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Abstract 

A procedure has been developed for analyzing the evolution with time of the volume fraction crystallized and for calculating the kinetic 
parameters at non-isothermal reactions in materials involving formation and growth of nuclei. By means of this method, and considering 
the assumptions of extended volume and random nucleation, a general expression of the fraction crystallized has been obtained, as a 
function of time. In the quoted expression one considers that the crystal growth rate is anisotropic. In addition, the particular case of 
isotropic growth rate has been studied, and the obtained equation has been integrated for the important case of nucleation frequency and 
growth rate independent of time, resulting an expression that may be taken as a detailed specific case of the Johnson-Mehl-Avrami 
relation. The kinetic parameters have been deduced, fitting a theoretical function, obtained from the JMA model to the experimental data, 
temperature and volume fraction crystallized. A least-squares method has been used, bearing in mind the fact that, in most non-isothermal 
processes, the reaction rate constant exhibits an Arrhenian temperature dependence. Finally, the theoretical derivations of the kinetic 
parameters have been applied to the experimental data corresponding to a set of glassy alloys, quoted in the literature, thus obtaining mean 
values that agree very satisfactorily with the bibliographical data. This fact shows the reliability of the developed theoretical method. 
© 1997 Elsevier Science S.A. 
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1. Introduction 

The last decades have seen a strong theoretical and 
experimental interest in the application of  isothermal and 
non-isothermal experimental analysis techniques to the 
study of phase transformations. While isothermal ex- 
perimental analysis techniques are in most cases more 
accurate, non-isothermal thermo-analytical techniques have 
several advantages. The rapidity with which non-iso- 
thermal experiments can be performed makes these types 
of  experiments attractive. Non-isothermal experiments can 
be used to extend the temperature range of measurement 
beyond that accessible to isothermal experiments. Many 
phase transformations occur too rapidly to be measured 
under isothermal conditions because of  transients inherent- 
ly associated with the experimental apparatus. Industrial 
processes often depend on the kinetic behaviour of  systems 
undergoing phase transformations under non-isothermal 
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conditions. In this instance an adequate measurement of  
non-isothermal transformation kinetics is desirable. 

The study of crystallization kinetics in glass-forming 
liquids has often been limited by the elaborate nature of  
the experimental procedures which are employed. The 
increasing use of  thermoanalytical techniques such as 
differential thermal analysis (DTA) or differential scanning 
calorimetry (DSC) has, however, offered the promise of  
obtaining useful data with simple methods. 

The utilization of the thermoanalytical techniques de- 
pends in turn on the development of  sound methods for 
analyzing the experimental data. With this objective, a 
large number of  mathematical treatments have been pro- 
posed for analyzing DSC and DTA data [ 1-4]. While all of 
the treatments are based on the formal theory of trans- 
formation kinetics, they differ greatly in their assumptions; 
and in some cases, they lead to contradictory results. It was 
suggested by Henderson [5] in a notable work that many of  
the treatments are based on an incomplete understanding of  
the formal theory of transformation kinetics. 
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The experiments reported in the literature [6,7], indicate 
that the growth rate of crystallites in glass forming liquids 
is not limited (at least in certain glass forming systems) by 
the removal of heat from the crystal-liquid interface. The 
departure in temperature at the interface from that of either 
bulk phase is negligible. In this sense, glass forming 
liquids may provide unique systems for assessing the 
validity of the theoretical models used to describe crystal 
growth. They provide systems in which the temperature of 
the liquid-crystal interface is well defined by the tempera- 
ture of the system, and therefore, the time evolution of the 
crystallization kinetics can meaningfully be measured 
using thermal analysis techniques. Thus, it is not surprising 
that recently DSC and DTA have been examined as 
techniques which are applicable to the study of phase 
transformations involving nucleation and growth, and in 
particular to the crystallization kinetics of glass forming 
liquids [8- t6]. 

