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Abstract 

A procedure was developed for determining theoretical expressions for the area under the first radial distribution 
function (RDF) peak and of the relative coordination numbers, ttij ,  which depend on the coordination hypotheses 
and on the numbers of bonds between elements of a single type of pairs. In this method two important facts were 
taken into account. The products of atomic factors are functions of s (the scattering vector module) and so they 
cannot always be assumed to be constant; they were therefore approximated by polynomial functions which best 
fitted the results obtained from the atomic factors given in the International Tables of Crystallography. We 
considered the affects of the structural hypotheses (coordination, existence of certain types of bond) on the area and 
coordination numbers mentioned which enable us to postulate the most probable local order. To test the reliability 
of this method, it was applied to a set of alloys, quoted in the literature and the theoretical results obtained agree 
satisfactorily with the data. © 1997 Elsevier Science B.V. 

1. Introduct ion  

A me thod  which, to date, has proven to be 
efficient for  structural  research is the interpreta-  
t ion o f  the diffraction of  radiat ion by the solid. 
X-ray  diffraction has been  used to obtain struc- 
tural informat ion  on the glassy materials con- 
s idered in this work  [1-4]. W h e n  interpret ing the 
radial a tomic  distribution funct ion (RDF),  ob- 
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ta ined f rom the X-ray diffraction intensities, the 
area under  the first peak  is de te rmined  by the 
relative coord ina t ion  numbers,  nij. F r o m  these 
numbers  the short-range o rder  of  a material  can 
be deduced.  This area also depends  on the 
products  of  the a tomic scattering factors, R i j ( s )  
= f i ( s ) f j ( s ) / / ( ~ i X i f i ( S ) ) 2  (S is the scattering vec- 
tor  module),  which, in some cases, varies con- 
siderably with s [5]. 

This work  takes into account  that the a tomic 
scattering factors are functions of  Bragg's  angle 
[5] and also the coordina t ion  hypotheses for a 
certain e lement  in the alloy. These  two considera- 
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tions made it possible to calculate from theoreti- 
cal expressions the parameters which depend on 
the alloy and of the coordination hypotheses which 
appear in the theoretical expression of the area 
under the first peak and in those of the average 
coordination numbers [6-9]. The theoretical re- 
suits were applied to an analysis of the short-range 
order of different glassy alloys; the results agree 
with experimental data. 

2. Theoretical background 

The classical theory of electromagnetic wave 
diffraction, for a three-dimensional configuration 
of atoms, makes it possible to deduce a relation- 
ship between the diffracted intensity in a given 
direction and the relative positions of the atoms 
in the material. When this relationship is applied 
to a glassy material in which it is possible to 
postulate that the positions are randomly ori- 
ented, the intensity diffracted in each direction, 
expressed in electron units (e.u.), is given by De- 
bye's equation [10] 

Ie.~. = ~ f~ fm sin Srnm (1) 
sr~m 

where s = (4-rr/h) sin 0, fm and fn are the scat- 
tering factors of atoms rn and n, respectively and 
rnm is the distance between those atoms. 

An evaluation of Debye's equation involves the 
atomic scattering factors as functions of Bragg's 
angle via the magnitude s, a consideration which 
was taken into account by Finbak [11] and later 
by Waser and Schomaker [12] and even later by 
Warren [5]. According to Warren, the following 
relationship is found for the RDF: 

2 r 3-" n i---!J P ( r ) = 4 "rr r 2p o + rG ( r ) , (2) 
7 ~..x, rii u-  - 

q 

where x i is the atomic fraction of element i, G ( r )  
is the Fourier transformation of the interference 
function, P0 is the average atomic density of the 
material, rij is the distance between an /-type 
atom and a j-type atom and the function Pit (r )  is 

defined by 

1 
P i j ( r )  = -~ s ( r  r i j ) ]ds ,  SmRi j ( s )cos[  - (3) 

where s m is the maximum s for which experimen- 
tal data are available. By defining a function, 
p ( r )  = (2~r 2r)- 1S, ijxinijr ~ 1pij(r) ' representing 
the local atomic density affected by the Fourier 
transformation of the atomic factor products, Eq. 
(2) changes to 

4 ~r r2p( r ) = 4 7r r2po + r G (  r ), 

which represents the average number of atoms 
surrounding a reference atom at a distance r. 

