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Abstract. In this paper new symmetry reductions and exact solutions are presented for the
porous medium equation with absorptionut = (un)xx + g(x)um. Those spatial forms for which
the equation can be reduced to an ordinary differential equation are studied. The symmetry
reductions and exact solutions presented are derived by using the nonclassical method developed
by Bluman and Cole and are unobtainable by Lie classical method.

1. Introduction

The quasilinear parabolic equation

ut = (un)xx + g(x)um (1)

with n6= 0 serves as a simple mathematical model for various physical problems. Perhaps
its most common use at the present time is to describe the flow of liquids in porous media
or the transport of thermal energy in plasma. Here, we suppose that the diffusivity and
absorption term have a power-law dependence on concentrationu(x, t) wheren andm are
constants. The second term on the right-hand side of (1) describes volumetric absorption,
which in the case of plasma is caused by radiation to which plasma is transparent.

While the spatial dependent factors in (1) are usually assumed to be constant, there
is no fundamental reason to assume so. Actually, allowing for their spatial dependence
enables one to incorporate additional factors into the study which may play an important
role. For instance, in a porous medium this may account for intrinsic factors such as medium
contamination with another material or in plasma, this may express the impact that solid
impurities arising from the walls have on the enhancement of the radiation channel.

The importance of the effect of space-dependent parts on the overall dynamics of (1) is
well known. Wheng(x) = 0 equation (1) becomes

ut = (un)xx. (2)

A complete group classification for the nonlinear heat equation (2) was derived by
Ovsiannikov [51–53] by considering the PDE as a system of PDEs, and by Bluman [8, 11].
A classification for Lie–B̈acklund symmetries was obtained by Bluman and Kumei [9].

The basic idea of any similarity solution is that assumed by a functional form of the
solution enables a PDE to be reduced to an ODE. The majority of known exact solutions of
(2) turns out to be similarity solutions, even though originally they might have been derived,
say by a separation of variable technique, or as travelling wave solutions. The main known
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exact solutions of nonlinear diffusion (2) are summarized by Hill [30]. In [30–32], Hill and
Hill deduced a number of first integrals for stretching similarity solutions of the nonlinear
diffusion equation, and of general high-order nonlinear evolution equations, by two different
integration procedures.

King [39] obtained approximate solutions to the porous medium equation (2), integral
results for the multidimensional nonlinear diffusion equation [40], and determine [38] new
results by generalizing known instantaneous source and dipole solutions ofN -dimensional
radially nonlinear diffusion equations. He also applied generalized Bäcklund transformations
and obtained a number of equivalence transformations to derive links between a large number
of different types of nonlinear diffusion equations [41, 44]. By using local and nonlocal
symmetries, some exact solutions which are not similarity solutions of (2) for special values
of n [42, 44] were obtained.

Nonlinear diffusion with absorption arises in many areas of science and engineering.
It occurs in the spatial diffusion processes where the physical structure of the medium
changes with concentration. The same PDE also arises in the context of nonlinear heat
conduction with a source term. For example, materials undergoing heating by microwave
radiation exhibit thermal conductivities and body heating which are strongly dependent on
temperature.

For g(x) = constant, exact solutions and first integrals are obtained by Hill in [33],
by the technique of separation of variables and the use of invariant one-parameter group
transformations to reduce the governing PDE to various ODEs. For two of the equations so
obtained, first integrals were deduced which subsequently give rise to a number of explicit
simple solutions. Nonlinear diffusion with absorption is characterized by phenomena such
as ‘blow up’, ‘extinction’, and ‘waiting time’ behaviour. The indicesn andm encompass
a wide range of this physical behaviour. For example, Kalashnikov [35] showed that
u(x, t) ≡ 0 for all x after a finite time provided thatn > 1 and 0< m < 1, a phenomenon
referred to as ‘extinction’.

A well known exact solution of (1) applying form = 2−n is due to Kersner [37]. Gurtin
and MacCamy [28] proposed a transformation which reduces (1) withg(x) = constant and
m = 1 to (2). However, in general, the background details necessary to obtain solutions
of (1) with m = 1 via this transformation and (2) are about the same as those required to
obtain the solutions directly from (1).