In this work a theoretical method has been developed for 
deducing a general expression for the evolution with time 
of the volume fraction crystallized, in terms of the 
nucleation frequency per unit volume and the crystal 
growth rate. In addition, by using the Johnson-Mehl- 
Avrami model and through a least-squares method, theo- 
retical expressions have been obtained for kinetic parame- 
ters of crystallization in differential scanning calorimetry, 
by using non-isothermal techniques. 

2. Theoretical development 

2.1. Deducing the evolution equation of  the volume 
fraction crystallized 

The theoretical basis for interpreting DTA or DSC 
results is provided by the formal classical theory of 
transformation kinetics. This formal theory is largely 
independent of the particular models used in detailed 
descriptions of the mechanisms of transformation, and 
therefore it leads to an expression, which can be consid- 
ered as general, for the equation of evolution of the volume 
fraction crystallized. 

In the development of the formal theory of ~ransforma- 
tion kinetics is usually adopted an operational definition of 
the nucleation frequency per unit volume, I v , which is 
related to the reciprocal of a mean value of the period e" 
(the time in which an individual region is formed). 
Suppose that at time t=e. the untransformed volume is V,, 
and that between times t=e", e"+de" a number of new 
regions are nucleated. This number is IvV ~ dr, and defines 
I v at time z; in order to give statistically significant results, 
the number lvV ~ must be large. As for the crystal growth 
rate, it must be noted that, in general, it is anisotropic, 
which happens if the shape of the growing region stays 
constant. The crystal growth rate in any direction can be 
then represented in terms of the principal growth veloci- 

ties, u i ( i= 1,2,3), in three mutually perpendicular direc- 
tions. In these conditions the uni-dimensional growth in an 
elemental time, dt', can be expressed as u i dr', and this 

growth for a finite time is f tq  dt'. The volume of a region 

b originating at time t=  7 is then 

u, = g !~ i i ui dt' 
r 

(1) 

where g is a geometric factor which depends on the shape 
of the growing crystal. 

In the whole assembly, the number of new regions b 
nucleated in the time interval between 7" and e. + de. is IvV ~ 
dr, as previously mentioned. During the initial stages of 
transformation, when V b <<~Va, the nuclei are widely 
spaced, and the interference of neighbouring nuclei is 
negligible. Under these conditions, the transformed volume 
at time t resulting from regions nucleated between times ~" 
and 7-bde. is dVb=V ~. IvV ~ de.. However, in subsequent 
stages of the process, we must consider the mutual 
interference of regions growing from separate nuclei. 
When two such regions impinge on each other, there are 
several possible consequences. An important possibility is 
that the two regions develop a common interface, over 
which growth ceases, although it continues normally 
elsewhere. This must happen in all solid state transforma- 
tions, and it is the case of the most crystallization 
reactions. 

During the time dr, when IvV ~ dr new transformed 
regions are nucleated, it may be also considered that IvV b 
de" regions would have nucleated in the transformed 
portion of the assembly, had not transformation previously 
occurred there. It is possible to define [17-19] an extended 
volume of transformed material, V~, by the relationship 

dV¢= Vjv (V  . + Vb)de. = V,IvV de. (2) 

where V is the volume of the whole assembly. 
The extended volume differs from the actual volume, V b, 

of transformed material, since some elements of the 
transformed volume are counted twice, others three times, 
and so on, in order to obtain the extended volume. 

The significance of V~ is that it is simply related to the 
kinetic law of growth, which may thus be separated from 
the geometrical problem of impingement. It is possible 
now to find a relation between V~ and V b. Consider any 
small random region, of which a fraction ( I - V b / V )  
remains untransformed at time t. During a further time dt, 
the extended volume will increase by dV¢, and the true 
volume by dV b. Of the new elements of volume which 
make up dV~, a fraction (1-Vb/V) on the average will lie 
in previously untransformed material, and thus contribute 
to dV b, whilst the remainder of dV¢ will be in already 
transformed material. This result clearly follows only if dI~ 
can be treated as a completely random volume element, 
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and it is for this reason that virtual nuclei have to be 
included in the definition of V~. 