When evaluating the average number of first 
neighbours of an arbitrary atom (that is, its aver- 
age coordination), it is necessary to obtain the 
area under the first RDF peak given by the ex- 
pression 

2 ~ fbrp~(r)dr, Area = ~ ~] x i (4) 
ij ij a 

where a and b are the abscissae of the limits of 
the peak. 

There are practical cases in which it may be 
observed that the approximation of considering 
the function, Rij, to be constant and equal to 
Z i Z j / ( Y ~ i x i Z i  )2 is sufficiently inaccurate to affect 
the short-range order postulated for the material. 
In relation to this, Fig. 1 shows the functions 
Pi j ( x )  vs. x = r - ri~ for all possible pairs of ele- 
ments in amorphous SiO 2 [5]. In addition to the 
ripples due to the errors in finishing the series, 
the curve for Si-Si is observed to have a negative 
wing just outside the main peak and the curve for 
O - O  has a positive region at the end of the main 
peak. These positive or negative regions are a 
consequence of the shapes of the R i j ( s )  curves. A 
relatively broad, though not complete, analysis of 
cases such as amorphous SiO 2 seems to make it 
advisable to express the products, Ri j ( s ) ,  through 
the functions which best fit the results obtained 
from the atomic scattering factors given in the 
International Tables of Crystallography. In this 
sense, Vfizquez and Sanz [6] have developed an 
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analytical method for evaluating the area under  
the first R DF  peak in which the products, Ri j ( s ) ,  
are expressed by n-order polynomials in s, i.e. 

n ~, R i j ( s )  = E , = o A , s  . When these polynomials are 
of the first order, as is frequently the case, the 
authors [6] propose the following expression: 

Area 2 E x i n i i h i j  (5) 

with Ai j  = r~ l f~rP~j(r)dr = (2rij)-1[B1~ j + B2i j + 
rij(B3i j + B4ij)] , and the addends, B,,i j(u = 1,2,3,4) 
being given by the relationships 

! t - 1  
Bl i  j = ( h l i j S  m + A o i j ) ( c O S S m a i j  - cOSSmbi j ) s  m , 

B2i j = ( A l iy ln la ' i j lb~ f  l ) ,  

B3ij = f b~J x -  1 sinSmX d x ,  
di 3 

B4i  = (1 - cossmb j)b  i ' 

- ( 1  ' x ,-11 
-- cOSSmai j )a i j  ] ,  

where A~i j and A0i j are the slope and the zero- 
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Fig. 1. Representation of functions Pij(x) vs. x for the dif- 
ferent pairs of elements in amorphous SiO 2. 

ordinate, respectively, of the regression line cor- 
responding to the product of the scattering fac- 
tors of a toms/ , j  and a'ij = a - rii and b~j = b - rij. 

It should be noted that Eq. (5) is a function of 
the relative coordination numbers, nit and there- 
fore it is a function of the number of the chemical 
bonds, air, between the i-type and j-type ele- 
ments of the alloy. This fact made it possible to 
develop analytical methods [7,8] for expressing 
the area under the first RD F  peak as a function 
of the coordination of one type of element in the 
material and of the number of bonds between 
pairs of atoms. 

2.1. Basic parameters  which depend on the alloy and 
on the coordination hypotheses 

A theoretical evaluation of the average coordi- 
nation of a glassy alloy, from its RD F  involves 
determining the area under  the first peak of this 
function as accurately as possible. This area will 
enable a coordination to be attributed to a cer- 
tain element, according to its properties and to 
the coordination proposed in the literature for 
the same element in similar alloys. The postu- 
lated coordination is substituted in the theoretical 
expression of the area and the area obtained for 
this coordination is compared to the area en- 
closed by the first experimental RD F  peak. If the 
difference between the two areas is within experi- 
mental error, the coordination hypothesis may be 
considered adequate, otherwise, the hypothesis 
should be rejected and another  one tested. On 
the other hand, it is a well-known fact that, in 
glassy alloys, the absence of bonds between cer- 
tain types of elements may be postulated and 
therefore, it is important that the theoretical ex- 
pression for the area should include this possibil- 
ity in order to compare the experimental area to 
the theoretical areas obtained through different 
hypotheses of bonding of the elements in a glass. 

To obtain the above-mentioned expression for 
the area, which permits hypotheses on the local 
order  of solid, a ternary glassy alloy Aa, Ba, C a, 
assuming 100 atoms of material, has been ~ n  -~ 
sidered and the hypotheses are 
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1. Element A has coordination N, irrespective 
of the composition of the alloy and the aver- 
age coordination numbers of this element 
with all those bonded to it are proportional to 
their respective percentage concentrations. 

