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Abstract 

We introduce a mathematical modelling of slightly compressible viscous flows with two well-separated space 
scales. We use as mean tool formal mathematical homogenization techniques. In the model derived, there appear 
closure terms, much as in usual physical turbulence models. Here, the closure terms are computed from the 
solution of a PDE system that governs the turbulent perturbation. This system is coupled to the mean flow 
PDE system. Starting from this model, we derive another of the k-c family, including eddy diffusion terms. We 
solve this model by an explicit mixed finite volume-finite element technique with upwinding. We test it for a 
compressible steady mixing layer with different convective Mach numbers. The numerical results show a good 
qualitative prediction of the relevant mean quantities of the flow for moderately high convective Mach numbers. 
This is consistent with the theoretical foundations of the model. © 1998 IMACS/Elsevier Science B.V. 
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1. Introduction 

During the last years many authors have applied homogenizat ion techniques in Fluid Mechanics 
in order to study the evolution of  certain kinds of  turbulent flows. In [9] McLaughlin,  Papanicolaou 
and Pironneau (MPP) applied these techniques to the Euler equation for ideal incompressible fluid 
flows with rapidly oscillating initial data; later on, the same ideas were extended to the Navier-Stokes  
equations for Newtonian incompressible and slightly viscous fluid flows [3,10,12]. 
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Essentially, the MPP model of turbulence makes two basic assumptions. At first, it is assumed that 
the two length scales developed by the mean flow (L) and by the fluctuating field (1) are well separated; 
this is a length scale separation hypothesis. These two length scales allow us to define a dimensionless 
parameter ~ = 1/L. Next, the model assumes that the initial velocity field is highly oscillating. 

MPP modelling of incompressible flows uses formal mathematical homogenization techniques to 
derive averaged equations, intended to govern the mean quantities of the flows considered. Such tech- 
niques provide not only averaged equations, but also a microscale set of partial differential equations, 
that govern the universal (in some specific sense) behaviour of the fluctuating field. There are specific 
interaction terms in both averaged and microscale equations sets, that make them to be essentially cou- 
pled. In particular, in the averaged equations, there appear "closure" terms, that represent the averaged 
action of the fluctuating field on the mean flow. 

MPP modelling is fully based upon formal mathematical arguments. MPP models differ remark- 
ably from the usual turbulence models. In these latter, the averaging technique uses more heuristic 
mathematical arguments. Also, the "modelling" of closure terms is essentially based upon physical 
arguments [13]. 

Extensive numerical simulations have been done in order to validate the MPP modelling technique 
for incompressible flows. From the physical point of view, the main innovation of such modelling is 
that the Reynolds stress tensor here seems to model purely transient oscillatory effects, instead of turbu- 
lent diffusion. Concretely, this behaviour was observed in numerical simulations of three-dimensional 
homogeneous turbulence for wall-bounded flow [3,4]. Also, a comparison between a k-c  transient 
model and an MPP model including k but not h was made by Bbgue et al. in [2] for two-dimensional 
flow past a cylinder. This experiment indicates that the production terms in the MPP model are rele- 
vant in regions where strong transient effects take place. The k-e  model fails to simulate appropriately 
these effects, although it is much more appropriate to model eddy diffusion effects. 

Our purpose here is to derive an MPP model for compressible flows with two space scales, by taking 
advantage of the know-how acquired with incompressible flows. We shall also give some numerical 
tests that show the agreement of our model with the k-c  one for steady compressible mixing layer 
flOW. 

Our paper is organized as follows. In Section 2 we use homogenization techniques to derive an MPP 
model for inviscid perfect flows with two space scales. This is applied in Section 3 to obtain a transient 
model of the k-e  family, by adapting the techniques developed for incompressible flows. Section 4 is 
devoted to analyze the structure of closure terms appearing in the model. We use frame invariance to 
simplify their structure, and derive a model for 2D mean flows including theoretically smooth closure 
terms. In Section 5 we develop a strategy and a numerical technique for the computation of closure 
terms, as functions of certain parameters appearing in the model. We also give asymptotic behaviour of 
the closure terms for large values of these parameters. In Section 6 we perform a change of variables in 
the model in order to retrieve the law of state of perfect gases. This allows to adapt laminar solvers for 
Euler equations to the numerical solution of our model. Section 7 describes a numerical discretization 
of the model for unstructured triangular grids. Space discretization consist of a Galerkin technique 
that combines finite volume discretization for convection terms, with finite element discretization for 
diffusion and production terms. Van Leer's MUSCL method is used to compute the convective fluxes. 
For time discretization we use an explicit second-order four-stage Runge-Kutta method. A local time 
step strategy is used to perform an efficient computation of steady flows. Finally, in Section 8 we show 
some numerical results for steady compressible mixing layers. Our results show that our model agrees 
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closely with the k-c  one for such a kind of flows. This is consistent with the initial mathematical 
hypothesis of our model. 

2. Homogenization of flows of inviscid perfect fluids 

In this section we shall adapt the asymptotic techniques introduced in [9] to derive averaged equa- 
tions for inviscid perfect fluids. These techniques were systematized in [4], where the physical and 
mathematical consistency of the model for incompressible flows was analyzed. Here, we shall apply 
the systematic technique of [4] to inviscid perfect fluids. Thus, we shall omit the intermediate calcu- 
lations. We shall assume that density, velocity and internal energy (denoted, respectively, by p~, u ~ 
and e ~) verify 

{ p~ + v ( p ~ )  = 0, 

¢ (<~ + ( ~ .  v)~ ~) + (~ - 1)v (p~ ~)  = 0, (1) 

e~t + u~Ve~ + (7 - 1) e6V" u6 = 0, 

where the constant 7 stands for the specific heats ratio. Together with (1), we assume the highly 
oscillating initial conditions 

1 x 
u~(x, O) fzo(X)+5 /3Wot~;x), (2) 

\ / 

where P0(Y; x), w0(y; x) and e0(y; x) are smooth functions, y-periodic in the cube Y = [0, 27r] 3 and 
with zero mean. These are initial conditions with two space scales. 