In [23] Galaktionov presented a new technique of ‘separation of variables’ for
constructing new exact solutions of the nonlinear heat conduction equations with a source,
which are reduced to equations with quadratic nonlinearities. Most of the solutions thus
constructed are not invariant under point transformations groups and Lie–Bäcklund groups.
The proposed method was first implemented in [6] to construct an exact solution of equation
(1) with g(x) ≡ C > 0 andm = n. In [24] a method is proposed to obtain exact blow-up
solutions for nonlinear heat conduction equations with source.

Several references for the classification of Lie and Lie–Bäcklund symmetries for heat
equations in homogeneous and nonhomogeneous medium, are also listed in [34].

Classical and nonclassical symmetries of the nonlinear equation (1), withn = 1, and
g(x) = constant were considered by Clarkson and Mansfield [18], by using the method
of differential Grobner bases, and by Arrigoet al [4]. They obtained several new exact
solutions.

In [25] a group classification problem was solved for equation (1) with a convective
term, by studying those spatial forms which admit the classical symmetry group. Both
the symmetry group and the spatial dependence were found through consistent application
of the Lie-group formalism. In [9] Bluman introduced a method to find a new class of
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symmetries for a PDE when it can be written in a conserved form. These symmetries are
neither point nor Lie–B̈acklund symmetries, they are nonlocal symmetries which are called
potential symmetries. Potential symmetries were obtained in [26] for the porous medium
equation.

Motivated by the fact that symmetry reductions for many PDEs are known that are not
obtained by using the classical Lie group method, there have been several generalizations of
the classical Lie group method for symmetry reductions. Bluman and Cole developed the
nonclassical method to study the symmetry reductions of the heat equation; Clarkson and
Mansfield [19] presented an algorithm for calculating the determining equations associated
with the nonclassical method. The basic idea of the method is that the PDE (1) is augmented
with the invariance surface condition

pux + qut − r = 0 (3)

which is associated with the vector field

V = p(x, t, u) ∂
∂x
+ q(x, t, u) ∂

∂t
+ r(x, t, u) ∂

∂u
. (4)

By requiring that both (1) and (3) are invariant under the transformation with infinitesimal
generator (4) one obtains an overdetermined, nonlinear system of equations for the
infinitesimalsp(x, t, u), q(x, t, u), r(x, t, u). The number of determining equations arising
in the nonclassical method is smaller than for the classical method, consequently the set of
solutions is in general, larger than for the classical method as in this method one requires
only the subset of solutions of (1) and (3) to be invariant under the infinitesimal generator
(4). However, the associated vector fields do not form a vector space. These methods were
generalized by Olver and Rosenau [48, 49] to include ‘weak symmetries’, ‘side conditions’
or ‘differential constraints’, although their methods are too general to be practical.

All similarity reductions obtained from the optimal system of subalgebras by Lie
classical symmetries were obtained in [25], therefore although most papers studying
nonclassical symmetries include the classical ones, in this paper we consider nonclassical
symmetries of equation (1), which are unobtainable by Lie classical method and find
conditions ong(x) as well as the special values ofn andm for which these reductions
can be derived.

In each section we list the functionsg(x) and the parametersn andm for which we
obtain nonclassical symmetries. We also report the reduction obtained as well as some new
exact solutions.

2. Nonclassical symmetries

To apply the nonclassical method to (1) we require (1) and (3) to be invariant under
the infinitesimal generator (4). In the caseq 6= 0, without loss of generality, we may
set q(x, t, u) = 1. The nonclassical method applied to (1) gives rise to the following
determining equations for the infinitesimals

∂2p

∂u2
u− n∂p

∂u
+ ∂p
∂u
= 0 (5)

−n ∂
2r

∂u2
un−1+ 2n

∂2p

∂u∂x
un−1(n− n2)

∂r

∂u
un−2+ (n2− n)run−3− 2p

∂p

∂u
= 0 (6)

