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Abstract

A procedure was developed for determining theoretical expressions for the area under the first radial distribution
function (RDF) peak and of the relative coordination numbers, n;;, which depend on the coordination hypotheses
and on the numbers of bonds between elements of a single type of pairs. In this method two important facts were
taken into account. The products of atomic factors are functions of s (the scattering vector module) and so they
cannot always be assumed to be constant; they were therefore approximated by polynomial functions which best
fitted the results obtained from the atomic factors given in the International Tables of Crystallography. We
considered the affects of the structural hypotheses (coordination, existence of certain types of bond) on the area and
coordination numbers mentioned which enable us to postulate the most probable local order. To test the reliability
of this method, it was applied to a set of alloys, quoted in the literature and the theoretical results obtained agree

satisfactorily with the data. © 1997 Elsevier Science B.V.

1. Introduction

A method which, to date, has proven to be
efficient for structural research is the interpreta-
tion of the diffraction of radiation by the solid.
X-ray diffraction has been used to obtain struc-
tural information on the glassy materials con-
sidered in this work [1-4]. When interpreting the
radial atomic distribution function (RDF), ob-

* Corresponding author. Tel.: +34-56 830 966; fax: +34-56
834 924; e-mail: wagner@merlin.uca.es

tained from the X-ray diffraction intensities, the
area under the first peak is determined by the
relative coordination numbers, n,;. From these
numbers the short-range order of a material can
be deduced. This area also depends on the
products of the atomic scattering factors, R; j(s)
=f()f(s)/(Z,x,f(s))* (s is the scattering vec-
tor module), which, in some cases, varies con-
siderably with s [5].

This work takes into account that the atomic
scattering factors are functions of Bragg’s angle
[5] and also the coordination hypotheses for a
certain element in the alloy. These two considera-
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tions made it possible to calculate from theoreti-
cal expressions the parameters which depend on
the alloy and of the coordination hypotheses which
appear in the theoretical expression of the area
under the first peak and in those of the average
coordination numbers [6—-9]. The theoretical re-
sults were applied to an analysis of the short-range
order of different glassy alloys; the results agree
with experimental data.

2. Theoretical background

The classical theory of electromagnetic wave
diffraction, for a three-dimensional configuration
of atoms, makes it possible to deduce a relation-
ship between the diffracted intensity in a given
direction and the relative positions of the atoms
in the material. When this relationship is applied
to a glassy material in which it is possible to
postulate that the positions are randomly ori-
ented, the intensity diffracted in each direction,
expressed in electron units (e.u.), is given by De-
bye’s equation [10]

sin STy

fo (1)

where s = (4w /M) sin 6, f,, and f, are the scat-
tering factors of atoms m and n, respectively and
r,. is the distance between those atoms.

An evaluation of Debye’s equation involves the
atomic scattering factors as functions of Bragg’s
angle via the magnitude s, a consideration which
was taken into account by Finbak {11] and later
by Waser and Schomaker [12] and even later by
Warren [5]. According to Warren, the following
relationship is found for the RDF:

% x, —P (1) = dmrpy +1G(r), @)

if

where x; is the atomic fraction of element i, G(r)
is the Fourier transformation of the interference
function, p, is the average atomic density of the
material, r;; is the distance between an i-type
atom and a j-type atom and the function P, (r) is

defined by

P(r)= —f "R, (s)cos[s(r —r,))]ds, (3)

where s, is the maximum s for which experimen-
tal data are available. By defining a function,
p(r) = @u*r) 'L, x;n,;r;'P,(r), representing
the local atomic density affected by the Fourier
transformation of the atomic factor products, Eq.

(2) changes to
dnr’p(r) =4arp, +rG(r),

which represents the average number of atoms
surrounding a reference atom at a distance r.

When evaluating the average number of first
neighbours of an arbitrary atom (that is, its aver-
age coordination), it is necessary to obtain the
area under the first RDF peak given by the ex-
pression

2 R rb
Area = — %"x'-’,—,j,; rP,(r)dr, @

where a and b are the abscissae of the limits of
the peak.