In order to study the behaviour of (p~, u ~, e ~) when ~ --~ 0, we associate the following asymptotic 
expansions: 

1.~ f a(x,t) t \ 

(3) 
+ (52/3u(1) ( ~ ,  ~-~/3 ;x,t ) + 6u(2) ( ~ ,  ~-J-2/3 ;x,t) + " " , 

e' (x, t) = g(x, t) + 5113 e(°) ( a-~-t)--, 6@/3 ; x, t ) 

+ (52/3e(1) ( ~ 5-U5/3" ) a ( x '  t), t ,x, t + 5e (2) ( ~ _ . ) + . . . . a ( x ,  t), t ,x, t 
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Here p( ° ) ( y , v ; x , t ) ,  . . . ,  w ( y , v ; x , t ) ,  u ( 1 ) ( y , r ; x , t ) ,  . . . ,  e(°)(y,~-;x, t) ,  . . .  are assumed to be 
smooth functions, y-periodic in Y and bounded in T. 

Also, a(x,  t) are the inverse Lagrangian coordinates related to the mean velocity field g, 

a,t + ((t . V ) a  = O, 

a(z ,  O) = O. 
(4) 

Following the techniques introduced in [9], we deduce at first that such an expansion can hold 
only if p(0) and e (°) are zero. Also, the perturbation w is determined through the solution ~ of 
a "canonical microstructure problem". This problem governs the microscale behaviour of the main 
turbulent perturbation. If wo is assumed to be odd in y and periodic, 61/3w is given by 61/3w = 

G-T~.  (A T states for the transpose of A and G -T denotes the transpose of the matrix G-1.) 

{ ~,~- + ( ~ .  V y ) ~  + CVyTr = 0, Vy • t~ = 0 in ]~3 × I~, 

1 1 ,  , 1 ' 

~(y ,O)  = wo(y) = -~oWO(y) ,  qo = ~ ( w o C -  wo) in I~ 3, 

~,7r y-periodic in R 3, bounded in ~-; t~ odd, 

(5) 

where C is the symmetric matrix given by 

~a j  
C = G ' G ,  G = V a  Gij = Ox i ]  

and (.) denotes the y-average on a period cell, (v) = (1/Igl)  fy v. 
System (5) presents some conservation properties: The mean and mean kinetic energy of ~ are 

conserved in time -r. This can happen only if the averaged values of the terms appearing in the 
expansions (3) verify certain compatibility conditions [4]. Up to the second order, these equations are 
the following: 

[ P,t + v .  (p~ )  = 0, 

~,t + ~ v ~  + (3' - 1 ) ~ v .  ~ = 0, 

~!~> + v .  (~(~>~) + v .  (~/l>) -_ o, 

~(~!~> + (~. v/~( ~> + (~(~>. v)~) + ( ~ -  l /V.  ( S  / + ~('>) 

&(1) + ~ ( 1 )  ÷ ('7 -- 1)~ (1)V" ~2 + / ~ ( 1 ) ~  jr_ ( 7  - -  1 ) ~  • ~2 0) = 0, ,t 

(6) 
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If we denote by ((.)) the y--r-average given by 

0 

((v)) = 0--+~lim ~ 1 / ( v )  dT, 

0 

then the Reynolds stress tensor (RST) above is formally given by 

R = ((w ® w)>, (7) 

whereas k = 1~2/3(1w12 > is the mean kinetic turbulent energy. 
Note that the fluctuation z~ is incompressible in the y-variable. As a consequence, we can only 

expect our model to be valid when the effects of the compressibility of the perturbation are not 
relevant. Note that this is also assumed in the usual derivation of turbulence models for compressible 
flows at moderate Mach numbers: the density fluctuations are neglected [15,18]. 

The microscale behaviour of turbulence found here is the same found when modelling turbulent 
incompressible flows by homogenization [4,9]. 

Note that the first terms in expansion (3) satisfy the original equations of perfect fluids. The effects 
of the perturbation are present in the equations for (~(1), ~2, ~(l)) by means of the tensor R. However, 
no "eddy viscosity" is present here. In fact, the energy E 6 = p~(e ~ + ]u612/2) admits an asymptotic 

expansion E ~ -- E +  ~1/3 E(1) + . . .  derived from (3). From system (6), E and E(1) verify the following 
conservation laws: 

r ,  + v + : 0, / 5 :  - 

+ v .  + + v .  

/5(1) = (,.)/_ 1)(p(1)~ _{_ /~(1)) .  

At this stage, we should stress the fact that the same set of equations for both E and ~(1) is obtained 
if we start from the conservative form of (1) and then apply the same averaging process. This proves 
the consistency of such a technique. 

3. Modelling of Reynolds stress tensor 

As we have stated in the preceding section, the above modelling of Reynolds stress tensor does 
not introduce eddy diffusion in our model. In the incompressible case it rather appears as modelling 
a transient oscillatory interaction between large and small structures [2]. However, homogenization 
techniques also provide eddy diffusion terms when modelling incompressible flows. In [3] it is shown 
that if we extend the averaging process to one more term of our asymptotic expansion, the RST is 
modelled as follows: 

u t @/z t ~ ~2/3/~(C) -/:T~V/k(V7~ + V?~*), u' = 61/3w + ~2/3u(1) + . . .  , (8) 

where u T is a numerical coefficient of eddy viscosity. However, some numerical experiments reported 
in [2] make it apparent that the levels of numerical diffusion given by (8) are too low. In [2] a "mixed" 
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modelling is proposed: the transient effects are modelled by homogenization, and the eddy diffusion 
effects are modelled as in the k-c model, by means of the Boussinesq's hypothesis: 

u t Q u  t _~ 62/3R(C) - #T(V~2 + V~2*). (9) 

This kind of modelling has been tested in [2] with encouraging results. 
Our purpose here is to adapt (9) to perfect flows. In the usual modelling of turbulence, when 

modelling the Reynolds stress tensor by Boussinesq's hypothesis, the Reynolds (~) and Favre (~ = 
~-~/fi) average are identified. We shall here replace the Reynolds mean by the integral mean about the 
y-variable, and identify it to the Favre mean. 

In the k-e model [8,10] the Reynolds stress tensor is modelled by 

pu' ® u' "~ 2ilk1 - #TT"(~), (10) 

where T(~) denotes the stress tensor, 

~-(~) = } V - ~ I -  ( W  + W * ) .  

Also, #T is the eddy viscosity coefficient, given by 

k 2 
~T----C/s--, C• = 0.09, 

e 
and c is the rate of viscous dissipation. 