−
(

2n
∂2r

∂u∂x
− n∂

2p

∂x2

)
un−1+ (2n− 2n2)

∂r

∂x
un−2− 3g

∂p

∂u
um + (n− 1)pr

u
+ 2

∂p

∂u
r
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−2p
∂p

∂x
− ∂p
∂t
= 0 (7)

−n ∂
2r

∂x2
un−1+

(
g
∂r

∂u
− 2g

∂p

∂x
− dg

dx
p

)
um + g(n− r)um−1+ 2

∂p

∂x
r = 0. (8)

Solutions of this system depend in a fundamental way on the values ofn, m and on the
function g(x). By solving (5) we obtain

p = p2(x, t)u
n − p1(x, t)

n

and we can distinguish the following cases depending onn andm.

2.1. Case 1:n 6= 0,−1,− 1
2

Solving (6), we obtain

r = a1u
n+2+ a2u

n+1+ r2

un−1
+ a3u

2+ r1u
where

a1 = − 2p2
2

(n+ 1)(2n+ 1)
a2 = 1

n

dp2

dx
a3 = 2p1p2

n(n+ 1)
.

Substitutingp andr into (7) and (8), we obtain thatp1, p2, r1, r2 andg(x) are related by
two conditions and we can now distinguish the following subcases depending onn andm.

2.1.1. Case 1a:m 6= n + 2, n, n + 1, 2, 1, 0, 1− 2n, 2− n, 1− n. For g(x) following a
power law, we recover the classical symmetries, that appear in [25].

2.1.2. Case 1b:n = 1,m 6= 0, 1, 2. It follows thatp2 = 0, r2 = 0 andp1, r1, andg are
related by the following conditions

2
∂r1

∂x
+ ∂

2p1

∂x2
+ 2p1

∂p1

∂x
− ∂p1

∂t
= 0 (9)

(1−m)gr1+ 2g
∂p1

∂x
+ p1

dg

dx
= 0 (10)

∂r1

∂t
− ∂

2r1

∂x2
− 2r1

∂p1

∂x
= 0. (11)

Even though the previous equations are too complicated to be solved in general, special
solutions will be considered. Choosingp1 = p1(x) and solving (9) we obtain

r1 = − 1
2(p
′
1+ p2

1 + r3) (12)

with r3 = r3(t). Settingr3 = k1, and solving (10) yields

g = c exp

[
(1−m)

2

(∫
p1+ k1

∫
1

p1

)]
(p1)

− (m+3)
2 (13)

with c = constant. By substituting (12) into (11), multiplying byp1 and integrating once
with respect tox, it follows thatp1(x) must satisfy the following condition

2p1p
′′
1 − (p′1)2+ 4p2

1p
′
1+ p4

1 + 2k1p
2
1 + 2k2 = 0. (14)
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Hence, for any functionp1 = p1(x) satisfying (14), whereg is given by (13) andk1 and
k2 are arbitrary constants, we obtain the nonclassical symmetry reduction

z =
∫

dx

p1(x)
+ t u(x, t) = exp

[
1

2

(∫
p1+ k1(z − t)

)]√
p1h(z). (15)

Settingk1 = k2 = 0 and making

p1 = w2(x)∫
w2(x) dx

(16)

(14) can be written as

w′′(x) = 0. (17)

Consequently

w = c1x + c2 p1 = 3w2

xα(x)
and g(x) = cx2α(x)2

kw(x)m+3

with

α(x) = (c2
1x

2+ 3c1c2x + 3c2
2) and k = 3(m+3)/2.

Hence, the nonclassical symmetry reduction becomes

z = c2c
2
3

3w(x)
+ x

2

6
+ c3x

3
− t u =

√
3h(z)w(x)

wherec3 = c2
c1

andh(z) satisfies the following ODE

h′′ + chm = 0 (18)

whose solution form 6= −1 is∫
(m+ 1)1/2[c(k3(m+ 1)+ hm+1)]−1/2 dh = 21/2(z + k4)

for m = −1 is given by
√
π erf

√
−k3− loghe−k3 =

√
2
√
c(z + k4)

and form = 3 is solvable in terms of elliptic functions.