Bearing in mind the above arguments based on the 
random nucleation it is possible to write the relation 
between V b and V~ in the form 

Vb 
dVb = (1--- -~)dV¢ = (1-x)dV¢ (3) 

where x=Vb/V is the volume fraction crystallized. Dif- 
ferentiating this expression, substituting the resul( in Eq. 
(3), and relating the resulting equation to Eq. (2), where 
the value for v~ from Eq. (1) has been included, one 
obtains 

1 - x --: g l v  u i dt '  d r .  ( 4 )  
r 

Integrating this equation and taking the inverse function of 
the logarithmic form, results in 

x=l-expl-giIv(l~iizqdt')d¢lo , (5) 

which is the most general expression for the evolution with 
time of the volume fraction crystallized, in terms of the 
nucleation frequency per unit volume, and the crystal 
growth rate. 

When the crystal growth rate is isotropic, lq=U, an 
assumption which is in agreement with the experimental 
eyidence, since in many transformations the reaction 
product grows approximately as spherical nodules, Eq. (5) 
can be written as 

x = l - e x p  - g  I v u d t '  dr  (6) 
0 

where m is a numerical exponent which depends on the 
mechanism of growth and the dimensionality Of the 
crystal. 

For the important case of a crystallization reaction with 
nucleation frequency and crystal growth rate both in- 
dependent of time, Eq. (6) Can be integrated to yield 

x = 1 - exp( - g'Ivu'~t"), (7) 

where n = m +  1 for I v # 0  and g '  is a new shape factor. 
If I v =0,  i.e., when the material already contains nuclei 

but no new nuclei are formed during the thermal process, 
Eq. (2) can be written 

dV~ = v,dN = g u dr' dN (8) 

dN being the number of nuclei in the elemental extended 
volume, and where the value for v,, given in Eq. (1), has 
been included, bearing in mind that the growth rate is 

isotropic. Since there is no nucleation period, r = 0 ,  the 
integral has been evaluated between 0 and t. 

Relating Eq. (8) with dV~ as a function of the volume 
fraction crystallized, and integrating the resulting expres- 
sion, one obtains 

ln(1 - x) = - g" udt' , g" is a constant. (9) 

Eq. (9), may be written in exponential form 

[ ;1 x = l - e x p  - g "  udt' 10) 

and if the growth rate is independent of time, 

x = 1 - exp( - g"u"t 'z) 11 ) 

where n =m, as it happens in the case of a glass containing 
a sufficiently large number of nuclei. 

Eqs. (7) and (11) can be taken as detailed specific cases 
of the Johnson-Mehl-Avrami (JMA) isothermal relation- 
skip 

x = i - exp[ - (Kt)'~]. (12) 

Here K is defined as the effective overall reaction rate 
constant, which is usually assigned an Arrhenian tempera- 
ture dependence 

K = K o exp( -E/RT)  (13) 

where R is the gas constant, K 0 is the frequency factor and 
E is the effective activation energy describing the overall 
crystallization process. By comparing Eq. (7), volume 
fraction crystallized for a quenched glass containing no 
nuclei, with Eq. (12), it is seen that K n is proportional to 
Iv urn. Hence assumption of an Arrhenian temperature 
dependence for K is appropriate when I v and u vary in an 
Arrhenian manner with temperature. 

In general, nucleation frequency and crystal growth rate 
exhibit far from Arrhenius-type behaviour [20]; however, 
for a sufficiently limited temperature range, such as the 
range of crystallization peaks in DTA or DSC experiments, 
both quantities can be considered to exhibit the said 
behaviour [2 I]. 

It is a well-k_nown fact that Eqs. (12) and (13) are used 
as the basis of nearly all treatments of crystallization in 
DTA or DSC experiments, but it must be noted that 
expression Eq. (12) can be applied strictly only in experi- 
ments carried out under isothermal conditions, for which it 
was deduced. However, this expression is often used for 
deducing relationships describing non-isothermal crystalli- 
zation processes, taking the suitable restrictions into ac- 
count. Henderson [5] gives a clear description of the above 
mentioned restrictions governing the use of the Avrami 
formalism to non-isothermal processes. One of the specific 
cases where it is justified to apply the Avrami formalism to 



non-isothermal crystallization, is the 'site saturation' case 
[22,23], that is, when the nucleation process takes place 
early in the transformation and the nucleation rate is zero 
thereafter. 