Following the ideas of Bbgue et al. for incompressible flows, we propose the modelling of the 
Reynolds stress tensor for compressible flows given below 

pu t  @ ,at ~_ ]z~ = (~2/3 p ( ( w  @ W}) --  #TT(~) = pkG-T ((~ @ ~))G -1 --/.tT'T(u ). (11) 

In the sequel, we shall drop the bars to indicate averaged quantities. If we put this modelling of RST 
into the k-¢ model for viscous perfect fluids, we obtain the following system of averaged equations: 

~ + V . ( p a @ u )  =0 ,  

/ 

! 
- V "  [(~f# + ~ /#T '~Vel - -V.  ( # T V k ~  = 0 ,  (12) 

[ b \ pr PrT J J \ crk J 
/ 

I u~ L \ cre / j x x 

[ , p =  ( ' y -  1 ) ( e -  ½phi 2 - pk), 
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where E = pe + lplul2 is the total energy, Pr and PrT are the Prandtl number and the turbulent 
Prandtl number, respectively; the constant 7 is the same as in (1), and crk, cry, C~l and C¢2 are 
numerical constants (in our experiments, we have taken Pr = 0.72, cr k = 1, cr~ = 1.3, C d  = 1.44 
and Ce2 = 1.92). 

This new model has certainly a higher complexity than the standard k -c  model. Indeed, we have 
new closure terms that depend on the inverse Lagrangian coordinates a(x, t). However, the equation 
satisfied by this field is just a pure transport and it may be very efficiently solved, as we shall 
see in Section 7. Also, the closure terms may be tabulated by solving the canonical microstructure 
problem (5), and given as data to system (12). In exchange to this, we obtain a model that may allow 
us to simulate some some specific transient effects of the interactions large-small structures, as in the 
incompressible case [3]. 

The production term in the k and c equations is P = - R  : Vu.  

4. Closure terms for 2D mean flows 

In this section we briefly describe the structure of  closure terms for 2D mean flows. We shall use 
the frame invariance of the model equations in order to gain a large simplifications of the structure of 
closure terms. This is an adaptation of  the technique developed at first for incompressible flows. 

4.1. Structure o f  closure terms 

If model (5) is frame-invariant, then the tensor 

= R(C)  = ((w ~ w>>, 

must also be frame-invariant, in the sense that 

Q n ( c ) O ,  R(o c e )  = *-  

for any orthogonal matrix Q. This is the case if the initial perturbation w is in turn frame invariant, 

cf. [4]. Rivlin-Ericksen's theorem leads to the following structure for _~ [5]: 

R(C)  = ~0I  + ~1C + ~2 C2, 

where a0, c~1 and ~2 are coefficients depending only on the three invariants of matrix C, namely 

il = trace C, i2 = det C, {3 = trace Adj C. 

By Cayley-Hamil ton 's  theorem, we then have 

<<w O w>>(C) = <<w O w>> (C) -- ~0I  + ~ , C  + ~2C 2, 

where 

i 3  ~ i, ~ 1 
= GG*, so = ~--0~0 ÷ ~ l ,  Oq = ~2  -- --0~0, 0!2 = .---~0" 

~2 Z2 Z2 

In our case, we shall consider 2D mean flows of  the form 

: 
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Then, 

a(x , t )  = (a l (X l ,X2 , t ) ,a2 (x l , x2 , t ) , x3 )* ,  

and 

G = V a =  
0 0 10 m D b 
o , c =  o , ~ =  o , 

0 0 1  0 0 1  0 0 1  

where D = M ' M ,  L) = M M * .  
As D satisfies 

b 2 -  ( t raceD)/9  + ( d e t D ) I  = 0, 

we are led to the following structure for tensor ((w ® w))" 

with 

0 ~ 

If we denote the two invariants of D by 

ja = trace/9, J2 = det/9, 

then, we have 

il = Jl + 1, 

This shows that/3o, 

i~ - 1 1 
c~o + 51, /31 = 52 - =~o ,  

i2 *2 
/32 ~- 50 -~ ~1 + 52. 

i2 = j2, i3 = j l  + j2- 

/31 and/32 are functions of j l  and j2 only. 
As a conclusion, in the case of 2D mean flow, we can replace the RST modelling in (11) by 

p~' o ~ '  --= R =  p k e ( b ( u ) )  - , T r ( u ) ,  

where 

¢ (  A )D 9o i  + ~ , D  
= 0 

0 0 /32 

(13) 

(14) 

(15) 
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4.2. Definition of  smooth closure terms 

The coefficients 30 and 31 are computed from tensor/~ = ((~ ® ~)) issued from the solution of (5). 
An analogous derivation to that above yields 

0 
+ 

0 , 

0 0 52 

where 

(16) 

Using identities (14) and (16) we deduce 

/~1 = Rll 4-/~22 = 2/30 + jl/~l = j ,30 + (j2 _ 2j2)/31, (17) 

/22 = /~33 = /32 = /32' (18) 

We also have from (15) that 

2 = t race~(D)  = 2/3o +j1/31 +/32. (19) 

Eqs. (17)-(19) represent a linear system to determine 30, 31 and/32 in terms of #1 and #2. This 
will only be possible if its determinant A is not equal to zero. A is zero only if 

j2 = 4j2. (20) 

This is the equation of the parabolic boundary of the region of the admissible jl  and j2, given in (25). 
In this case, matrix D in (16) is proportional to the identity. Then, system (17)-(19) has infinitely 
many solutions, as solving (17) and (18) in/3o and/32 yields also a solution of (19) for each given/31. 
Thus, the coefficients 30, /31 and/32 are not uniquely defined. 

In order to solve this difficulty, we may express ~b(/)) in terms of an orthogonal base of the space of 

2 x 2 matrices spanned by I and D. If such space has dimension two, this orthogonal base is {I,/3}, 
where /3 = /~ - l j l I .  When D is proportional to the identity, this base is reduced to {I}. In any 

case, we may write ~(/~) as 

~b(/)) = t~I +/31/~, where ~ =/30 + lj,/31. (21) 

Notice that in particular trace B = 0, and that such a decomposition is unique. 
From system (17)-(19) we obtain 

= ½(2 - ~2), (22) 

2 
/31 = ~ ( # l  - j l~) .  (23) 

Now, i f / )  is proportional to the identity, (22) still holds and B = 0. Thus, the value of/51 is irrelevant. 
This ensures that decomposition (21) is well defined. Moreover, if we assume that the transformation 
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C ~ -~(C) is continuous, so does it for coefficient s; as ~ = s (C)  = 1 [2 -/~33]. Thus, /~1 is also 

continuous at matrices/~ such that /~1 ¢ /~2. 
Consider now a matrix/~0 proportional to the identity (Al = A2). Then, 

 (b0) =  (b0)i. 