2.1.3. Case 1c :n = 1,m = 2. It follows thatp2 = 0 andp1, r1, r2 andg are related by
the following conditions

−2
∂r1

∂x
− ∂

2p1

∂x2
− 2p1

∂p1

∂x
+ ∂p1

∂t
= 0 (19)

−gr1+ 2g
∂p1

∂x
+ dg

dx
p1 = 0 (20)

−2gr2− ∂
2r1

∂x2
+ ∂r1
∂t
− 2

∂p1

∂x
r1 = 0 (21)

−∂
2r2

∂x2
+ ∂r2
∂t
− 2

∂p1

∂x
r2 = 0. (22)

Although in general we are not able to solve these equations, special solutions will be
considered. Choosingp1 = p1(x), from these equations we obtain thatr1 and g(x) are
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respectively given by (12) and (13) withm = 2 and settingk1 = 0, r2 adopts the following
form

r2 = 1

4p1g

dφ

dx
(23)

where

φ = p1
d2p1

dx2
− 1

2

(
dp1

dx

)2

+ 2p2
1

dp1

dx
+ p

4
1

2
.

We obtain that for any functionp1 = p1(x) satisfying the following equation

4
d2φ

dx2
p1

2+ 4
dφ

dx

(
dp1

dx
+ p1

2

)
p1+ φ2 = k (24)

nonclassical reductions can be derived integrating the characteristic equation.
Settingr2 = 0, the similarity variable and similarity solution adopt the form obtained

in the former case by (15) andh satisfies (18) withm = 2.
We remark that nonclassical symmetries for (1) withn = 1 andg = constant were

derived by Clarkson in [17] and that form 6= 3 andm 6= 1 he did not find any further
symmetries besides the classical ones.

2.1.4. Case 1d:n = 1, m = 1. Thenp2 = 0 andp1, r1, and g must be related by the
following conditions

−2
∂r1

∂x
− ∂

2p1

∂x2
− 2p1

∂p1

∂x
+ ∂p1

∂t
= 0 (25)

−∂
2r1

∂x2
+ ∂r1
∂t
− 2

∂p1

∂x
r1+ 2g

∂p1

∂x
+ ∂g
∂x
p1 = 0 (26)

and

−∂
2r2

∂x2
+ ∂r2
∂t
− 2

∂p1

∂x
r2− gr2. (27)

The previous equations are too difficult to be solved in general, nevertheless special solutions
will be considered. Choosingp1 = p1(x) we obtain

p = −p1 r = − 1
2(p
′
1+ p2

1 + r3)u+ r2.
If r3 = k1, it follows that

2p1p
′′
1 − (p′1)2+ 4p2

1p
′
1+ p4

1 + 2k1p1
2+ 2k2+ 2gp2

1 = 0. (28)

Now for any arbitrary functiong(x), if p1 satisfies (28) we can derive a nonclassical
symmetry reduction. Settingr2 = k1 = k2 = 0, if p1 adopts the form given by (16), then
(28) becomes

wxx + gw = 0. (29)

Hence, for any arbitrary functiong(x), w(x) andp1(x) can be respectively derived from
(29) and (16), and the nonclassical symmetry reduction is given by (15).

2.1.5. Case 1e:m = n+ 2. The only case in which we obtain symmetries different from
the classical ones is forn = 1, m = 3 which is included in the former case.

Form = n we obtain nonclassical symmetries in the following cases.
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2.1.6. Case 1f:n = 1
2, m = 1

2. In this casep2 = 0, p = −2p1 andp1, r1, r2 andg must
be related by the following conditions

p1r2−
∂r1
∂x

2
− ∂

2p1

∂x2
= 0 (30)

p1r1− 8p1
∂p1

∂x
+ 2

∂p1

∂t
= 0 (31)

∂r1

∂t
+ r1

2

2
− 4

∂p1

∂x
r1 = 0 (32)

∂r2

∂t
+ r1r2− 4

∂p1

∂x
r2−

∂2r1
∂x2

2
+ 4g

∂p1

∂x
+ 2

dg

dx
p1 = 0 (33)

−∂
2r2

∂x2
+ r22− gr2 = 0. (34)

Despite the fact that the former equations are complicated to be solved in general,
special solutions will be obtained. Choosingp1 = p1(x) we can distinguish the following
cases.