There are practical cases in which it may be
observed that the approximation of considering
the function, R;;, to be constant and equal to
Z,Z,/(¥,x,Z;)* is sufficiently inaccurate to affect
the short-range order postulated for the material.
In relation to this, Fig. 1 shows the functions
P,(x) vs. x=r—r,; for all possible pairs of ele-
ments in amorphous SiO, [5]. In addition to the
ripples due to the errors in finishing the series,
the curve for Si-Si is observed to have a negative
wing just outside the main peak and the curve for
O-0 has a positive region at the end of the main
peak. These positive or negative regions are a
consequence of the shapes of the R, (s) curves. A
relatively broad, though not complete, analysis of
cases such as amorphous SiO, scems to make it
advisable to express the products, R;(s), through
the functions which best fit the results obtained
from the atomic scattering factors given in the
International Tables of Crystallography. In this
sense, Vazquez and Sanz [6] have developed an
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analytical method for evaluating the area under
the first RDF peak in which the products, R;(s),
are expressed by n-order polynomials in s, ie.
R, (s)=X}_,A,s*. When these polynomials are
of the first order, as is frequently the case, the
authors [6] propose the following expression:

2
Area_ innijA,-j Q)
i

with A, =r; ' rP (r)dr=Qr,))" '[B,,; + B,;; +
r,/(By; + By;;)], and the addends, B, (v = 1,2,3,4)
being given by the relationships
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Fig. 1. Representation of functions P;(x) vs. x for the dif-
ferent pairs of elements in amorphous SiO,.

ordinate, respectively, of the regression line cor-
responding to the product of the scattering fac-
tors of atoms ij and a;;=a —r; and b}, =b —r,;.

It should be noted that Eq. (5) is a function of
the relative coordination numbers, n;; and there-
fore it is a function of the number of the chemical
bonds, a;;, between the i-type and j-type ele-
ments of the alloy. This fact made it possible to
develop analytical methods [7,8] for expressing
the area under the first RDF peak as a function
of the coordination of one type of element in the
material and of the number of bonds between
pairs of atoms.

2.1. Basic parameters which depend on the alloy and
on the coordination hypotheses

A theoretical evaluation of the average coordi-
nation of a glassy alloy, from its RDF involves
determining the area under the first peak of this
function as accurately as possible. This area will
enable a coordination to be attributed to a cer-
tain element, according to its properties and to
the coordination proposed in the literature for
the same element in similar alloys. The postu-
lated coordination is substituted in the theoretical
expression of the area and the area obtained for
this coordination is compared to the area en-
closed by the first experimental RDF peak. If the
difference between the two areas is within experi-
mental error, the coordination hypothesis may be
considered adequate, otherwise, the hypothesis
should be rejected and another one tested. On
the other hand, it is a well-known fact that, in
glassy alloys, the absence of bonds between cer-
tain types of elements may be postulated and
therefore, it is important that the theoretical ex-
pression for the area should include this possibil-
ity in order to compare the experimental area to
the theoretical areas obtained through different
hypotheses of bonding of the elements in a glass.

To obtain the above-mentioned expression for
the area, which permits hypotheses on the local
order of solid, a ternary glassy alloy 4,B,C,
assuming 100 atoms of material, has been con:
sidered and the hypotheses are
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1. Element A has coordination N, irrespective
of the composition of the alloy and the aver-
age coordination numbers of this element
with all those bonded to it are proportional to
their respective percentage concentrations.

2. The total number of i-type bonds, 4, , is given
by

a;=2a,;+ Y a,;, (6)

i#j

where g;; is the number of chemical bonds
between i-type and j-type elements.

3. If the normal coordination of the different
elements in the sample are called C;, and it is
assumed that element A has a coordination
N (N # C,), the number of bonds of this type
of atom is

a,=Na,' =Cia,' +|x|,

|x| being the variation in the number of bonds
of the element, when its coordination changes
from C, to N.

4. When the coordination of element A changes,
the coordinations of elements B and D may
increase or decrease, so the number of bonds
of these elements is given by

a,=C,a; tlyl,(i#1),

where |y,| represents the variation in the
number of i-type bonds.

Taking these hypotheses into account, Vazquez
et al. {9] deduced the following relation using Eq.
(4) and results from Vazquez et al. [7,8]:

Area = (h+BA22_8Q)N+aA22+7Q

1
50w

+P( Y 4,- X A,.,)a,.,], (N

i=j*1 D ik]

where h, o, B, y and & are characteristic
parameters of each alloy; P is a parameter equal
to 2 when, i =j in the variable a;; and equal to

~1if i+j; and Q is defined by the relationship
Q=34, h A+ - 8;;) M A;
INERNEY i=j#1
N\
in which §;; is Kronecker’s delta.

The previous expression for the theoretical area
enables, according to the experimental area, the
variation interval of the number of bonds between
the elements of a certain pair to be found, for
each coordination hypothesis. This fact is useful
when choosing the best coordination for the ele-
ments which usually make wp compounds with
different coordinations.