2.2. Calculating kinetic parameters 

Replacing y with E/RT in the Eq. (16) and substituting 
the resulting expression in the Eq. (15), one obtains 

x =  1 - e x p  - ~ K - f i )  (17) 

The usual analytical methods, proposed in the literature 
for analyzing the crystallization kinetics in glass forming 
liquids, assume that the reaction rate constant can be 
defined by an Arrhenian temperature dependence. In order 
for this assumption to hold, one of the following two sets 
of  conditions should apply: 

(i) The crystal growth rate, u, has an Arrhenian tempera- 
ture dependence; and over the temperature range where the 
thermoanalytical measurements are carried out, the nuclea- 
tion frequency is negligible (i.e., the condition of site 
saturation). 

(ii) Both the crystal growth rate and the nucleation 
frequency have Arrhenian temperature dependences. 

In the present work is assumed the first condition, and 
therefore u may be described in a zero-order approxi- 
mation by 

u ~-- u o exp ( - -EJRT)  (14) 

(15) 

where E o is the effective activation energy for crystal 
growth. 

The analysis of the crystallization kinetics, when non- 
isothermal techniques are used, can be performed from the 
Eq. (10) bearing in mind the above-mentioned assumption 
of an Arrhenian temperature dependence for crystal growth 
rate. Hence the volume fraction crystallized can be ex- 
pressed as 

E x = 1 - exp - g"uo/3-~ exp( - E/RT')dT'  

\ T o  

= 1 - e × p [  - g " . o p - " I ; ]  

(16) 

where E may be written as E~, the activation energy for 
growth solely, and /3=dT/dt is a linear heating rate, 
usually employed in non-isothermal experiments. 

Using the substitution y ' = E / R T '  the integral I~ is 
transformed to the relationship 

Yo 

6' ~ g e " 
I~ = - -  dy '  - ) ,2 R y 

y 

620 where it is assumed that T O << T, so that Y0 can be taken as 
infinity. This assumption is justifiable for any heating 
treatment which begins at a temperature where nucleation 
and crystal growth are negligible, i.e., below Tg (glass 
transition temperature) for most glass-forming systems. 

K being the above-mentioned reaction rate constant with 
an Arrhenius-type temperature dependence. 

Eq. (17) can be used to describe the volume fraction 
crystallized in non-isothermal reactions, taking Henderson 
[5] restrictions into account, specially the 'site saturation' 
case previously quoted. 

In order to obtain the "kinetic parameters the logarithm 
has been taken twice in Eq. (17), yielding 

y = l n [ - l n ( 1 - x ) ] = n  In +lnr--g 7 

--- h(T) (18) 

that establishes a relatively simple relation between a 
function of the volume fraction crystallized and another of  
the temperature. 

In Fig. 1 the representation of Eq. (18) is shown for the 
(GeSe2)6o(GeTe)4o glass quoted in the literature [24], at 
heating rates of  2.5, 5, 10 and 20 K min - t  and kinetic 
parameters: E = 54 960 cal mol -~, n = 2.4 and In K o = 33.4, 
together with plots of  the experimental values. 

The procedure, which is developed in this work, consists 
to calculate the kinetic parameters E, n and K o, fitting the 
theoretical function h(T) to the experimental data T~ and 
y~ = In  I - I n ( 1 - x i ) ]  through a least-squares method, defin- 
ing the function S(E, n, K o) as 

05 y 

0.0 

- 0 . 5  

- 1 . 0  

- 1 . 5  

- 2 . 0  

t 
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Fig. 1. Volume fraction crystallized versus temperature, obtained from Eq. 
(18) for the (GeS%)6o (GeTe)~o glass [24], with E--54 960 cal tool -~, 
n=2.4 and In /(o=33.4, together with the plots of the experimental 
values at heating rates of 2.5(©), 5(.), 10 (V) and 20 (T) Kmin -~. 
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k 

S = 2  [Yi - h(Ti)] a 
i = l  

In T~ - ~- (19) 

expression that, when minimized, supplies the most 
adequate kinetic parameters, k being the number of data 

It should be noted that the expression for the activation 
energy is independent of the heating rate, is in agreement 
with the literature [24], often suggesting that the activation 
energy does not depend on the thermal history of the 
material. 