(1) If p1 6= 0 then solving (30) and (31) we obtain

r = 8
dp1

dx
u+ 5

p1

d2p1

dx2

√
u.

Substitutingp1, r1 andr2 into (33) and (34) we obtain that

g = 2p′′1
p1
− 6(p′1)

2

p2
1

+ k1

2p2
1

andp1 must satisfy the following equation

p2
1p
′′′
1 − 4p1p

′
1p
′′
1 +

k1

2
p′1− k2 = 0.

Settingk2 = 0, dividing by p6
1 and integrating once with respect tox leads to

10p1p
′′
1 − 10k3p

5
1 − k1 = 0

whose solution is given by√
(5)

∫
(k1 log(p1)+ 2k3p

5
1 + k4)

− 1
2 dp1 = x + k5.

Hence, we obtain the nonclassical reduction

z = t −
∫

dx

2p1(x)
u =

(
h(z)− 5dp1

dx

)2
16p1

4
.

Settingk1 = k4 = 0, p1 andg adopt the following form

p1 = k6

(α(x))2/3
g = − 4

9(α(x))2

with α(x) = x + k5. Consequently we obtain the nonclassical symmetry reduction

u = 1

16k4
6

α8/3

(
10k6

3α5/3
+ h(z)

)2

z = t − 3

10k6
α5/3

whereh(z) satisfies the ODE

h′ + h2 = c
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whose solutions are

h =
√
c[k exp(2

√
cz)+ 1]

k exp(2
√
cz)− 1

if c > 0

h = −√−c tan[
√−c(z + k)] if c < 0.

(2) If p1 = r1 = 0, then choosingr2 = r2(x), we obtain that for any arbitrary function
g(x), if r2 satisfiesgr2+ r ′′2 − r2

2 = 0, thenr adopts the following formr = r2
√
u. Hence,

we obtain the nonclassical symmetry reduction

u =
(

tr2

2
+ h(x)

)2

whereh(x) satisfies the following ODE

r2h− h′′ − gh = 0.

For example, if

g = tan(x)− 2 sec2(x)

an exact solution is

u = 1
4((2k1x + t + 2k2) tan(x)+ 2k1)

2.

2.1.7. Case 1g:m = − 1
3, n = − 1

3. In this casep2 = r2 = 0, andp1, r1, andg must be
related by the following conditions

2

9

∂r1

∂x
+ ∂

2p1

∂x2
= 0 (35)

4p1r1+ 18p1
∂p1

∂x
+ 3

∂p1

∂t
= 0 (36)

∂r1

∂t
+ 4r12

3
+ 6

∂p1

∂x
r1 = 0 (37)

1

3

∂2r1

∂x2
− 6g

∂p1

∂x
− 3

∂g

∂x
p1 = 0. (38)

Solving (35) and (36) we obtain

r1 = −9

2

∂p1

∂x
+ r3 p1 = c(x) exp

(
− 4

3

∫
r3 dt

)
with r3 = r3(t). If we maker3(t) = − 3b′(t)

4b(t) , p andr become

p = b(t)c(x) r1 = −9b

2

dc

dx
− 3

4b

db

dt
.

Substituting them into (37) and (38), we derive thatb = − 1
k1(t+k2)

and for any arbitrary

function g(x), makingc(x) = d(x)2, we have thatd(x) must satisfy the following ODE

d ′′ + gd + k3

2d3
= 0.

Hence, we obtain the nonclassical symmetry reduction

z = − 1

k1
log(t + k2)−

∫
dx

d2 (x)
u = h(z)(−k1t − k1k2)

3
4

d3
.

