
Nonlinearity10 (1997) 1739–1754. Printed in the UK PII: S0951-7715(97)80917-6

Finite-time aggregation into a single point in a
reaction–diffusion system

M A Herrero†, E Medina‡ and J J L Veĺazquez†
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de Madrid, 28040 Madrid, Spain
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Abstract. We consider the following system:

(S)

{
ut = 1u− χ∇(u∇v) χ > 0

1v = 1− u
which has been used as a model for various phenomena, including motion of species by
chemotaxis and equilibrium of self-attracting clusters. We show that, in space dimensionN = 3,
(S) possess radial solutions that blow-up in a finite time. The asymptotic behaviour of such
solutions is analysed in detail. In particular, we obtain that the profile of any such solution
consists of an imploding, smoothed-out shock wave that collapses into a Dirac mass when the
singularity is formed. The differences between this type of behaviour and that known to occur
for blowing-up solutions of (S) in the caseN = 2 are also discussed.

AMS classification scheme numbers: 35B55, 35B40, 35K57, 93B05

1. Introduction and description of results

This paper is concerned with the following reaction-diffusion system:

ut = 1u− χ∇(u∇v) χ > 0 (1.1a)

1v = 1− u. (1.1b)

Equations (1.1) are obtained from the more general system consisting of (1.1a) and

vt = D1v + au− bv, (1.2)

wherea, b andD are positive constants, when a suitable rescaling is performed and the
assumptionD � 1 is made (cf [6] for details). It is easy to see that the second term on the
right in (1.1a) induces solutionsu(x, t) to move towards the origin with a velocity that is
proportional to∇v. As a matter of fact, system (1.1) in two space dimensions has been used
as a simplified model to describe chemotaxis (cf for instance [3, 7, 11]). This last term refers
to the motion of organisms towards higher concentrations of a chemical that they themselves
secrete, under the assumption that the motion velocity of the species is proportional to the
gradient of some function (in our case, linear) of the chemical concentrationv(x, t). When
the space dimension isN = 3, (1.1) has also been considered as a model of stellar dynamics
in the limit of dominant friction terms (see [16, 17]).
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A question that naturally arises is that of ascertaining to what extent do solutions of
(1.1) (resp of (1.1a), (1.2)) exhibit the behaviours to be expected in the situations they are
supposed to model. For instance, in the biology-motivated literature, a feature that has
deserved considerable interest is chemotactic collapse. This term often refers to the spatial
shrinking of the total population so as to concentrate in a single point. In mathematical
terms, this can be described by the fact thatu(x, t) converges to a Dirac mass in a finite
time. This in turn may be considered as a particular case of blow-up. Actually, it is said
that u(x, t) blows up at, sayx = x0 and t = T < +∞, if there exist sequences{xn} and
{tn} such that limn→∞ xn = x0, limn→∞ tn = T and limn→∞ u(xn, tn) = +∞. The main
result in this paper is as follows.

Consider system (1.1) in space dimensionN = 3. Then, for any T > 0 and any
constantC > 0, there exists a radial solution(u(r, t), v(r, t)) of (1,1) that is smooth for all
times 0< t < T , blows up atr = 0, t = T , and is such that:∫

|x|6r
u(s, T )ds → C asr → 0. (1.3)

Concerning the significance of our result, a few remarks are in order.
(1) Blow-up is an interesting fact in the theory of reaction-diffusion systems, and as

such it has spawned a large literature. It has to be pointed out, however, that describing in
detail the nature of the unfolding singularities is in general much more delicate that merely
showing that singularities can actually occur. As a matter of fact, an acccurate description of
blow-up mechanisms is so far available only for a limited number of simple scalar equations
(cf [2, 5, 13–15]) and systems (see for instance [1, 8–10]).

(2) We shall provide here a detailed description of the structure of the blowing-up
solutions referred to above by means of asymptotic methods. To begin with, they are not
of a self-similar nature. Actually, we shall describe a singularity mechanism that yields
concentration of mass in a manner which is completely unrelated to the self-similar scales.
Roughly speaking, our solutionu(r, t) will be shown to consist of an imploding, smoothed-
out shock wave which moves towards the origin. Ast → T , the bulk of such wave is
concentrated at distances 0((T − t) 1

3 ) from the origin, has a width 0((T − t) 2
3 ), and at its

peak it reaches a height of order 0((T − t)− 4
3 ) (cf figure 1.1).

As a matter of fact, the internal structure ofu(r, t) will be described in detail in section 3.
In particular we shall show that, when written in suitable rescaled variables,u(r, t) can be

Figure 1.1. The profile ofu(r, t).
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Figure 1.2. Chemotactic collapse in two space
dimensions.

represented near the unfolding peak by means of a slowly moving travelling wave to a
Burgers-type equation.