2.2. Relative coordination numbers

The relative coordination numbers, n,;, of the
different pairs of elements of a compound, are a
set of parameters useful in postulating the short-
range order of a glassy solid. These parameters,
which represent the average number of j-type
atoms surrounding an i-type atom, can be related
to the coordination, N, attributed to a certain
element; bearing in mind the restrictions imposed
by the intrinsically positive nature of n;; , it is
possible to choose an appropriate N.

When postulating the absence of bonds between
certain types of element, the corresponding n,;’s
are zero. As it is always possible to assign the
subscript 1 to one of these types, considering the
hypothesis mentioned above to the effect that the
average coordination numbers of this element
with all the elements, &, bonded to it, are propor-
tional to their respective percentage concentra-
tions, the following expressions are obtained:

a,N a,N

== Ry =
Ya, ’
- k

= Za'k’
k

Ny

which depend on the coordination attributed to
element A. Bearing in mind that the relative
coordination numbers are given by nij=a,j/a;-,
expressions can be deduced for the n;; (i,j # 1)
enabling the short-range order of the solid to be
hypothesized.

From Eq. (6), Vazquez et al. [9] deduced the
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following expressions for the coordination num-
bers n;; (i,j # 1) as functions of the number of a;;
bonds:

(B-801-5)) L d
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k
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condensing, by §;;, the two possible expressions
for each of the coordination numbers deduced.
The fact that these numbers must be positive or
zero makes it possible to find the variation of the
number of bonds, a, i for each N that is chosen.
The intersection of this interval with the interval
deduced from the experimental area, is useful for
choosing an N which best agrees with the struc-
tural information supplied by the RDF, when
postulating the local order of the material.

3. Application to practical cases

The method described in the literature [9], for
determining the parameters enabling postulation
of the short-range order of an amorphous solid,
was applied to a relatively wide set of glassy alloys
for which experimental data are found in the
literature. Different structural hypotheses were
used and the theoretical results obtained agree
with the experimental data mentioned above,
confirming the reliability of this theoretical
method. This work shows the theoretical analysis

of five alloys chosen from the set considered;
their experimental values are shown in Table 1.
The constituent elements of each alloy were given
the subscripts 1, 2 and 3 in the order in which
they appear in the alloy. The coordination hy-
potheses used for obtaining the parameters which
define the possible local order are shown in Table
2, C; (i =2,3) represents the coordination of ele-
ment ¢ in the compound. The existence of bonds
between all pairs of elements in all alloys was
postulated, except in M2, where the absence of
Al-Al bonds was assumed [13].

Bearing in mind the structural hypotheses men-
tioned and using the theoretical expressions of
the above-mentioned parameters [9),

a=Cya,— Cydy = C, B,B=d\(ds—a))/ L d,,y

i+1

=Cyds +C 8,8 =didy/ Y. a),

i*f

the values shown in Table 3 were calculated,
corresponding to parameters that depend on the
specific characteristics of each alloy and on the
coordination variations of its elements. Table 4

Table 1
RDF characteristics of the analyzed alloys

Alloy First peak Area Refs.
o o (atoms)
a(A) b(A)
Asg20Se030Tegsp (M1) 205 2.90 2.10 [14]
Aly 10AsyTep 70 (M2) 225 3.05 2.04 [15]
Geg29BiggsSeg74 (M3)  2.00  3.05 2.62 [16]
AgoiAsy3sSepsg (M4 201 2.81 2.60 [17]
Cu .0 Asy35Teg 45 (M5) 220 2.95 321 [18]

Table 2
Coordination hypotheses

Alloy N C, C, C, c, c,

M1 4 3 2 2 <2 <2
M2 4 3 3 2 >3 >2
M3 4 4 3 2 3 2
M4 4 1 3 2 >3 >2
MS 4 1 3 2 >3 >2
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Table 3
Parameters related to the coordination hypotheses

Alloy a B y 8

M1 —55 5 137.5 12.5
M2 -190/3 -50/9 350/3 —-70/9
M3 —-130 0 148 0
M4 -7/6 -5/6 1363 /12 —-29/12
M5 17.50 —2.50 78.75 —11.25
Table 4

Average bond lengths for each alloy

Pair r; (A) Reference
Ml M2 M3 M4 M5 M1 M2 M3 M4 MS

1-1 249 2.86 252 268 2.58 [19] [22] [26] [20] [29]
1-2 238 243 268 255 2.60 [20] [23] [20] [28} [30]
1-3 262 253 237 250 2.64 [13] [20] [27) [20] [31]
2-2 234 249 292 249 249 [20] [19] [20] [19] [19]
2-3 254 268 2.62 238 2.62 [20] [24] [20] [20] [13]
3-3 271 2.83 234 234 271 [21) [25] [20] [20] [21}

shows the average bond lengths used for calculat-
ing the parameters A4,;, shown in Table 5, together
with the A parameter.