The theoretical method developed supplies a good 
approximation for the values of the kinetic parameters in 
crystallization reactions, since the method uses all the 

used in the fitting. 
In order to minimize the function S, it is derived Which 

respect to each variable E, n, K o, and equalled to zero the 
partial derivatives 

OS {i=~ [ y i _ n ( i n K o  E 
0 E -  - - f i - + l n T i - - - - ~ i ) ] ) ~ i  = 0 R  

0S={i=~ I 3 ' i - n ( I n - - ~ + l n  Tt-RE-----~i)1} 

( × ln--~- + In T~ - ~- = 0  

experimental data supplied by each exotherm. This fact is 
very useful when analysing the crystallization kinetics in 
alloys studied using differential scanning calorimetry, with 
continuous-heating techniques. 

O S k [  ( K° E 1 ) I  
OK ° - Yl - n In ~ + In T i -- "~- T7 

i = l  

= 0  

a system of linear equations, which has been resolved 
through a equalization method and whose solution gives 
the kinetic parameters of the crystallization reaction:(i) 
The activation energy 

k k 

A ~  lnT i + B ~ Yi + Ck 
i = I  i = I  

E=R k 1 k 
A ~ + D E y i + F k  

' =  i = l  

where A, B, C, D and F are intermediate parameters given 
by the expressions, which appear in the Appendix. It 
should be noted that above-mentioned parameters only 
depend on experimental data such as temperature and 
volume fraction crystallized(ii) The frequency factor 

in K o = in /3  + 

E 
M-~+ N 

as a function of the previously calculated value for 
activation energy and the parameters M and N (see 
Appendix).(iii) The reaction order or kinetic exponent 

( )E n =  ~ Y i  kln  + 2 1 n T i -  ~- ~'i 
i = I  i = l  ' =  

- t  

expression, which depends on before obtains values for E 
and K 0, and the above mentioned experimental data. 

3. Appl icat ion  to some  practical  cases 

The theoretical procedure described for calculating the 
kinetic parameters of crystallization reactions, using non- 
isothermal techniques in DSC, was applied to a set of 

(20) 
glassy alloys whose experimental data, Ti and x~, for each 
heating rate, are quoted in the literature. The theoretical 
results obtained for the above-mentioned parameters agree 
with the corresponding values given in literature [24-26], 
showing the goodness of the theoretical method developed. 
This work shows the theoretical calculation of the kinetic 
parameters of three glassy alloys whose bibliographical 
data are shown in Table 1. In this table, the temperature 
and volume fraction crystallized ranges where the method 
is applied, for different heating rates, are given. 

Using the theoretical expressions given in the Appendix 
for the intermediate parameters, the values of the quoted 

(21) parameters shown in Table 2 were calculated, corre- 
sponding to each alloy and for different heating rates. 
Finally, by using the set of results given in Table 2 and 
through the expressions already deduced for the kinetic 
parameters in crystallization reactions, the values of the 
above mentioned parameters, summarized in Table 3, were 
obtained. Bearing in mind that the calorimetric analysis is 
an indirect method which only makes it possible to obtain 
mean values for the parameters which control the "kinetics 
of a reaction, the mentioned mean values, given in Table 3 
were calculated. In order to check the goodness of the 

(22) theoretical method of fit, the deduced values for the kinetic 
parameters have been compared to supplied data on the 
literature. It should be noted that, although the treatments 
used for the analysis of the above-mentioned data were 
based on different derivations of the Avrami equation, the 
agreement between the fitted values and the parameters 
supplied by the literature can be considered acceptable. 
This affirmation can be carded out since all fitted values 
for the activation energy and the Avrami exponent differ 