(3) A question that naturally arises is that of the influence of the space dimension in
the manner of blow-up for (1.1). In [8] it was shown that whenN = 2, (1.1) has radial
solutions such thatu(r, t) develops a Dirac-delta-type singularity at the origin in a finite
time. However, the casesN = 2 andN = 3 display major differences. For instance, when
N = 2, the solutions obtained in [8] are such thatu(r, t) approaches (in rescaled variables)
to the functionū(r) = 8(χ(1+ r2)2)−1 in a narrow layer around the origin ast → T (see
figure 1.2).

It is to be noticed that, together with̄v(r) = − 2
χ

log(1+ r2), ū is an explicit solution
of the elliptic system:

1u− χ∇(u∇v) = 0,

1v + u = 0,

which corresponds to the stationary version of (1.1), once the constant term−1 (that is
irrelevant near blow-up) is discarded there. We point out that the emergence of a stationary
solution as a rescaled blow-up profile is reminiscent of similar situations already observed
in singularity formation in geometrical problems, as for instance minimal surface theory
(cf [15]) and motion of surfaces by mean curvature (cf for instance [2]). Incidentally, the
blow-up pattern described in [8], while not self-similar, actually takes places in scales that
are not far from the self-similar ones (see for instance the expression for the inner layer
R(t) in figure 1.2). No such consideration applies to the solutions discussed here, where
blow-up scales are quite different from the self-similar ones.

There is yet another difference between the casesN = 2 andN = 3 that is worth to be
stressed. WhenN = 2, there is a mass threshold for chemotactic collapse that seems to be
absent whenN = 3. More precisely, if (1.1) is considered in a ballBR = {x ∈ R2 : |x| < R}
with homogeneous Neumann conditions, it is shown in [8] that solutions concentrating into
a Dirac mass at the origin exist if1

πR2

∫
BR
u(x, 0) dx = 1

πR2

∫
BR
u(x, t)dx > 8

χ
. Such a

condition is known to be necessary for blow-up to occur in two dimensions (cf [11]). No
such restriction appears whenN = 3, since constantC in (1.3) is arbitrary.
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This paper is organized as follows. A heuristic motivation of the blow-up mechanism
to be obtained here is provided in section 2. The detailed structure of our solutions will
then be given in section 3. Section 4 contains a discussion of the stability of such solutions.
Finally, section 5 gives some concluding remarks.

2. A heuristic motivation

There is a simple, intuitive explanation of the way in which the scales in our collapse
mechanism develop, that we describe here for convenience of the reader. Let us consider
radial solutions of (1.1). On dispensing with the constant term(−1) there (which will be
negligible with respect tou near blow-up), we may write the corresponding system in the
form:

ut = urr + 2ur
r
− χ

r2
(r2uvr)r , (2.1a)

vrr + 2vr
r
= −u. (2.1b)

The solutions to be constructed here will blow up att = T <∞ in such a way that the
massM of u(r, t) will be concentrated, ast → T , in a small layer of widthδ(t), located
at a distanceR(t) from the origin, whereδ(t) andR(t) are such that:

R(t)→ 0 ast → T δ(t)� R(t) when t → T . (2.2)

Let us denote byh(t) the maximum height ofu(r, t) (see figure 2.1). The condition of
mass conservation foru(r, t) then gives:

4πR2(t)δ(t)h(t) ∼ M = O(1). (2.3)

In view of (2.2), we readily see that, fort ∼ T , system (2.1) becomes asymptotically
equivalent to:

ut = urr − χ(uvr)r , (2.4a)

vrr = −u. (2.4b)

Indeed, one has for instance thatur
r
= O( u

δR(t)
) andurr = O( u

δ2 ), so that ur
r
� urr as

t → T . It then turns out that the structure ofu(r, t) will be locally one-dimensional near
r = R(t).

As a next step, we shall consider travelling wave solutions of (2.4) of the form:

u(r, t) = φ(ξ) v(r, t) = ψ(ξ) whereξ = r − ct.

Figure 2.1. The form of the sought-for solutions.
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Assuming thatφ(ξ) andψ ′(ξ) decrease to zero asξ → ±∞, we readily see that, if the
wavefront is to be located atr = R(t), then the wave speedc should satisfy the Rankine–
Hugoniot-type condition:

c[ψ ′]R(t) = [(ψ ′)2]R(t), (2.5)

where [ψ ′]R(t) = lim x→R(t)
x>R(t)

(ψ ′(x))− lim x→R(t)
x<R(t)

(ψ ′(x)). Our sought-for solutions will have

locally a structure described by such a type of waves with variable speedc = R′(t) satisfying
condition (2.5), where the jump ofψ ′ = vr at r = R(t) will be obtained from conditions:

vr(R(t)
+, t) = − M

4πR2(t)
, (2.6a)

vr(R(t)
−, t) = 0, (2.6b)

that follow from (2.4b) by classical potential theory. Putting together (2.5) and (2.6) we
therefore obtain:

Ṙ(t) = − M

4πR2(t)
for t ∼ T ,

whence:

R(t) ∼ C(T − t) 1
3 for someC = C(M) > 0 ast → T . (2.7)

On rescalingu with h(t) andr with δ(t), in order to make all terms in (2.4) of same order
of magnitude, we also derive that:

h(t)δ2(t) ∼ 1, (2.8)

and from (2.8) and (2.3) we finally obtain that:

h(t) = (T − t)− 4
3 δ(t) = (T − t) 2

3 . (2.9)

3. Blowing-up solutions whenN = 3

3.1. Preliminaries

In this section we shall consider radial solutions of (1.1) in three space dimensions. Namely,
we shall deal with functions(u(r, t), v(r, t)) such that:

ut = urr + 2ur
r
− χ

r2
(r2uvr)r , (3.1)

0= vrr + 2vr
r
+ u− 1. (3.2)

We next define an auxiliary mass function given by:

M(r, t) =
∫
|x|6r

(u− 1) dx = 4π
∫ r

0
(u− 1)ρ2 dρ. (3.3)

A routine check reveals that system (3.1), (3.2) can be transformed into a single equation
for M(r, t), namely:

Mt = Mrr − 2Mr

r
+ χM

(
Mr

4πr2
+ 1

)
. (3.4)

We next introduce rescaled variables as follows

y = r(T − t)− 1
2 τ = − log(T − t),

M(r, t) = (T − t) 1
2φ(y, τ ).

(3.5)
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HereT > 0 is fixed, but otherwise arbitrary. In terms ofφ(y, τ ), equation (3.4) reads

8τ = 8yy −
(

2

y
+ y

2

)
8y + 8

2
+ χ8

(
8y

4πy2
+ e−τ

)
. (3.6)

As a further simplification, we shall drop the last term on the right in (3.6), which later
will be shown to be negligible near blow-up. We are thus led to analysing the following
equation:

8τ = 8yy −
(

2

y
+ y

2

)
8y + 8

2
+ χ88y

4πy2
. (3.7)

Let us now set:

8(y, τ) = y3G(y, τ). (3.8)

ThenG(y, τ) solves:

Gτ = Gyy +
(

4

y
− y

2

)
Gy −G+ χG

4π
(3G+ yGy). (3.9)

We shall look for solutions of (3.9) whose hyperbolic part has a shock aty = R(τ), which
is smoothed out by the effect of the diffusive term there. This motivates our rescaling of
the space coordinate by settingξ = y

R(τ)
. Equation (3.9) then transforms into:

Gτ = 1

R(τ)2

(
Gξξ + 4

ξ
Gξ

)
+
(
Ṙ(τ )

R(τ)
− 1

2
+ χG

4π

)
ξGξ +

(
3χG2

4π
−G

)
. (3.10)

In (3.10) we want to haveR(τ)→∞ asτ →∞, so that forτ � 1 (i.e. near the blow-up
time T ) the dominant terms will correspond to the hyperbolic equation:

Gτ =
(
Ṙ(τ )

R(τ)
− 1

2
+ χG

4π

)
ξGξ +

(
3χG2

4π
−G

)
. (3.11)

The actual forms of equations (3.10) and (3.11) clearly depend on the choice of function
R(τ). However, equations corresponding to different values ofR(τ) are all equivalent
under suitable rescaling. For instance, for givenR1(τ ) andR2(τ ), settingξ1 = y

R1(τ )
and

ξ2 = y

R2(τ )
allows us to defineξ1 = ξ1(ξ2) or ξ2 = ξ2(ξ1), so that one can readily pass from

one form of equations (3.10), (3.11) to another. A choice which is particularly convenient
corresponds to setting:

R(τ) = e
τ
6 , (3.12)

in which case (3.10) and (3.11) read respectively as follows

Gτ = e−
τ
3

(
Gξξ + 4

ξ
Gξ

)
++

(
χG

4π
− 1

3

)
(ξGξ + 3G), (3.13)

Gτ =
(
χG

4π
− 1

3

)
(ξGξ + 3G) =

(
ξ

(
χG2

8π
− G

3

))
ξ

+
(

5χG

8π
− 2

3

)
G. (3.14)

Note that, if a solution of (3.14) has a discontinuity atξ = s(τ ), the classical Rankine–
Hugoniot condition will read as follows

− ṡ(τ )[G]s(τ ) =
[(
χG2

8π
− G

3

)]
s(τ )

, (3.15)
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Figure 3.1. The rescaled asymptotic blow-up pattern.