Table 6
Theoretical results obtained for the different alloys

Table 5
Values of the parameters A4;; and h obtained for s, =12 Al

Alloy 4;; h
-1 1-2 13 2-2 2-3 3-3

M1  0.8284 0.9135 1.6232 0.9929 1.4400 2.6731 21.9112
M2 0.1097 0.2976 0.5099 0.8381 1.3768 2.3253 —10.6937

M3 1.1255 3.3849 1.3022 8.8966 3.3136 1.4356  74.0821
M4 29856 2.2810 2.3198 1.4744 1.5164 1.5673 12.3192
M5 0.7886 0.9106 1.4979 1.0460 1.7068 2.8178  14.2346

Using Eq. (7) and the set of parameters ob-
tained, the theoretical expressions of the area
shown in Table 6 were deduced. These expres-
sions, together with the experimental areas
(Table 1) with an error of +0.1 atoms, made it
possible to determine the variation intervals for
a;; (i,j # 1), shown in Table 6. The quoted error
has been evaluated bearing in mind the inherent
errors with the determination of the limits of the
RDF peak and analyzing the propagated error in
the numerical integration used for the evaluation
of the experimental area. Eq. (8) supplies the
relative coordination numbers, which, due to their
intrinsically positive values, define the new limits

Coordination numbers
g, b j* 1

Alloy  Theoretical area

Variation intervals for parameter a;,i,j # 1
Defined by the Defined by limits Intersection
n;; parameters of error of the of intervals

experimental area

M1 1.9410 + 10 %ay, nyy = (—19 + 2a33) /30
nyy = (47.5 — 2a33) /30

ny3 = 2a33/25

Ny, = (5333 - a23)/20
Ny3 = az3/20
na; = (116.66 — a,3) /70

ny, = —12.6 +a33/3
nyy =148 —ay /3
ny3 = as3 /37

fyy = (—13 + 2a33) /38
rys = (113.97 — 2a3) /38
nyy = az;/29

Ny = (155 +2a43) /35
Ry =1(87.75 — 2a33) /35
ny =2a3/45

M2 22473 -2.6X10 gy

M3 0.7677 + 47.2 X 10 %ay,

M4 26511+ 11X 107 ‘ayy

M5 31017 +57 X 107 %ay,

95 < ass <23.75

0 <ay <53.33

378 <ay;, <444

0.65 < ay; < 56.99

0<ay; <43.88

59 <ay <259 9.5 <a;;, <2375

41.27 <a)3; < 11819  41.27 <a,3; <53.33
37.13 <a33; <41.36 37.8 <ay3 <41.36
0 <aj;;<44455

0.65 < ay; < 56.99

1.46 < a3, < 36.54 1.46 < a,; < 36.54
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Fig. 2. Area of the first RDF peak vs. the number of a;; bonds (i, j # 1) for alloys M1, M2, and M5.

for the magnitude g;;, shown in Table 6, together
with their intersections with the intervals corre-
sponding to the margin of error of the experimen-
tal area.

To illustrate the theoretical calculations, Fig. 2
shows the theoretical areas obtained vs. the num-
bers of a;; bonds (i, j # 1) for three of the alloys
studied. Fig. 2 shows the intervals in which the
theoretical areas are simultaneously compatible
with the experimental area and the corresponding
coordination numbers.

4. Conclusions

This theoretical method enables different
structural hypotheses to be tested in relation to
the coordination numbers or the absence of some
types of bonds, since the expressions for the rela-
tive coordination numbers and for the area under
the first RDF peak depend on these hypotheses.
On the other hand, when deducing this area,
polynomial functions were used which best fitted
the products of the atomic factors in those cases
in which said magnitudes differ from the approxi-
mate values, Z,Z,/(L,x,Z,)%; this fact is of great
interest when accurately evaluating the average
number of first neighbours in a glassy alloy.

Because of the procedure used, it is possible to
postulate certain structural properties and to ob-
tain the average theoretical coordination of atoms
in a solid from them. If the difference is within
the experimental error, we can assume that the
hypotheses describes the most probable local or-
der of the material.
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