2. The total number of i-type bonds, a i , is given 
by 

a i = 2aii + ~ aij, (6) 
i ~ j  

. 

where air is the number of chemical bonds 
between i-type and j-type elements. 
If the normal coordination of the different 
elements in the sample are called C~ and it is 
assumed that element A has a coordination 
N (N ~ C1), the number of bonds of this type 
of atom is 

a I = Na 1' = C l a  1' ++_ Ixl, 

. 

Ixl being the variation in the number of bonds 
of the element, when its coordination changes 
from C 1 to N. 
When the coordination of element A changes, 
the coordinations of elements B and D may 
increase or decrease, so the number of bonds 
of these elements is given by 

ai = Cia'i + lYi[,(i + 1), 

where l yil represents the variation in the 
number of i-type bonds. 

Taking these hypotheses into account, Vfizquez 
et al. [9] deduced the following relation using Eq. 
(4) and results from Vfizquez et al. [7,8]: 

1[ 
Area = ~ (h +/3A22 -- a Q ) N  + otA22 + TQ 

+P(  ~ A i r -  Y'. A~r)aij 1, (7) 
~ i = j ~ l  i,jq=l,i4=j I j 

where h, a ,  /3, 3' and 8 are characteristic 
parameters of each alloy; P is a parameter equal 
to 2 when, i = j in the variable air and equal to 

- 1  if i :#j; and Q is defined by the relationship 

Q =  6~j ~. Air + ( 1 -  6ir) ~_~ Air 
i,j a~ l , i ~ j  i = j ¢  1 

\ 
in which 6jr is Kronecker's delta. 

The previous expression for the theoretical area 
enables, according to the experimental area, the 
variation interval of the number of bonds between 
the elements of a certain pair to be found, for 
each coordination hypothesis. This fact is useful 
when choosing the best coordination for the ele- 
ments which usually make up compounds with 
different coordinations. 

2.2. Relative coordination numbers 

The relative coordination numbers, nit, of the 
different pairs of elements of a compound, are a 
set of parameters useful in postulating the short- 
range order of a glassy solid. These parameters, 
which represent the average number of j-type 
atoms surrounding an i-type atom, can be related 
to the coordination, N, attributed to a certain 
element; bearing in mind the restrictions imposed 
by the intrinsically positive nature of nit , it is 
possible to choose an appropriate N. 

When postulating the absence of bonds between 
certain types of element, the corresponding nir'S 
are zero. As it is always possible to assign the 
subscript 1 to one of these types, considering the 
hypothesis mentioned above to the effect that the 
average coordination numbers of this element 
with all the elements, k, bonded to it, are propor- 
tional to their respective percentage concentra- 
tions, the following expressions are obtained: 

n l k  = - -  , n k l  

Ea'  
k 

a ; U  
' 

k 

which depend on the coordination attributed to 
element A. Bearing in mind that the relative 
coordination numbers are given by nij = aij/a I, 
expressions can be deduced for the nij (i,j 4= 1) 
enabling the short-range order of the solid to be 
hypothesized. 

From Eq. (6), Vfizquez et al. [9] deduced the 
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following expressions for the coordination num- 
bers nij ( i , j  ~ 1) as functions of the number of a~j 
bonds: 

r 
n22 = a + 7(1 - 6ij) + 1(/3 - 6(1 - 6 i )  ) Y'.a'~ 

L k 

] (z I-' +a'l( ' '2)IN 8 i j p a  3 - -  qa 
k t 

+ P a  } a ' f  l I] ' 

~ _ l n  + (1 - 3 6 i ) a i j  a 2 33 

{[ ( )_l] 
= y - 6 ~_, a'~ + a' 1 pa' 3 N a' k 

k 

× (1 - 6ij) - (1 -36 i )a i j}a '3  -1 (8) 

condensing, by 6ij, the two possible expressions 
for each of the coordination numbers deduced. 
The fact that these numbers must be positive or 
zero makes it possible to find the variation of the 
number of bonds, aij, for each N that is chosen. 
The intersection of this interval with the interval 
deduced from the experimental area, is useful for 
choosing an N which best agrees with the struc- 
tural information supplied by the RDF, when 
postulating the local order of the material. 