(23) less than 2% and 8% respectively, from those previously 
reported. This fact confirms that the theoretical method 
developed is adequate to describe the crystallization kinet- 
ics of the glassy alloys. 
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Table 1 
Experimental data and kinetic parameters E, K o and n, supplied by literature for three glassy alloys 

Alloy fl k T x E In K o n Ref. 
(K rain- ~) (K) (cal tool- ' ) 

(GeSe2)6o(GeTe)4 o 2.5 10 624.67-641,57 0.0912-0.8087 54 960 33.4 2.4 [24] 
(M1) 5 10 635.54-651.84 0.1090-0.8068 

10 9 646.14-662.21 0.1175-0.7934 
20 8 655.54-673.70 0.1004-0.8177 

Sn~Asz6See6 4 14 583.80-603.63 0.1982-0.6796 38 600 27.2 1.2 [25] 
(M2) 8 10 581.82-609.35 0.1857-0.6644 

16 9 596.99-621.27 0.1707-0.6564 
32 9 606.75-631.68 0.1564-0.6686 

Sbl 8As34Se¢~ 4 43 554.82-564.94 0.1967-0.6581 44 300 24.1 1.8 [26] 
(M3) 8 43 564.80-574.92 0.1981-0.6589 

16 52 574.36-585,29 0.1988-0.6586 

Table 2 
Intermediate parameters in the analysis of the crystallization kinetics for three glassy alloys, obtained by using the developed theoretical method 

Alloy /3 103 A 103 B 103 C 106 D I06 F 106 M 103 N 
(K rain -I ) (K "l ) (K ~ ) (K")  (K "2) (K "2) (K "2) (K")  

M1 2.5 -7.9093 -0.3716 50.8381 -0.1241 12.3831 1.6620 -6.8570 
5 - 8.4005 0.2279 54.5038 - 0.12382 12.9497 1.7347 - 7.2864 

10 - 5.6797 2.1876 38.2583 - 0.6t38 8.2735 1.1510 -4.9251 
20 - 5.3991 0.5086 35.4169 - 0.0727 8.0613 1.0747 - 4.6857 

M2 4 - 12.7148 0.2980 81.3846 - 0.4364 21.1506 2.8625 - 11.0111 
8 - 9.7560 0.1786 62.4620 - 0.4486 16.06396 2. t733 - 8.4591 

16 - 7.0993 0.0226 45.5357 - 0.2654 1 t .4587 1.5457 - 6.1566 
32 - 7.5593 0.1603 48.7179 - 0.2638 12.0056 1.6177 - 6.5650 

M3 4 - 60.6119 - 5.2518 380.039 t - 1.2277 107.4477 t 4.6638 - 52.4042 
8 - 58.3695 9.3362 376.5186 - 1.1402 101.6846 13.8381 - 50.46 t 9 

16 - 88.4830 18.9 575.38 - 1.8320 151.4138 20.5716 - 76.5850 

Table 3 
Kinetic parameters of crystallization for three glassy alloys, deduced from the developed theoretical method 

Alloy fl E < E >  In K o <ln K~> n <n> 
(K min- ~ ) (cal mol- ~ ) (cal mol- t ) 

M 1 2.5 54 500 54 623.9 33.0 33.2 2.3 2.4 
5 54 000 32.7 2.4 

t 0 54 904.76 33.4 2.5 
20 55 090.91 33.5 2.5 

M2 4 39 666.67 39 363. l 23.9 24.0 1.4 1.3 
8 39 500 24.i 1.1 

16 38 285.71 23.2 1.4 
32 40 000 24.7 1.4 

M3 4 44 232.84 44 183.6 30.2 30.1 1.7 1.9 
8 44 30%62 30.2 1.9 

16 44 008.46 30.0 2.1 

4. Conclusions 

T h e  d e s c r i b e d  t h e o r e t i c a l  m e t h o d  e n a b l e s  s t u d y  o f  t he  

e v o l u t i o n  w i t h  t i m e  o f  t h e  v o l u m e  f r a c t i o n  c r y s t a l l i z e d  in  