The ODE to which (1) is reduced, after makingh(z) = 1
y(z)3

is

4y4 d2y

dz2
+ 12

dy

dz
+ 3k1y = 0.
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2.1.8. Case 1h:m = 1 − n. Besides the classical symmetries we obtain that for
g(x) = k1x + k2, p = 0 andr = (k1x + k2)u

1−n the similarity solution adopts the form

u = [n(t + h(x))(k1x + k2)]
1
n

whereh(x) satisfies

(k1x + k2)h
′′ + 2k1h

′ = 0.

A solution for this equation ish = k3x+k4
k1x+k2

, that leads to the exact solution

u = [n((k1t + k3)x + k2t + k4)]
1
n .

2.2. Case 2:n = −1.

In this case solving the determining equations for the infinitesimals we obtain

p = p1(x, t) r = r2u2+ r1u
wherep1, r1 andr2 are related by the following conditions

−2p1r2u
3−

(
2p1r1+ 2p1

∂p1

∂x
+ ∂p1

∂t

)
u2− 2

dr1
dx
− d2p1

dx2
= 0

−gmr2um+2−
(
gmr1+ gr1+ 2g

∂p1

∂x
+ dg

dx
p1

)
um+1+ 2r2

2u4

+
(

dr2
dt
+ 4r1r2+ 2

∂p1

∂x
r2

)
u3+

(
dr1
dt
+ 2r1

2+ 2
∂p1

∂x
r1

)
u2+ d2r2

dx2
u

+d2r1

dx2
= 0.

We can now distinguish the following subcases.
(1) If r2 = 0 andg(x) = k(x + k2)

m−3
2 we recover the classical symmetries that appear

in [25].
(2) If p1 = 0, m = 2 andg(x) = k1x + k2 then r = (k1x + k2)u

2 and we obtain the
nonclassical symmetry reduction

u = − 1

(k1x + k2)t + h(x)
whereh = k3x + k4.

2.3. Case 3:n = − 1
2

In this case solving the determining equations for the infinitesimals we obtain

p = p1(x, t) r = r2u3/2+ r1u
wherep1, r1 andr2 are related by the following conditions

−3p1r2u
2−

(
3p1r1+ 4p1

∂p1

∂x
+ 2

∂p1

∂t

)
u

3
2 − dr1

dx
− d2p1

dx2
= 0

−2gmr2u
m+1−

(
2gmr1+ gr1+ 4g

∂p1

∂x
+ 2

dg

dx
p1

)
um+

1
2 + 3r2

2u
5
2

+2

(
dr2
dt
+ 3r1r2+ 2

∂p1

∂x
r2

)
u2+

(
2

dr1
dt
+ 3r1

2+ 4
∂p1

∂x
r1

)
u

3
2

+d2r2

dx2

√
u+ d2r1

dx2
= 0.
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We can now distinguish the following cases.
(a) If r2 = 0, andg(x) = k(x + k2)

m−3
2 we recover the classical symmetries appearing

in [25].
(b) If p1 = 0, m = 3

2 andg(x) = k1x + k2 then we obtainr = (k1x + k2)u
3
2 and so we

obtain the nonclassical symmetry reduction

u = − 1

[(k1x + k2)t + h(x)]2
whereh = k3x + k4.

(c) If p1 = 0, m = 1 and g(x) = c, besides the classical symmetries, we obtain
r = c

1−α(t)−3u, with α(t) = exp ( c2(t + d)) hence we obtain the nonclassical symmetry
reduction

u = (1+ α(t)+ α(t)2)2/3(α(t)− 1)2/3h(x)

whereh(x) satisfies the following ODE

2hh′′ − 3h′2− 4ch7/2 = 0.

3. Concluding remarks

In this paper we have derived the nonclassical symmetries of the quasilinear parabolic
equation (1) by using a method due to Bluman and Cole [11]. Recognizing the importance
of the space-dependent parts on the overall dynamics of (1), we have studied those spatial
forms as well as the different choices for the constantsn andm for which equation (1)
admits the nonclassical symmetry group. We have then constructed new invariant solutions,
as well as new ODEs to which (1) is reduced. These new solutions are unobtainable by the
method of Lie classical symmetries.
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