Given D in neighbourhood of/~0 such that AI(D) # Az(D), we have 

=  (bo)l + 

Then, 

l i r n  fll ( b ) / ~  = 0. 
D---~ Do 

As a consequence, the two summands of the decomposition of ~(/~) given by (21) are continuous 

functions o f /~ ,  if R is itself continuous. 
It is important to remark that in practice, the tabulated parameters #l and #2 must be furnished 

to the numerical code as data. Then, ec and tim are computed by (22) and eventually (23) for each 
needed D. This ensures that the trace of tensor R in (11) is exactly preserved to 2pk. Otherwise, some 
artificial pressure will be created in the interpolation of t~ and ill. 

In the sequel we shall still write r0 instead of t~ in order to simplify the notation. 

5. Computation of closure terms 

In this section, we describe the numerical solution technique to the canonical microstructure prob- 
lem (5), and its application to the computation of the closure terms in model (12). 

Identities (13) and (14) state that the Reynolds tensor ((w®w)) issued from homogenization depends 
only on the two invariants j l  and j2 of matrix D. This suggests to compute 3o and 31 as functions 
of these invariants, for diagonal matrices. We also must compute i3/30/0jl and 0/30/0j2, as these 
quantities appear as closure terms in the equations for the energy in (32) (see Section 6). 

We thus consider the matrices 

C = , with D = . (24) 
A2 

Notice that as C is symmetric, we must take only A1, A2 E R. As 

j l  = A1 + A2, j2 = AIA2, 

then /~1 and A2 are the (real) solutions of 

A2 -- j lA + j 2  = 0 .  

Consequently, we must only consider Jl, j2 such that the discriminant of this equation is non-negative, 

A = j2 _ 4j2 ~> 0. (25) 

Notice also that we may restrict ourselves to Jl > 0, j2 > 0, because C is positive definite. 
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5.1. Least squares solution of the canonical microstructures problem 

In order to compute our canonical tensor R we have solved the steady-state version of system (5) 
verified by the canonical fluctuation ~,  following the technique developed by Chac6n and Orteg6n 
in [3,12]. The steady-state version of the canonical microstructures problem is given by 

{ ( ~ .  V~)@ + CVyrC -- 0, Vy • @ = 0 in Y -- ]0, 27r[ 3, 

(@, 7r) odd and Y-periodic, (26) 

1 - - *  - - 1  - -  c 1, 0 

|n [12] it is shown that this problem has infinitely many solutions. However, this system is invariant 
under rotations of the frame of reference that leave unchanged the cube Y. In order to isolate one 
solution, we will be interested in discrete solutions that verify these invariances. 

The solution technique is based upon a least squares formulation of (26). To describe it, let us 
denote by Hkp(Y), k ) O, the subspace of H~c(IR 3) of periodic functions on R 3 with period cell Y. 
Define the subspaces 

Vo-- { v ~  (H~(y) )3  I V . v - -  0, (v}=O}, L20 = {qE L2(y) I(q}=O}. 

We intend to obtain a solution (~, 7c) of (26) in the space Vo x L20. 

For a given trial couple (~, 7r) E Vo x L20(Y), we associate an "error" couple (e,p) E (H¢ (Y)) 3 x 

L2(y) as the solution to the problem 

- V y .  (CVyp) = Vy .  [ (~ .  Vy)~]  in Y, (p} = 0, 

-Aye = Vy.  [w @ tv + CTr] in Y, {e) = 0. 

Denote by q(~) the kinetic energy of ~,  and define the function 

V - -  

Then we define the functional error J as 

= f Iw(v)l 2- 
Y 

Observe that J measures the error made when approximating the solution of (26) by ~. The nor- 
malization by q(~) is due to the fact that the error e is homogeneous of degree two. Then, J is 
homogeneous of degree zero. 

We now look for the solution of (26) as solution of the optimization problem 

To obtain ~ E V0 such that 
A . (27) 

J(w)=ma~oJ(W). 

The equivalence between (26) and (27) may be proved under certain restrictions on ~ [12]. 
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lo'  I 

1~-~.__ 

10 "s 
I I 

0 

Fig. 1. Normalized cost J defined in Section 5.1, for J2 = 0.25 and different values of j l :  1.00 (! 
1 .54(z  z z ) ,  1.82(--- = --- ), 2.09 (e  e ¢ ) and 2.37 (-*- ~ -~-). 

I I I I I I I I I I I I ] I I I I 

5 10 15 20 

[ l~eralion ] 

I I ) , 1 . 2 7 ( =  x = ) ,  

Problem (27) has been discretized by the finite element method, approximating (~, 70 by the 
Pl-iso P2 element on tetrahedra. Uniform 9 x 9 × 9 and 17 x 17 x 17 grids have been used to 
discretize velocities and pressures, respectively. Fast Fourier transform has been used to inverse the 
elliptic linear operators that appear in the equations for p and e above as well as to solve the corre- 
sponding adjoint problems. 

Special care is taken to obtain discrete solutions that verify the invariances of the problem. In 
particular, it is especially important that if matrix C is diagonal, then the computed tensor R be also 
diagonal. This is obtained numerically up to a precision of 10 -12. 

Also, the discrete optimization resulting problem has been solved by a conjugate gradient method, 
with projection on the set of functions with unit kinetic energy. In [12] a detailed description of this 
solution technique may be found. 

This technique allows to compute approximate solutions to (26) that numerically appear as "locally 
unique": they are rather independent of the initializations of the conjugate gradient process if these 
vary in the neighbourhood of a given initialization. 

Fig. 1 represents the evolution of the normalized cost J versus the iterations of the conjugate 
gradient process. In mean, the initial cost J is divided by 1000 in approximately 20 iterations. This 
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3 .8  

1 .3  

0.0 

I mu _1., mu 2 I 

1 . 0  

2...___..........- - ~ / -  
I I 1 [ I ] 1 1 [ I  

~ . 5  2 . 1  2 . 6  

j1 ,  j =o. I 

Fig. 2. Parameters #l (1) and ],£2 (2), as functions of jl, for j2 = 0.25 computed as described in Section 5.1. Both behave 
smoothly. 

takes about 90 seconds of CPU per iteration on a CRAY-YMP computer. Note that the larger is the 
quotient, the faster is the convergence of the conjugate gradient process. 