Figure 3.2. Drawing the characteristic lines of (3.14).

where, as usual, [f (ξ, τ )]s(τ ) = lim ξ→s(τ )
ξ>s(τ)

(f (ξ, τ )) − lim ξ→s(τ )
ξ<s(τ)

(f (ξ, τ )). If we now

consider stationary solutions of (3.14) having a (stationary) shock atξ = ξ0, it follows
from (3.14) and (3.15) that such solutions are of the form:

Ḡ(ξ) = K

ξ3
for ξ > ξ0,

Ḡ(ξ) = 0 for ξ < ξ0,

with K = 8π

3χ
ξ3

0 .

(3.16)

The functions given in (3.16) and displayed in figure 3.1 will play a crucial role in our
approach, since they will correspond to the asymptotic blow-up patterns that the solutions
under consideration will approach to asτ →∞. For definiteness, we shall assume in the
sequelξ0 = 1 in (3.16).

3.2. Asymptotics away from the shocks

A first step towards describing the sought-for asymptotics consists of examining the
behaviour of our solutions around the pointx̄1 whereḠ(x̄1) = 4π

3χ . This region is indeed
important, since the hyperbolic part in (3.13) vanishes atξ = x̄1, and diffusive terms become
important therein. Notice that the characteristic curves of equation (3.14) have the form
indicated in figure 3.2.

It is then readily seen that the values of the solutions of (3.14) are propagated along
characteristic lines that emanate fromξ = x̄1. Analysing the behaviour of solutions of
(3.13) nearξ = x̄1 is then crucial to describe the asymptotics ofG(ξ, τ ) away from the
shocks. To this end, we introduce a new space variableλ given by:

λ = (ξ − x̄1)e
τ
6 , (3.17)
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and then linearize around̄G by setting:

ψ(λ, τ) = G(ξ, τ )− 8π

3χξ3
= G(ξ, τ )− 4π

3χ

(
x̄1

ξ

)3

whereψ(λ, τ)→ 0 asτ →∞ when |λ| = O(1). (3.18)

Plugging (3.18) into (3.13), we obtain the following equation forψ valid in regions where
λ = O(1):

ψτ = ψλλ − 7
6λψλ + (lower-order terms). (3.19)

As τ →∞, the dominant part in (3.19) is the linear equation:

ψτ = ψλλ − 7
6λψλ, (3.20)

whose general solution can be obtained by separation of variables method to give:

ψ(λ, τ) =
∞∑
0

αke
− 7kτ

6 Lk(λ), (3.21)

where the{αk} are suitable real coefficients, andLk(r) = Hk(
√

6
7r), where fork = 1, 2, . . .

Hk(r) is the standardkth-Hermite polynomial. Since we are assuming thatψ(λ, τ)→ 0 as
τ →∞ when |λ| = O(1), we generically have that, to the lower order:

ψ(λ, τ) ∼ α1λe−
7
6 τ asτ →∞,

that in the original variables reads:

G(ξ, τ ) = Ḡ(ξ)+ α1e−τ (ξ − x̄1)+ · · · asξ → x̄1. (3.22)

On the other hand, as we move away fromx̄1, we expect the following expansion to hold
for solutions of (3.13):

G(ξ, τ ) = Ḡ(ξ)+ e−τG1(ξ)+ · · · . (3.23)

Substituting (3.23) into (3.13) shows thatG1(ξ) has to solve the ODE:

G1+
(
χḠ

4π
− 1

3

)
(ξG′1+ 3G1) = 0, (3.24a)

whereas matching with (3.22) requires:

G1(ξ) ∼ α1(ξ − x̄1) asξ → x̄1. (3.24b)

It is readily seen that the solution of (3.24) is given by:

G1(ξ) = α1

6

(
1− 2

ξ3

)
,

whence the expansion away from the shock that matches with (3.22) forξ ∼ x̄1 is given
by:

G(ξ, τ ) = 8π

3χξ3
+ α1

6

(
1− 2

ξ3

)
e−τ + · · · , (3.25)

where constantα1 is not fixed by this analysis.
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3.3. Matching with the region around the shock

We continue our study by describing the nature of the diffusive layers arising from the term
e−

τ
3Gξξ in (3.13). To this end, we define an inner variable given by:

η = (ξ − 1)e
τ
3 , (3.26)

so that (3.13) is now rewritten in the form:

e−
τ
3Gτ = Gηη +

(
χG

4π
− 1

3

)
Gη + e−

τ
3

(
4Gη(1+ ηe−

τ
3 )−1

+
(
χG

4π
− 1

3

)
(ηGη + 3G)− ηGη

3

)
. (3.27)

It is then natural to expect that the dynamics nearξ = 1 will be asymptotically of a Burgers-
type nature. More precisely, for|η| = O(1) andτ � 1, we expectG(ξ, τ ) to behave as a
solution of:

G′′ +
(
χG

4π
− 1

3

)
G′ = 0 for −∞ < η <∞, τ > 0, (3.28a)

with boundary conditions:

G(η)→ Ll ≡ Ḡ(1−) asη→−∞, (3.28b)

G(η)→ Lr ≡ Ḡ(1+) asη→∞. (3.28c)

A quick check shows that the solution of (3.28) which has a jump of height8π
3χ at η = 0 is

given by:

G∗(η) = Lr + Lle− χ

8π (Lr−Ll)(η−η0)

1+ e−
χ

8π (Lr−Ll)(η−η0)
, (3.29a)

where:

Lr + Ll = 8π

3χ
. (3.29b)

andη0 is a free parameter. We shall denote byG0(η) the particular case of (3.29) obtained
by settingLl = 0 there, i.e.

