ¥ (f) is strictly decreas-
ing in ¢ (see Harel 1990), ie.,

Vi) <0 Vi (7.2)

Define, foreachi =1, ..
3.1. Obviously

., n, the vector ¢’ as in the proof of Lemma

D(x) = cone(fe’: i € I{x)} U {—€':1 € J(x)}), (7.3)

where cone (A) represents the cone generated by the elements of A.
Hence, by (3.1), (3.2), and (7.3), it follows that

x is optimal iff
AP (p-x) + (Mx)Ui(p-x)pi =0 Vi€ Ix),
AU (px) + (0x)Tp-x)p =0 Vie](x),
which, by (7.2), turns out to be equivalent to (3.3). O

PrOOF OF THEOREM 3.5. Foreachk = 1, ..., n let the vector e* be
defined as in the proof of Lemma 3.1. We will just show that £(-) is
semilocally pseudoconcave at noninteger points ¢ € [0, n], namely,

s, t€[0,n], s+ t,l-:’(t;s~ H=0 (7.4)
implies E(s) = E(1).

The proof for integer points t is completely analogous and will not
be given here.

Hence, we assume that t € [0, n] is not integer, thus there exists k
€1{0,1,..., n — 1} such that k < t < k + 1. Within the interval [k, k
+ 1] the function F takes the form

F(sy = <2 A+ NS — k))

i<k

. \DC(Z o+ puls — k)) vs € [k, k+1].

ok
Hence, F is differentiable at ¢, and
F'(t) = VF(a(t)) &
= M¥o-a(t)) + (o)) 0o at))pr (7.5)
Hence, one has
F'(ty =0 iff U(p-a(t) + (A a(t)Pi(p-a(t)) s = 0.

Since, by (7.2) and A2,
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Tolp-a(t) + (A at)Ti(p-alh)s;
= U, (p-al(h) + (N a(t)Ti(p-a()s Vi =k,
Wo(p-alD) + (A-a(H)Ll(p- alt))s,
= Up-a(t) + (A-a(t)EL(p-a(t))s V) = k,
it follows that

E'(t) = 0 iff max VF(a(t))- ¢/ = 0
i=ik (7.6)

E'()= 0 iff min VF(a(t)) ¢/ <0

=k

Now we are in position to show (7.4); let s # t be such that F’(t)(s
—t)=F'(t;s — t) = 0. We can distinguish the cases s > fand s < {.
If s > t, then F’(t) < 0. Hence, by (7.6),

V() =0 Vji=k
thus
VF(a(t))d =0 Vd € cone(fe’:j = 0}).
Hence, by Theorem 2.1,
Fa(t) = F(y) Yy €[0,1]"
such that y — a(t) € cone(fe’ : j = k}).
Since s = f, by construction of () one has that
a(s) — a(t) € cone({e’ : j = k}).
Hence,
E(t) = Fla(t)) = F(a(s)) = E(s), (7.7)

as asserted.
Now we consider the case s < t. Then, E(t) = 0, thus, by (7.6),

VF(a(t)) ¢ =0 Vj=k
thus
VF(a(t)d=0 Vde& cone({e/:j=0}),
which turns out to be equivalent to
VF(a(t)):d =0 Vd & cone({—e':j=0}).

As for the case s > {, this leads to (7.7), and (7.4) follows. O
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