Fig. 2 shows the computed #l and #2 versus the invariant j l ,  for j2 = 0.25. A continuous behaviour, 
without too large gradients, is observed. 

5.2. Asymptotic behaviour of  closure terms 

The technique of computation of closure terms that we have developed above allows to compute 
these terms in a relatively small region of D around the identity. However, in practice the computing 
times for each actual values of Jl and j2 turn out to be very long, and so it is interesting to study the 
asymptotic behaviour of ~b(/9) in j l  and j2. 

Let us give a fixed value to j2, and assume that z~l, ~2 and ~3 admit asymptotic expansions in 
terms of cr = 1 / v ~  as 

{'t~,  = '~I0)Jr - 0"~I1)q -O(G2) ,  

/~2 = ~ 0 )  q_ 0./~1) _[_ 0(0.2) ' (28) 

= + o ( . 2 )  
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Fig. 3. Closure parameters/3o and /31 as functions of  j l ,  for j2 = 1, corresponding to actual tabulations. High oscillations 
appear near the identity matrix. 

According to [4], it is possible to give an initial condition for the microstructure problem (26) 
compatible with this expansion: 

w0(y)  = ~w~(y2),  (29) 

where w~ has unit kinetic energy and depends only on Y2. Following now [12], we may conclude that 
the only expansions (28) compatible with the Euler equations appearing in (26) correspond to 

= = = 0 

This yields ~ = O ( j l  1/2) and so R = O(j~ -1) as jl  --+ ~ .  
The numerical solutions to problem (26) performed for diagonal matrices roughly follow this be- 

haviour for large enough jl  (see Tables 1, 2 and also Fig. 3). 
Another possible asymptotic behaviour is obtained numerically if matrix C in (26) is taken with the 

following structure [3]: 

C =  o~ l + c ~  2 • 

1 
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Table 1 
Computed values of parameter el, such that #l ~-- el (j2)/jl as j l  ~ oc 

j 2 \ j t  3.00 4.00 5.00 8.00 20.00 102.00 

0.9 2.16 3.02 

1.0 0.21 0.74 2.07 2.22 2.39 2.39 

1.1 2.62 3.19 

449 

Table 2 
Computed values of parameter e2, such that #2 ~ e2(j2)/jl as j l  ~ 

j2\Jt~ 3.00 4.00 5.00 8.00 20.00 102.00 

0.9 1.76 1.81 

1.0 5.89 7.25 2.32 1.90 1.95 2.02 

1.1 2.14 2.20 

1. 00  _ 

E 7 5  - -  

0 . 5 0  - -  

0. 00 - 

-0. 25 ~ -  

-0. 50 - -  

-@. 75 - -  

- i .  00 - 

beEos J 

- - - - - ~ - -  ~ . . . . .  

lo ~o 30 4~ 5~ ~ 7~ 8~ 9o lo~ ~1o 

Fig. 4. Closure parameters /30 and /31 as functions of j~, for j2  = 1. The oscillations near the identity matrix are less 
pronounced. 
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Notice that in this case is j 2  = 1, Va. The tabulations performed in [3] show that parameters #l and 
/.t2 tend to constant values a s  j 2  ---+ 0<3 (see Fig. 4). 

6. Change of variables 

We shall adapt the numerical method introduced by Le Ribault in [8] to the solution of our model for 
2D flows. This is a mixed finite element-finite volume method based upon a laminar version proposed 
by Rostand [14]. In particular, it needs a reformulation of the model equations in order to have the same 
law of state as in the laminar case (law of perfect gases). This allows to solve our model equations 
with any numerical technique developed for 2D Euler equations if the "physical" variables (density, 
velocity and energy) are decoupled from the "turbulent" ones (k and e). In particular, Rostand's solver, 
that uses Roe's scheme for 1D flows across cell boundaries. 

This reformulation is made up via the following change of variables: 

q=p+/3opk, E ' = E + / 3 p k ,  with/3 = - 1  +/30/(7  - 1). (30) 

Then, E '  and q are indeed related by the law of perfect gases: 

q = ( ' ~ -  1)(E'  - ½pill2). 
The equation for E '  is obtained from that for E: 

OE' 
0-5- + V .  [ ( Z ' +  q)u] 

= - -~+V. [ ( e+q)u]  +/~[---O-~+V.(pku) +k 0---~ 

The first and second terms in the right-hand side here are respectively given by equations for E and 
k in system (12). To obtain the third one, observe that 

+ uVjl = -2£) • Vu, { i~jl 
- f f  

O j :  

This yields 

+ uVj2 = --2j2V" u. 

o---V- + v . - 
2p ( ~  : Vu 0/3o u 0/3o). 

7 ~ 1 ~1  + j 2 V "  ()j2J 

This leads to the definitive 2D formulation of our model. In conservative form, this is 

0 1 1 
- w  + v .  F(W) = R(W, VW) + R(W, VW) + S ( W ) ,  

(31) 

(32) 
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with 

P 

pul  

pu2 

E' 
W =  

pk 

pc 

pal 

pa2 

R = (R1, R2), with 

F , ( W )  = 

pUl 

pUlUl + q 

pu  1 U2 

(E' + q)ul 

pkul 

pcul 

pa~ Ul 

pa2ul 

v 2 ( w )  = 

pu2 

pu lu2  

pu2u2 + q 

(E' + q)u2 

pku2 

psu2 

pa ~ u2 

pa2u2 

0 

7"xx 

T'xy 

7 8e 
7"x~Ul + 7"xyu2 + ~ x  

Ok 

8x 
Oe 

Ox 

0 

0 

, R 2 ( w ,  v w )  = 

0 

7-xy 

7"yy 

7 Oe 
"7"xy U l "}- "['yy U 2 q- Prr -~y 

Ok 
Oy 

Oe 

Oy 

"['xx, 7"xy, 7"yy are the components of the viscous stress tensor, namely 

2 ( S u l  8u2"~ 
7"xx=5# 20x 8y ] '  

fOUl 
rx~ = ' ( -~7  + 0y/ '  

2 / OU2 OUl'~. 
7"uu = ~#~2 ~yy Ox ] '  
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R = (R1, R2), with 

RI(W~VW ) : 