G0(η) = 8π

3χ
(1+ e−

1
3 (η−η0))−1. (3.30)

To proceed further, we shall try on (3.27) an expansion of the type:

G(η, τ) = G0(η)+ e−
τ
3H1(η)+ · · · . (3.31)

A routine computation reveals thatH satisfies:

H ′′1 +
(
χG0

4π
− 1

3

)
H ′1+

χ

4π
G′0H1 = −

(
4G′0+ 3

(
χG0

4π
− 1

3

)
G0+ ηG′0

(
χG0

4π
− 2

3

))
= −

(
4G′0+ 3

(
χG0

4π
− 1

3

)
G0+ (η − η0)G

′
0

(
χG0

4π
− 2

3

))
−η0G

′
0

(
χG0

4π
− 1

3

)
≡ F1(η − η0)+ η0F2(η − η0). (3.32)

Equation (3.32) is a non-homogeneous, second-order linear ODE. The corresponding
homogeneous equation:

H ′′1 +
(
χG0

4π
− 1

3

)
H ′1+

χG′0
4π

H1 = 0, (3.33)
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has two independent solutions,H11(η) andH12(η), such that:

H11(η)→ 1 whenη→∞ H11(η)→−1 whenη→−∞, (3.34a)

and:

H12(η)→ e−
(η−η0)

3 whenη→∞,
H12(η)→ e

(η−η0)
3 whenη→−∞.

(3.34b)

To check (3.34), we just remark that (3.33) has been obtained by linearization aroundG0(η)

in equation (3.28a). Since:

G∗(η, a, b) = G0(η)+ ∂G
∗

∂a

(
η; 8π

3χ
, η0

)(
a − 8π

3χ

)
+∂G

∗

∂b

(
η; 8π

3χ
η0

)
(b − η0)+ · · ·

it turns out thatH11 ≡ ∂G∗
∂a
(η; 8π

3χ , η0) andH12 ≡ − 9χ
8π

∂G∗
∂b
(η; 8π

3χ , η0) are two independent
solutions of (3.33), whereupon (3.34) follows by a direct computation.

Once the homogeneous equation (3.33) has been discussed, we proceed to analyse (3.32)
by means of the classical variation of constant formula. Let us set:

U1(η) ≡ U1(η; η0) = U11(η − η0)+ η0U12(η − η0) (3.35)

whereU11 (resp. U12) is a particular solution of (3.32) withF2 ≡ 0 (resp. F1 ≡ 0),
satisfying the initial conditionsU1(0) = U ′1(0) = 0. One then has that:

U11(η − η0) ∼
−

8π

χ
(η − η0)+ 01 whenη→∞,

γ1 whenη→−∞,
(3.36a)

and:

U12(η − η0) ∼
{
02 whenη→∞,

γ2 whenη→−∞,
(3.36b)

where constants01, γ1, 02 and γ2 are fixed in terms ofG0(η). Therefore, the general
solution of (3.32) is such that:

H1(η; η0) ∼ −8π

χ
(η − η0)+ 01+ 02η0+O(e−

η

3 ) asη→∞ (3.37a)

H1(η; η0) ∼ γ1+ γ2η0+O(e
η

3 ) asη→−∞. (3.37b)

Putting together (3.31) and (3.36), we have obtained the following inner expansion for
G(η, τ):

G(η, τ) ∼ 8π

3χ
+ e−

τ
3

(
01+ 02η0− 8π

χ
(η − η0)+O(e−

η

3 )

)
asη→∞, (3.38a)

G(η, τ) ∼ e−
τ
3 (γ1+ γ2η0+O(e

η

3 )) asη→−∞. (3.38b)

As an outer expansion, we now use (3.25), which when rewritten in terms ofη = (ξ −1)e
τ
3

gives:

G(η, τ) ∼ 8π

3χ
(1+ ηe−

τ
3 )−3+ α+

6

(
1− 2(1+ ηe−

τ
3 )−3

)
e−τ + · · ·

∼ 8π

3χ
− 8π

χ
ηe−

τ
3 + C0e−

τ
3 + · · · whenη→∞ (3.39a)

G(η, τ) = O(e
η

3 ) whenη→−∞. (3.39b)
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Matching (3.38) and (3.39) yields:

01+ η0

(
02+ 8π

χ

)
= 0, (3.40a)

γ1+ η0γ2 = 0. (3.40b)

4. Discussing the stability of blow-up patterns

Once our blowing-up solutions have been obtained in section 3 by means of matched
asymptotic expansion methods, a question that naturally arises is that of discussing the
stability of these asymptotic behaviours. We shall now describe an argument which strongly
suggests that these profiles are stable, although a fictitious instability appears which is due
to the change of variables (3.5), and is related to the fact that small changes in the initial
data produce generically changes in the corresponding blow-up timeT .