3. Application to practical cases 

The method described in the literature [9], for 
determining the parameters enabling postulation 
of the short-range order of an amorphous solid, 
was applied to a relatively wide set of glassy alloys 
for which experimental data are found in the 
literature. Different structural hypotheses were 
used and the theoretical results obtained agree 
with the experimental data mentioned above, 
confirming the reliability of this theoretical 
method. This work shows the theoretical analysis 

of five alloys chosen from the set considered; 
their experimental values are shown in Table 1. 
The constituent elements of each alloy were given 
the subscripts 1, 2 and 3 in the order in which 
they appear in the alloy. The coordination hy- 
potheses used for obtaining the parameters which 
define the possible local order are shown in Table 
2, C~ (i = 2,3) represents the coordination of ele- 
ment i in the compound. The existence of bonds 
between all pairs of elements in all alloys was 
postulated, except in M2, where the absence of 
A1-AI bonds was assumed [13]. 

Bearing in mind the structural hypotheses men- 
tioned and using the theoretical expressions of 
the above-mentioned parameters [9], 

ce = C 2 a '  2 - C 3 a'  3 - C 1 [3,[3 = a'l ( a' 3 - a'z ) / ~ a'i , y 
i ~ l  

= C3a' 3 + C l a , a  = a ' l a ' 3 / ~ a ' i ,  
i ~ j  

the values shown in Table 3 were calculated, 
corresponding to parameters that depend on the 
specific characteristics of each alloy and on the 
coordination variations of its elements. Table 4 

Table 1 
RDF characteristics of the analyzed alloys 

Alloy First peak Area Refs. 

a (A) b (,~) (atoms) 

As0.20 Se0.30Te0.50 (M1) 2.05 2.90 2.10 [14] 
Al0.1oAS0.20Te0.70 (M2) 2.25 3.05 2.04 [15] 
Ge0.20 Bio.06 Se0.74 (M3) 2.00 3.05 2.62 [16] 
Ago.04 As0.3s Se0.ss (M4) 2.01 2.81 2.60 [17] 
Cuo.20 As0.35Te0.45 (M5) 2.20 2.95 3.21 [18] 

Table 2 
Coordination hypotheses 

Alloy N C 1 C 2 C 3 C '2 C '3 

M1 4 3 2 2 < 2  < 2  
M2 4 3 3 2 > 3  > 2  
M3 4 4 3 2 3 2 
M4 4 1 3 2 > 3  > 2  
M5 4 1 3 2 > 3  > 2  
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Table 3 
Parameters related to the coordination hypotheses 

Alloy a /3 y 8 

M1 - 5 5  5 137.5 12.5 
M2 - 190/3 - 50 /9  350/3 - 70 /9  
M3 - 130 0 148 0 
M4 - 7 / 6  - 5 / 6  1363/12 - 29/12 
M5 17.50 - 2.50 78.75 - 11.25 

Table 4 
Average bond lengths for each alloy 

Pair rii (/~) Reference 

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 

1-1 2.49 2.86 2.52 2.68 2.58 [19] [22] [26] [20] [29] 
1-2 2.38 2.43 2.68 2.55 2.60 [20] [23] [20] [28] [30] 
1-3 2.62 2.53 2.37 2.50 2.64 [13] [20] [27] [20] [31] 
2-2  2.34 2.49 2.92 2.49 2.49 [20] [19] [20] [19] [19] 
2-3  2.54 2.68 2.62 2.38 2.62 [20] [24] [20] [20] [13] 
3-3  2.71 2.83 2.34 2.34 2.71 [21] [25] [20] [20] [21] 

shows the average bond lengths used for calculat- 
ing the parameters Aij, shown in Table 5, together 
with the h parameter. 

Table 5 

Values of the parameters Aii and h obtained for s m = 12 ~,-l  

Alloy Aij h 

1-1 1-2 1-3 2-2  2-3 3-3 

MI 0.8284 0.9135 1.6232 0.9929 1.4400 2.6731 21.9112 
M2 0.1097 0.2976 0.5099 0.8381 1.3768 2.3253 -10.6937 
M3 1.1255 3.3849 1.3022 8.8966 3.3136 1.4356 74.0821 
M4 2.9856 2.2810 2.3198 1.4744 1.5164 1.5673 12.3192 
M5 0.7886 0.9106 1.4979 1.0460 1.7068 2.8178 14.2346 