T x x  -- ~1 p k B l l  

T x y  -- ~1 PkJ~12 

(Txx - 5 , p k ~ l l ) U ,  + (~-xy - ~ lpk~ ,2 )u2  + - - - -  

1 ~k 

ak ~x 
l ~ 

0~ ~X 

0 

0 

7 De 

PrT 5x 

1 Ok 
+ ~  

n2(w, v w )  = 

where/31 =/31ReT; 

s ( w )  = 

0 

"]-xy --/31Pk/~12 

"i-yy --/31pk/~22 

(7"xy -- ~ipk.B12)Ul-+- (7"yy -- ~,pkB2E)U 2 -~- - - - -  

1 Bk 
ak Oy 
1 ~c 

a~ ~y 

0 

0 

0 

0 

0 

~k 

- P  + pc 
8 C 2 

0 

0 

-y ige 

PrT i~y 

1 Ok 
~ -  - - .  
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and finally 

~f o(~,k) ) 2 
ck  : " [ , - - S U  + v .  (pku)  .y - 1 

0~0 uo~0). 
- -pk (bvu~j - (  + jzV. ~-22 J 

Notice that in (32), as usual, 
• the term (O/Ot)W + ~7. F (W)  represents the convective flux, 
• the term (1/Re)~ 7- R(W, V W )  represents the molecular diffusion, 
• the term (1/ReT)V • R(W, ~TW) represents the turbulent diffusion, and 
• the term S(W)  represents the turbulent production. 

7. Numerical discretization 

In this section we shall describe the main issues concerning the adaptation of Le Ribault's solver [8] 
to the numerical solution of model (32). 

7.1. A m&ed finite element-finite volume space discretization 

The space discretization is an adaptation of that introduced in [14] for laminar flows, and adapted 
in [8] to the k-e  model. 

Let us consider a triangulation Th of the (polygonal) computational domain ~.  For each node c~i 
of Th, call Ci the finite volume cell associate to c~i. The sides of this cell are the medians of sides of 
the triangles of Th, one of whose vertex is c~i. 

Let us define the space of piecewise constant functions 

Zh = {Zh" S2 ~-+ ~ I ZhlC~ is constant, Vi node of Th}, 

and the space of continuous piecewise affine functions 

Yh = {Yh C cO(-~) I YhIT is affine, VT C Th}. 

Define the transformation 

~h'Yh ~ Zh 

by 

%(Yh)[C~ =- yh(oL~), Y&i node of Th. 

Then ~-h is bijective. We shall consider both the approximation Yh and gh(Yh) of a given function 
defined in ~ .  
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Our variational discretization of (32) is the following: 

/ 
To find Wh E Y; such that 

I awh 
at%@“) dx + 

.I 
v . [F(Wh)] Ch(d)h) dx 

R n 

= $ 
I 

v. R(Wh, vWh)& dX + $ v. z(wh, vWh)4h dX 
T s 

R R 

(33) 

In order to perform a practical calculation of (33), we follow all steps given in [8]: the convective 
fluxes are computed by Van Leer’s MUSCL (Monotonic Upstream Schemes for Conservation Laws) 
second-order method [17]. The diffusive terms are computed after integration by parts. For instance, 

- 
v. R(Wh, vWh)4h dx = R(Wh, VI&). n$$, dx - 

n an R 

The contribution of the boundary integral is neglected (it is assumed that its contribution for large 
Reynolds number is irrelevant). To approximate the remaining integral, wh is discretized by a triangle- 

by-triangle constant value I?h. This value is calculated by averaging wh on each triangle. Then 

In our case, this requires to know a constant value for 5 and pt on each triangle of lh. 
Finally, the computation of the source term in (33) is again performed by approximating s(wh) by 

the piecewise constant function s(Eh). Note that this requires to know a constant value of /3, a,&/djt 
and dpu/aj, on each triangle of !&. 

The computation of new closure terms due to homogenization requires the computation of the 
inverse Lagrangian coordinates associated to the mean velocity field. 

To do this, Eq. (4) has been rewritten as 

g + v. (u @ b) = 0, 

where b = pa. 
To solve Eq. (34) we have adapted the finite volume technique of [8]. We just need to compute 

the flow between neighbouring cells by means of Van Leer’s MUSCL method. This, together with a 
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Fig. 5. Initial profiles for: (a) ve loc i ty  u, (b) kinetic energy k, and (c) turbulent dissipation e. The values represented 
correspond to the initial condit ions for Mc ---- O. 1. For larger values o f  Mc the veloci ty  has been rescaled. 
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(a) 

(b) 

Fig. 6. Isolines of (a) k and (b) c for Mc = 0.45. Computed with a grid of 2180 nodes. 

first order accuracy in time, yields a remarkable increase of accuracy. To test this technique, we have 
solved Eq. (34) with a given velocity field, that presents a large shear in a small interval: 

1, if 0.01 ~ X 2 ~ 1, 

Ul ~--- ( U I ( Z 2 ) , 0 ) * ,  w i t h u l ( x 2 ) =  1 - 5 0 ( x - 0 . 0 1 ) ,  i f - 0 . 0 1  ~<x2<~0.01, 

2, if - 1  ~< x2 ~< -0 .01.  

Fig. 6 represents the isolines of the computed ah at time t = 1. A good resolution is attempted. 
Notice that if Vah is nonsingular, the ( j l ,  j 2 )  values computed by our numerical scheme always lie 

in the admissible region. Indeed, we compute a constant value GT of Vah o n  each triangle T. Then, 
CT = G~GT is always positive semidefinite. If in addition Vah is nonsingular, then CT is positive 
definite. 

7.2. Boundary conditions 

Boundary conditions are imposed in a weak sense after integration by parts in (33): Assume Ch is 
a base function of Yh located at node c~i E F = 0 Y2. Then 

Fi -- F c~ OC~ ¢ O. 

The imposed boundary conditions are as follows: 

f 1 f R(Wh,  V W h ) ' n C h  dF F(Wh) " rid1-' - RG 
F~ /~nSop(4,h) 

1 f -R(Wh, VWh) 'nChdF= f (Wh, W ,nldr. (35) 
ReT 

FnSop(¢h) Fi 

Here, F is a suitable flux function on F,  and W ~  represents the data. Depending on the actual structure 
of F we shall impose a specific kind of boundary conditions on each particular variable. 
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m 

For instance, for the physical variables (p, pui, pu2, El) *, F is given by means of a Steger-Warming 
flux [16]: The flux function F for those variables verifies 

F ( W ) .  n = A(W, n)W, 

where 

OFI 0F2 
A(W, n) = a w n l  + ~ b 2 .  