m a t e r i a l s  w h o s e  g r o w t h  ra tes  are  n o t a b l y  a n i s o t r o p i c .  T h i s  

p r o c e d u r e  a s s u m e s  the  c o n c e p t  o f  the  e x t e n d e d  v o l u m e  o f  

t r a n s f o r m e d  m a t e r i a l  a n d  the  c o n d i t i o n  o f  r a n d o m  nuc l ea -  

t ion.  U s i n g  t h e s e  a s s u m p t i o n s  a g e n e r a l  e x p r e s s i o n  o f  the  

v o l u m e  f r a c t i o n  c r y s t a l l i z e d  has  b e e n  o b t a i n e d ,  as  a 

f u n c t i o n  o f  t ime ,  in t e r m s  o f  the  n u c l e a t i o n  f r e q u e n c y  p e r  

un i t  v o l u m e ,  a n d  the  c rys ta l  g r o w t h  ra te .  

T h e  a b o v e  m e n t i o n e d  e x p r e s s i o n  has  b e e n  p a r t i c u l a r i z e d  

fo r  the  c a s e  in  w h i c h  the  c rys ta l  g r o w t h  ra te  is i so t rop ic ,  

a s s u m p t i o n  in  a g r e e m e n t  w i t h  t h e  e x p e r i m e n t a l  e v i d e n c e  in  

m a n y  t r a n s f o r m a t i o n  r eac t i ons .  F o r  t he  i m p o r t a n t  c a s e  o f  a 

c r y s t a l l i z a t i o n  r e a c t i o n  w i t h  n u c l e a t i o n  f r e q u e n c y  a n d  



J. Vdzquez et al. / Jour~ml of Alloys and Compounds 257 (1997) 259-265 265 

crysta l  growth  rate independent  of  time, the quoted expres-  
s ion has been integrated,  y ie ld ing  an equat ion that may  be 
taken as a deta i led  specific case of  J o h n s o n - M e h l - A v r a m i  
relat ion.  

The kinet ic  parameters  E, n and K o have been obta ined  
by  fitting a theoret ical  function,  deduced  f rom the J M A  
model ,  to the exper imenta l  data (expressed as temperature  
and a funct ion of  the fract ion crys ta l l ized) ,  by  means  of  the 
leas t -squares  method.  By this method,  the "kinetic pa rame-  
ters are ca lcula ted  in a set of  exotherms  taken at different  
heat ing rates, and the cor responding  mean  values may  be 
taken as the mos t  p robab le  values of  the above men t ioned  
parameters .  

F inal ly ,  the deve loped  theoret ical  me thod  has been  
appl ied  to a set of  g lassy  al loys,  whose  exper imenta l  data 
are quoted in the l i terature.  The theoret ical  results  ob ta ined  
for  kinet ic  parameters  agree very sat is factor i ly  with the 
cor responding  values  g iven  in l i terature,  conf i rming the 
re l iabi l i ty  of  the descr ibed  method.  
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A p p e n d i x  1 

The fit o f  the theoret ical  funct ion h(T) to the exper imen-  
tal data T~ and y~ through a leas t -squares  me thod  suppl ies  
the in te rmedia te  parameters ,  which  appear  in the equat ions  
of  the ac t iva t ion  energy,  kinet ic  exponent  and f requency 
factor.  The above -men t ioned  parameters  are g iven by  the 

fo l lowing  express ions  . . . .  

k k * 1 
B 2 _ ~ _ _ l n T i  

k 1 k _ ( ~  Yi '~ k o 
~ - - l n T  i ~,yilnTi ( i ~  ( l n T i ) ' ) ,  

• k 1 k 1 k 
__1 E _ _ l n r i  

k , k 1 

k k k I 

N=('~)( ,~--~InT~)-( i~--LY~)(~=~T~\~ =, i / ~ - - l n T ~ )  

which,  as may  be observed,  only  depend  on exper imenta l  
data such as temperature  and vo lume fract ion crystal l ized.  
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