4.1. The hyperbolic problem

To highlight the main points in our reasoning, we first consider the hyperbolic equation
(3.14). We have already seen that functionḠ(ξ) defined in (3.16) is a solution of (3.14).
Let us take now as initial value for (3.14), at some timeτ = τ0� 1, the following function
G(ξ, τ0) ≡ Ḡ0(ξ):

Ḡ0(ξ) =


8π

3χξ3
if ξ > s0,

0 if 0 < ξ < s0,
(4.1)

for some constants0 6= 1. Equation (3.14) has then a solutionG(ξ, τ ) given by:

G(ξ, τ ) =


8π

3χξ3
if ξ > s(τ ),

0 if 0 < ξ < s(τ),

wheres(τ ) satisfies the ODE:

ds

dτ
= 1

3

(
1− 1

s3

)
s, (4.2)

with initial value:

s(τ0) = s0. (4.3)

Note that the points = 1 is unstable for equation (4.2). Actually, ifs0 > 1, thens(τ ) ∼ Ce
τ
3

as τ → ∞ for someC > 0, whereas ifs0 < 1 the corresponding solution of (4.1), (4.2)
blows up in finite time. Recalling (3.5) and the definition ofξ , we see that in the first case
the shock would remain at a distancex of order one of the origin, which means that the
corresponding solution will not blow up for anyt 6 T . Conversely, in the second case
we would have blow-up at some timeT ∗ < T . It is worth noticing that whens0 6= 1 the
shock moves away froms = 1 at an exponential rate. Indeed on settings(τ ) = 1+ δ(τ ),
and assumingδ(τ ) � 1, we may formally linearize in (4.2) to obtain thatδ̇(τ ) = δ(τ ),
whereupon exponential growth follows.

Actually, the instability just described is a consequence of the change of variables (3.5)
rather than an inherent feature of the problem, and it can be eliminated by a suitable change
in the scaling in (3.5) as explained below. Let us denote byT̃ the new blow-up time
corresponding to replacing an initial valuēG(ξ) (which blows up exactly att = T ) by a
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small perturbation of it, given for instance bȳG0(ξ) in (4.1). Bearing in mind (3.5), we
now write:

ỹ = r(T̃ − t)− 1
2 τ̃ = − log(T̃ − t)

M(r, t) = (T̃ − t) 1
2 8̃(ỹ, τ̃ ).

(4.4)

By (3.5) and (4.4), we have that:

8̃(ỹ, τ̃ ) =
(
T − t
T̃ − t

) 1
2

8(y, τ).

Set now:

8̃(ỹ, τ̃ ) = ỹ3G̃(ỹ, τ̃ ) ỹ = e
τ̃
6 ξ̃ .

By assumption,G(ξ, τ0) = Ḡ0(ξ) at τ = τ0� 1. This implies that:

G̃(ξ̃ , τ̃0) = 8π

3χξ̃3
if ξ̃ > s0(1+ 1

3(T̃ − T )eτ0), (4.5a)

G̃(ξ̃ , τ̃0) = 0 if ξ̃ < s0(1+ 1
3(T̃ − T )eτ0), (4.5b)

where we have used the approximation:

ξ̃

ξ
= (eτ−τ̃ ) 1

3 ∼ 1+ 1
3(T̃ − T )eτ . (4.6)

In particular, the choices0(1+ 1
3(T̃ − T )eτ0) = 1 (i.e. T̃ = T + 3e−τ0(s−1

0 − 1)) yields
a stationary solution starting from the data in (4.5). We have thus absorbed the shift in the
shock location by means of a suitable change in the blow-up time. Notice that a stationary
shock atξ̃ = 1 corresponds, in the original variables (3.5), to a shock which initially moves
according to:

ξ = s(τ ) ∼ 1− 1
3(T̃ − T )eτ (4.7)

at least while the nonlinear terms in (4.2) can be assumed to be negligible with respect
to the linear ones there. The behaviour described in (4.7) corresponds to the exponential
instability already mentioned at the beginning of this section.

4.2. Analysis of the complete equation (3.14)

We now proceed to discuss the instability phenomenon just described in the case where
diffusive terms are retained. This will require of an additional analysis, since diffusive
terms are particularly important near the unfolding shocks, and they could therefore have
an effect on the asymptotics in such regions.