Let us recall that A(W, n) is diagonalizable as A(W, n) = P(VG n)AP -1 (W, n) with 

A = diag(~l,Az,~3,h4), A3 = u .  n + e, 

)k4 z U . T ~ - - C .  

The Steger-Warming flux on the boundary/"  may be written by 

F(W, W~,n )  = A+(W,n)W + A - ( W , n ) W ~ .  

The actual choice of W ~  depends on whether we are considering inlet or outlet boundaries. The actual 
structure of the Steger-Warming flux acts as a kind of filter that selects the appropriate number of 
Dirichlet boundary conditions, depending on whether the flow is sub or supersonic. For inlet boundary, 
we take 

! * 
W ~  ~- (De~,/gcxz/~lcx~, PcxDU2cx~, Ecx~) • 

For outlet boundary, we take 

/ * t _ q ~  
W~ = (p, pu, ,pu2,E~)  , where E ~  7 -  1 + ½PlU]2" 

In this way, we may impose the pressure on the outlet flow boundary when the flow is subsonic. 
Also, we may impose free-slip boundary conditions in the part of _P where the normal flow u .  n is 

zero. In this case, we define F(W, W~, n) = (0, O, O, pni ,pn2, 0, 0, 0)*. In particular, this yields 

Ok Oe 0e 
- -  = 0 ,  - 0 ,  - -  = 0 .  
0n On On 

In the case of the other variables, al, a2, k and e, the definition of the boundary flow F is simpler. 
In the inlet flow boundary, we define 

F(W, W~, n) = F(W~)  .n. 

In particular, k~  and ¢~ must be provided. Also, am = x - u~t.  In the outlet boundary, we define 

F ( W ,  = F(W). 
It is interesting to observe that in condensated form we are imposing the following boundary 

conditions: 

F(W) - ~--R(W, VW) - ~ R ( W ,  VW) • n = F(W, W~,  n). (36) 
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Then, we do not impose "true" inlet Dirichlet boundary conditions, as we are neglecting the diffusion 
term in our integration by parts. However, for turbulent flows, the diffusion coefficients will become 
very small and inlet boundary conditions will be predominantly of Dirichlet kind. 

7.3. Time discretization 

We have adapted the second-order four-step explicit Runge-Kutta scheme used in [8]. To solve the 
Cauchy problem 

y'(t)  = f ( t , y ( t ) )  in [to, t o + T ] ,  

y ( t o )  = yo,  

this scheme updates Yn to Yn+l in four intermediate steps: 

Yn,O = Y n ,  tn,O = tn~ 

Yn,k = Yn + a k A t n f ( t n , k - l ,  Y~,~-I), t~,k = tn + c~kAU, k = l, 2, 3,4, (37) 

Y n + l  = Yn,4~ t n + l  = tn,4~ 

where to = 0, Y0 = y(to),  (~1 = 0.11, o~2 = 0.2766, ~3 = 0.5 and c~4 = 1.0. 
This scheme requires as low memory requirements as the Euler method, although it is second-order 

accurate and bears much better stability properties. 
In our case we use this scheme, but we split our variables into three blocks: 

W 0) = 

P 

pul 

p u 2  

E I 

Our time-stepping strategy has been the following: 
Given Wn,0 = Wn, compute recursively W~,k for k = 1,2, 3, 4 by 

1. Update w(3) to ~J1(3) by (37), and then compute a,~,k+l; " n ,k  " n , k + l  
2. Compute all closure terms from a n , k + l ;  

3. Update W (1) to W (1) by (37); n,k  n ,k  + l 

4. Update v~z(2) to w(2) by (37). ' '  n ,k  " n , k + l  
Set Wn+I = Wn,4. 
Note that the conservative variables in W (1) = (p, pul ,  pu2, E~) * satisfy the perfect gas state law, 

and that the convection operator acting on W (1) is the same as for 2D Euler equations. Thus, any flux- 

splitting technique that is well suited for 2D Euler equations may be used to update W (1) in the above 
time-stepping strategy. In our case, we have used Roe's scheme. This yields a numerical scheme with 
a first-order overall accuracy. The " k - e  model" variables are computed with second-order accuracy 
in space, and the "homogenization" variables and new closure terms are only first-order accurate. At 
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first, it does not seem necessary to compute closure terms with second-order accuracy, as the tabulated 
closure terms remain only temptative. 

8. Numerical tests 

We have performed some initial numerical tests of our numerical code for steady sub- and supersonic 
mixing layers. Low Mach mixing layers is a good test case, as accurate experimental measurements are 
available [1]. Moreover, the results furnished by the k-e model are well known, and reasonably accurate 
with respect to experimental measurements [7]. Thus, it is a good test to analyze the consistency of our 
model with the k-e one for steady flows. As our model essentially takes into account purely transient 
effects, no large differences with the k-c model should be expected for steady flows. 

Also, for intermediate and high Mach mixing layers, k-e models yield more inaccurate results as it 
does not take into account some relevant effects of the compressibility of the small scales. However, 
this is a good test case to observe the numerical performances (stability, verification of boundary 
conditions, convergence to a steady state, grid independence) of our code. 

For compressible mixing layer, the relevant similarity parameter to define the flow is the convective 
Mach number Me. Denote respectively by Ml and M2 the Mach numbers and by al and a2 the sound 
speeds in the upper and lower layers. The convective Mach number is defined as 

M2 - M1 
Mc I 

al ÷ a 2  

when M2 > M1. In our computations, we have taken the same gas at both sides of the layer, i.e., 

al = a 2 .  
We have carried out numerical tests for convective Mach numbers of Me = 0.45, Me = 0.65 

and Me = 1 which correspond to initial and inlet Mach numbers of M1 = 1.37, M1 = 1.98 and 
M, = 3.04, and of M2 = 1.89, M2 = 2.74 and M2 = 4.23, respectively. 

We have considered the profiles for dimensionless initial conditions for u, k and c given in Fig. 5. 
Also, our reference magnitudes have been L0 = 48 mm, u0 = 700 m/s, P0 = 0.295 kg/m 3, To = 
334.4 °K, P0 = 28302.4 Pa, l-t0 = 1.147 × l0 -5. The velocity profiles have been rescaled to change 
the convective Mach number. This is a test case precedingly used by Guezengar et al. in [7] to test 
the k-e model. 

As computational domain we have taken a square box with sides of lengths 50 and 400 mm. Free 
slip boundary conditions have been imposed on the (artificial) upper and lower boundaries. Also, 
inflow boundary conditions are those given by the restriction of the initial conditions to the inflow 
boundary. Finally, homogeneous Neumann boundary conditions are imposed in the outflow boundary 
on all variables, except for the pressure if flow is subsonic, which is imposed in this case. 