Using Eq. (7) and the set of parameters ob- 
tained, the theoretical expressions of the area 
shown in Table 6 were deduced. These expres- 
sions, together with the experimental areas 
(Table 1) with an error of +0.1 atoms, made it 
possible to determine the variation intervals for 
aij (i , j  4= 1), shown in Table 6. The quoted error 
has been evaluated bearing in mind the inherent 
errors with the determination of the limits of the 
RDF peak and analyzing the propagated error in 
the numerical integration used for the evaluation 
of the experimental area. Eq. (8) supplies the 
relative coordination numbers, which, due to their 
intrinsically positive values, define the new limits 

Table 6 
Theoretical results obtained for the different alloys 

Alloy Theoretical area Coordination numbers 
nij, L j ~  1 

Variation intervals for parameter aij,i,j 4:1 

Defined by the Defined by limits Intersection 
nii parameters of error of the of intervals 

experimental area 

M1 1.9410 + 10 2a33 n22 = ( -  19 + 2a33)/30 
n23 = (47.5 - 2a33)/30 
n33 = 2a33/25 

M2 2.2473 - 2.6 × 10- 3a33 n22 = (53.33 - a23)/20 

n23 = a23/20 
n33 = (116.66 - a23)/70 

M3 0.7677 + 47.2 X 10 3a33 n22=-12.6+a33/3  
n23 = 14.8 - a33/3 
n33 = a33/37 

M4 2.6511 + 1.1 x 10-4a33 n22=(- l .3+2a33) /38  
n23 = (113.97 - 2a33)/38 
n33 = a33/29 

M5 3.1017 + 5.7 x 10- 3a33 n22 = (15.5 + 2a33)/35 
n23 = (87.75 - 2a33)/35 
n33 = 2a33/45 

9.5 < a33 ~< 23.75 

0 _< a23 _< 53.33 

37.8 _< a33 < 44.4 

0.65 _< a33 ~< 56.99 

0 < a33 _< 43.88 

5.9 < a33 < 25.9 

41.27 < a23 _< 118.19 

37.13 < a33 < 41.36 

0 _< a33 ~< 444.55 

1.46 _< a33 < 36.54 

9.5 _< a33 < 23.75 

41.27 < a23 < 53.33 

37.8 _< a33 < 41.36 

0.65 ~< a33 ~< 56.99 

1.46 < a33 < 36.54 
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Fig. 2. Area of the first RDF peak vs. the number of ai) bonds (i, j :~ 1) for alloys M1, M2, and M5. 

for  the  magn i tude  aq ,  shown in Tab le  6, t o g e t h e r  
wi th  the i r  in te rsec t ions  wi th  the in tervals  cor re -  
spond ing  to the  marg in  of  e r r o r  o f  the  expe r imen-  
tal  area.  

To  i l lus t ra te  the  theore t i ca l  ca lcula t ions ,  Fig. 2 
shows the theore t i ca l  a reas  o b t a i n e d  vs. the  num-  
bers  of  aq bonds  (i ,  j ~ 1) for  th ree  o f  the  alloys 
s tudied.  Fig. 2 shows the intervals  in which  the 
theo re t i ca l  a reas  a re  s imul t aneous ly  c o m p a t i b l e  
wi th  the  expe r imen t a l  a rea  and  the  co r r e spond ing  
c o o r d i n a t i o n  numbers .  

4. Conc lus ions  

This theoretical method enables different 
structural hypotheses to be tested in relation to 
the coordination numbers or the absence of some 
types of bonds, since the expressions for the rela- 
tive coordination numbers and for the area under 
the first RDF peak depend on these hypotheses. 
On the other hand, when deducing this area, 
polynomial functions were used which best fitted 
the products of the atomic factors in those cases 
in which said magnitudes differ from the approxi- 
mate values, ZiZj/(EixiZi)2; this fact is of great 
in te res t  when  accura te ly  eva lua t ing  the  average  
n u m b e r  of  first ne ighbours  in a glassy alloy. 

Because  of  the  p r o c e d u r e  used,  it is poss ib le  to 
pos tu l a t e  cer ta in  s t ruc tura l  p r o p e r t i e s  and  to ob-  
ta in  the  average  theore t i ca l  c o o r d i n a t i o n  o f  a toms  
in a sol id  f rom them.  If  the  d i f fe rence  is wi th in  
the  expe r imen t a l  er ror ,  we can  assume tha t  the  
hypo theses  descr ibes  the  mos t  p r o b a b l e  local  or-  
d e r  o f  the  mater ia l .  
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