More precisely, we want to ascertain what would be the influence of a small perturbation
of the initial profile (and the consequent shift in the shock location) in the matching
procedure explained in section 3.3. To address this question, we shall replace the inner
expansion (3.31) by:

G(η, τ) = G0(η + g(τ))+ e−
τ
3G1(η + g(τ))+ · · · (4.8)

whereG0(η) is given in (3.30), and the phase translationg(τ) will be determined presently.
Substituting (4.8) into (3.27) gives:

ġG′0 = G′′1 +
(
χG0

4π
− 1

3

)
G′1+

χG′0
4π

G14G′0+ η
(
χG0

4π
− 2

3

)
G′0+ 3

(
χG0

4π
− 1

3

)
G0.
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Set nowL(G1) = G′′1+
(
χG0

4π − 1
3

)
G′1+ χG′0

4π G1. The previous equation can then be recast

in the form:

LG1 = ġG′0− η
(
χG0

4π
− 2

3

)
G′0− 4G′0− 3

(
χG0

4π
− 1

3

)
G0

= ġG′0+ g
(
χG0

4π
− 2

3

)
G′0− (η + g)

(
χG0

4π
− 2

3

)
G′0

−3

(
χG0

4π
− 1

3

)
G0− 4G′0 ≡ F1+ F2+ F3+ F4+ F5. (4.9)

We shall look for a solution of (4.9) such that:

G1(g(τ ), τ ) = 4π

3χ
G1(η, τ )→ 0 asη→−∞. (4.10)

For i = 1, 2, 3, 4, 5, let G1i be a solution of (4.9) with right-hand sideFi and satisfying
(4.10). We now claim that, asη→∞:

G11 ∼ 8π

χ
ġ G12 ∼ −g

(
8π

3χ

)
G14 ∼ −8π

χ
(η + g(τ))

G13,G15 ∼ C for some positive constantC.
(4.11)

To check (4.11), we argue as follows. Consider a functionGc(η) that satisfies:

cG′c = G′′c +
(
χGc

4π
− 1

3

)
G′c −∞ < η <∞ (4.12a)

Gc(−∞) = 0 Gc(0) = 4π

3χ
(4.12b)

wherec is a given real number. Clearly, forc = 0 we recover functionG0(η) in (3.30). In
general,Gc(+∞) will depend onc. An integration of (4.12a) gives at once that:

Gc(+∞) ≡ h(c) = 8π

χ

(
c + 1

3

)
.

Suppose now thatc is small, and let us try on (4.12a) an expansion of the typeGc =
G0+ cG̃1+ · · ·. To the first order,G1 will then satisfy

G′0 = G′′1 +
(
χG0

4π
− 1

3

)
G′1+

χG′0
4π

G1 −∞ < η <∞ (4.13a)

G1(−∞) = G1(0) = 0 (4.13b)

and one easily sees thatG̃1(+∞) = ∂h
∂c
= 8π

χ
. Replacingc by ġ, (4.11) readily follows by

recalling thatG0(η) ∼ 8π
3χ asη→∞.

From (4.8) and (4.11), the following modified inner expansion follows whenη � 1:

G(η, τ) ∼ 8π

3χ
+ e−

τ
3

(
8π

χ
ġ − g

(
8π

3χ

)
− 8π

χ
(η + g)+ C

)
= 8π

3χ
+ e−

τ
3

(
8π

χ
ġ − 4

3

8π

χ
g − 8π

χ
η + C

)
. (4.14)

On the other hand, if we now match (4.14) with the outer expansion (3.39a) we obtain:

ġ = 4
3g +O(e−

τ
3 ),

so thatδ(τ ) = g(τ)e− τ
3 satisfies:

δ̇ = δ +O(e−
2τ
3 ). (4.15)
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Integrating (4.15) betweenτ0 andτ1 (τ0 < τ1) now yields:

δ(τ1) = δ(τ0)e
τ1−τ0 + eτ1

∫ τ1

τ0

O(e−
5s
3 ) ds.

Thus, in order to haveδ(τ1) → 0 for τ1 → ∞, it suffices to selectδ(τ0) = O(e−
2τ0

3 )

(compare with (4.7)), which in turn implies:

δ(τ ) ∼ Ce−
2τ
3 for τ →∞.

Note that in (4.15) we recover, for the case of the complete equation (3.13), the instability
previously described in section 4.1 for the simplified hyperbolic equation (3.14).