For Me up to 0.45, this flow reaches a steady state which is attained by the k-c model, even for 
coarse grids. Our model also reaches a steady state with a coarse grid of 290 nodes. For larger Me, 
standard k-c model reaches an almost steady state, with typical residuals of order l0 -3 that oscillate 
slightly [7]. We have found a similar behaviour for our code in these cases. In all tests considered, our 
results are quite grid-independent for grids of over 2000 nodes, approximately. Moreover, the code 
shows good stability properties for all cases considered, although the time steps are shorter for larger 
Mach numbers, as expected. 
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(a) 

(b) 

Fig. 7. Isolines of (a) k and (b) e for 2~Ic = 1. Computed with a grid of 2180 nodes. The overall values, and in particular 
the maximum, of k are larger for M~ = l than for Mc = 0.45. 

To test the two possible sets of closure terms referenced in Section 4, we have performed an initial 
test with Mc = 0.2. If  the first kind of closure terms, obtained by Chacrn  in [3] are used, the results are 
quite close to those given by the k -e  model. For instance, the steady states obtained for k are almost 
indistinguishable. Also, mean velocity profiles are almost exactly the same. This probably happens 
because for these closure terms, the additional term /31B introduced in the RST is small, for both 
small or large values of j l .  Thus, for these closure terms our numerical results are consistent with the 
fact that we are essentially modelling unsteady turbulence. 

If the other kind of closure terms referenced in Section 4 are used, the code turns to be somehow 
unstable and some unphysical features appear in the results obtained. In particular, the accuracy of 
the computed expansion rate of the layer decreases largely as the longitudinal distance to the inflow 
boundary increases. Also, the free-slip boundary condition u .  n = 0 is not well satisfied in the 
low-velocity side of the layer. These unphysical results are very likely due to inaccuracies in the 
computation of the closure terms, that produce large oscillations of the closure functions/3o and/31. 
However, improving this accuracy would require a too large amount of computational work to solve 
the equation of  the microstructures. 

Thus, we have performed more extensive test using Chac6n's closure terms, for convective Mach 
numbers of  Mc = 0.45, Mc = 0.65 and Mc = 1. We compute smooth k and c in all cases (see Fig. 6 
for Mc = 0.45, and Fig. 7 for Mc = 1). 

Self-similarity is a good test for this flow to analyze whether a numerical steady solution is physically 
acceptable [1]. The basic parameter to define self-similarity profiles of mixing layers is the thickness 
5 of  the layer. Let us recall the Stanford Conference definition of  5 [1]: denote by z the longitudinal 
variable along the layer, and by y the cross-flow variable. For each :c, we define Yl and Y2 such that 

= + - 

 (y2) = + - 
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Fig. 8. Similari ty profiles for the velocity at different distances f rom the leading edge: x = 192 ram, 288 m m  and 384 mm. 
A good self-similari ty is obtained. 

where u 1 < u2 are the two constant velocities on the sides of the layer. We then define the thickness 

a s  (5 = ]Y2 - -  Yl]" 

Now, we may define similarity profiles u s and k s for velocity and energy (for instance), as 

uS(x ,  yS) _ u ( x , y )  - ul kS(x ,  yS) = k ( x , y )  where yS = Y 
U2 - -  Ul  ' m a x y  k(x, y)' (5" 

We say that a solution is self-similar if the corresponding similarity profiles are independent of  x. As 
we may observe in Figs. 8 and 9, our results yield good self-similar profiles for mean velocity and 
kinetic energy. 

We also obtain a linear expansion of the thickness (5 of the layer, as expected from experimental 
measurements (see Fig. 10). The spreading rate (5~ in both cases takes a value close to the one 
corresponding to low convective Mach number 5~). The normalized spreading rate is in both cases 
(5~/(5~) = 1.032. In the case of  standard k -e  model, this value is of 0.99 in both cases [7]. Thus, our 
results are close to those of  standard k-e,  as expected. It should be remarked that these values do 
not agree with experimental results. Indeed, compressibility effects make the normalized spreading 
rate decay for Me ~> 0.45, approximately, to a value which is kept constant for Me between 1 and 4. 
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Fig. 9. Similarity profiles for the kinetic energy at different distances from the leading edge: x = 192 mm, 288 mm and 
384 mm. Self-similarity is less strong than for the velocity, although it is still good. 

Compressibility effects are taken into account in specific models such as Zeman's or Sarkar's [15,18]. 
These models introduce an increase of turbulence dissipation (c) due to dilatation in the first one, and 
to solenoidal dissipation in the second one. However, these effects are not taken into account by the 
standard k-e model. This is also the case of our model, as we are dealing only with perturbations 
which are incompressible with respect to the microscale variable. 

9. Conclusions 

In this work we have shown that the MPP averaging technique for flows with highly oscillating 
initial conditions introduced in [9] for incompressible flows may also be applied to perfect inviscid 
flows at moderate Mach numbers. 

We have obtained a set of averaged equations where the closure terms are computed from the 
solution of a "microstructure" equations set that governs the small scale behaviour of the perturbation. 
In view of the experience acquired with incompressible flows, we have derived a k-c type model in 
order to include eddy diffusion effects, and also the purely transient effects that are modelled by the 
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Fig. 10. Upper boundary of the mixing layer for Mc : 0.45. It presents an almost linear growth. 

MPP averaging. We have obtained a 2D version of this model, for which the closure terms have a 
particularly simple structure. Moreover, we have adapted a technique of computation of these closure 
terms, based upon a least-squares formulation of the canonical microstructure problem. 

Next, a mixed finite volume-finite element numerical solver for our 2D model has been derived. 
This solver is based upon a splitting of "physical", "turbulent" and auxiliary variables. Roe's scheme, 
combined with Van Leer's MUSCL second-order method are used to compute the numerical fluxes. 
This solver has been tested for steady mixing layer flow. The theoretical expectations of the model at 
moderate convective Mach numbers have been confirmed: the relevant mean quantities of this flow 
have been well predicted, much as the k-e  model. 

We think that our results are encouraging, in the sense that they support the consistency of the 
model for steady flows. However, we are conscient of the fact that this testing is to be continued 
with purely transient flows, in order to analyze whether the model improves the predictions of current 
turbulence models, normally derived to model steady flows. 
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