4.3. Stability of blow-up patterns

We conclude this section by remarking that the previous discussion strongly suggests that
the asymptotic patterns derived in section 3 are stable under small perturbations. This is
due to the fact that in our current analysis there are only two possible sources of instability.
The first of these corresponds to a shift on the shock location when the initial value is
slightly changed, and has been discussed above. The second one corresponds to a change
in the location of the point̄x1 whereḠ(x̄1) = 4π

3χ (see figure 3.1) when such a perturbation
is applied. A quick glance at the picture of characteristics in figure 3.2 reveals that, in order
to determine the values ofG(ξ, τ ) for large times, we only need to know these in a small
neighbourhood ofξ = x̄1. That region has been studied at the beginning of section 3.2,
where it has been shown that the dynamics therein is dominated by equation (3.20). Such
an equation has a neutral eigenvalue, all the others being stable (cf (3.21)). The neutral
eigenvalue is associated to the existence of a continuum set of stationary profiles (3.16),
that depend on the parameterK there. Such an eigenvalue can be cancelled by means of a
change of the constantK in (3.16), which induces a change in the value of the corresponding
point x̄1. Once this cancellation has been performed, only the stable eigenvalues remain in
(3.21), and the structure of characteristic curves of (3.14) yields thatG(ξ, τ ) → Ḡ(ξ) as
τ →∞, away from the shocks.

5. Concluding remarks

We have described a class of radial solutions of the reaction-diffusion system (1.1) that
blow up at the origin in a finite timeT , whereT > 0 is arbitrary. When written in suitable
rescaled variables, the solution profile approaches towards an imploding shock wave (which
for any t < T is smoothed out by the effect of diffusion) as blow-up unfolds. Such a type
of behaviour is of a hydrodynamical type, and is akin to a blow-up mechanism for nonlinear
Fokker–Planck equations which was recently studied by rigorous methods in [4].

We next remark briefly on the way in which the mass is distributed in the solutions
obtained before. In terms of the variables8, y, τ , we have shown that the asymptotic
profiles are of the form:

8(y, τ) ∼ 8π

3χ
e
τ
2 · 1{y>e

τ
6 }

where1{y>e
τ
6 } denotes a function that is equal to one wheny > e

τ
6 , and is zero elsewhere.

As to the local mass function, we then have that:

M(r, t) = e−
τ
28(y, τ) ∼ 8π

3χ
· 1{r>(T−t) 1

3 }. (5.1)
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Recalling (3.3), we obtain a corresponding estimate foru(r, t), namely:

u(r, t) ∼ 1

4πr2

∂M

∂r
∼ 2

3χr2

∂

∂r
(1{r>(T−t) 1

3 })

= 2

3χr2
δ(r − (T − t) 1

3 ). (5.2)

It follows from (5.1) and (5.2) that our solutions will have a mass which is sharply
concentrated at distances of order O((T − t) 1

3 ). On the other hand, our analysis shows that
the region near the unfolding shock has a widthδξ of order δξ = O(e−

τ
3 ) (cf (3.26)). In

terms of the variabler, this gives a widthδr ∼ e−
τ
2R(τ)δξ of order:

δr = O((T − t) 2
3 ).

This shows thatu(r, t) = O((T − t)− 4
3 ) in such region, and in the original variables our

solutions look as indicated in figure 1.1.
Another remark concerns the amount of mass that eventually collapses at the origin.

Suppose that we now takeR(τ) = Ce
τ
6 , C 6= 1, instead of (3.12). The constantK in (3.16)

then remains unchanged, but the corresponding asymptotic formula for the mass now reads:

M(0, t) ∼ 8π

3χ
C3

which can be made arbitrary.
The manner of the blow-up just described is quite different to that analysed in [8] for the

same system whenN = 2. In particular, while a minimal mass is required for blow-up to
occur in two dimensions, no such restriction appears whenN = 3. In both cases, however, a
completely nonlinear analysis had to be performed to compute the blow-up profiles. This is
a natural fact, since these profiles develop near blow-up, and therefore cannot be determined
by means of a weakly nonlinear analysis as that used, for instance, to predict the initiation
of the instability which will eventually lead to the formation of singularities.

A final remark concerns the methods employed in this paper. We have obtained our
solutions by means of matched asymptotic expansions techniques. We followed such
an approach in [9] to show that, whenN = 2, the complete system (1.1a), (1.2) has
solutions exhibiting chemotactic collapse that are quite similar to those obtained in [8] for
the simplified model (1.1). Rigorous proofs of the existence of such solutions were provided
in [10] for the complete system, thus completing the analysis already performed in [8] for
system (1.1). The basic elements in the rigorous proofs in [8, 10] are as follows.

(i) Deriving first the sought-for patterns by asymptotic methods.
(ii) Proving then that, if we start from data whose profiles are close enough to those

obtained in (i), the flow associated to the system will drive solutions towards the desired
blow-up structure as time passes.

The last step above is fulfilled by means of a topological fixed point argument, which
is explained in detail in [8, 10]. We expect that such a proof can also be provided in our
case here (actually, we have considered a closely related situation in [4]). However, we
have chosen to present only the formal argument in this note. We believe that, besides a
considerable simplification in the presentation, this approach enables us to insist on what
we consider to be the main elements of such result.
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