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Abstract 

A procedure was developed for determining theoretical expressions for the area under the first radial distribution 
function (RDF) peak, and for the relative coordination numbers (nij) which depend on the coordination hypotheses 
and on the number of bonds between atoms of a single element or a pair. In this method, two important facts 
were taken into account. On one hand, the products of atomic factors are functions of s {the scattering vector 
module) and so cannot always be considered constant; they were therefore approximated by the polynomial 
functions which best fit the results obtained for the atomic factors given in the International Tables. On the 
other hand, we considered the influence of the structural hypotheses (coordinations, existence of certain types 
of bond) on the area and coordination numbers mentioned, and obtained expressions for these parameters which 
enable us to postulate the most probable local order. In order to test the reliability of the method, it was applied 
to a set of alloys, quoted in the literature, and the theoretical results agreed very satisfactorily with the experimental 
values. 

Introduction 

Amorphous materials themselves are nothing 
new. The iron-rich siliceous glasses found in the 
moon rocks, brought back by the Apollo missions, 
are billions of years old. Man has been making 
glasses (mainly silica) for centuries, as is proven 
by the coloured glass used artistically in cathedrals 
and other buildings during the Middle Ages. What 
is relatively recent is the scientific study of amor- 
phous solids, and interest in them grows daily as 
new glasses are obtained, some of which have a 
promising technological future. Proof of the grow- 
ing interest in these solids is the number of scientific 
works published yearly on the subject, which has 
increased threefold since the seventies and is still 
growing. 

An amorphous solid is a material which does 
not have the long-range order (periodici~) char- 
acteristic of crystalline materials, although it does 
have a certain local order in its bonds with first 
neighbours. ‘Amorphous’ and ‘non-crystalline’ are 
therefore synonymous terms, whereas ‘glass’ is the 
non-crystalline material exhibiting a characteristic 
transition temperature [I] from the more energetic 
glass phase to the minimal energy crystalline phase. 
The temperature at which the glass-crysta1 tran- 

sition takes place is proportional to the average 
coordination of the material 121, so an under- 
standing of its local order is very important, as it 
can be related to other physical properties of the 
material. 

The method which to date has proven most 
efficient for structural research in all types of solids 
is the interpretation of the phenomenon of dif- 
fraction of radiation by the solid. Although several 
types of radiation are used for detecting atomic 
positions, the most frequently used is X-radiation, 
because of its simple technology. It was used for 
obtaining structural info~ation on the glassy ma- 
terials considered in this work. 

When interpreting the radial atomic distribution 
function (RDF), obtained from the X-ray dif- 
fraction intensities of a glassy solid, the area under 
the first peak of the curve is related to the relative 
coordination numbers, nij, in order to postulate 
the short-range order of the material. It is a well- 
known fact that this area also depends on the 
atomic numbers of the constituent elements of 
the alloys, when the products of the atomic scat- 
tering factors, Rij(S) =~(~)~(~)/(~~~(~))2, remain 
practically constant and equal to ZiZj/(~ixiZi)’ 
throughout the whole interval of s (scattering vector 
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module) in which the measurements are carried 
out. This is not always true, as in some cases Rij(s) 
varies considerably with s [3]. 

This work takes into account, on one hand, that 
the atomic scattering factors are functions of the 
Bragg angle [3] and, on the other, that the co- 
ordination hypotheses for a certain element in the 
alloy. Both considerations made it possible to 
calculate, according to the literature [4-6], the- 
oretical expressions of the parameters which de- 
pend on the alloy, and of the coordination hy- 
potheses which appear in the theoretical expression 
of the area under the first peak, and in those of 
the average coordination numbers. The theoretical 
results were applied to the analysis of the short- 
range order of different glassy alloys; the results 
agree with the experimental values. 

Theoretical background and motivation 

The classical theory of electromagnetic wave 
diffraction, for a spatial configuration of atoms, 
makes it possible to deduce a relationship between 
the diffracted intensity in a given direction and 
the relative positions of the atoms in the material. 
When this relationship is applied to a glassy ma- 
terial in which it is possible to postulate that the 
mentioned positions are randomly orientated, the 
intensity diffracted in each direction, expressed in 
electronic units (e.u.), is given by Debye’s equation 

PI 

I,.“. = c fnfm + (1) 
nm nm 

where s=4r/A sin 8, fn and fm are the scattering 
factors of atoms n and m, respectively, and r,,, is 
the distance between those atoms. 

The problem of obtaining structural information 
on a glassy solid involves determining the relative 
positions between the atoms of the material from 
a set of diffracted intensities, and in this sense 
Zernicke and Prins [S] applied the Fourier trans- 
formation to a function of the diffracted intensities, 
thus obtaining an expression of the variation of 
the atomic density with distance to an arbitrary 
atom in the material. 

A strict evaluation of Debye’s equation involves 
considering the atomic scattering factors as func- 
tions of the Bragg angle through magnitu’de s, a 
consideration which was taken into account by 
Finbak [9], afterwards by Waser and Schomaker 
[lo] and later by Warren [3]. According to the 
latter author, the following relationship is found 

for the radial atomic distribution function: 

2 F Xi : Pij(r) = 4rr2po +rG(r) 
‘J 

(2) 

where Xi is the atomic fraction of element i, G(r) 
is the Fourier transformation of the interference 
function, p0 is the average atomic density of the 
material, ‘ij is the distance between an i-type atom 
and a j-type atom, and function Pij(r) is defined 

bY 

sm mm 
Pij(r) = ~ S 

O &fi(s) * L 1 
COS S(T-_ij) ds (3) 

where s, is the maximum value of s for which 
experimental data are available. By defining a 
function (1/2~r)Zi,jxi(nij/r,j>q,j(l) =P(T), repre- 
senting the local atomic dens@ affected by the 
Fourier transformation of the atomic factor prod- 
ucts, relationship (2) changes into 

4 ?Tr”p(r) = 4 &PO + rG(r) (4) 

which represents the average number of atoms 
surrounding a reference atom at a distance I-. 

When evaluating the average number of first 
neighbours of an arbitrary atom (that is to say, 
its average coordination), it is necessary to obtain 
the area under the first RDF peak given by the 
expression 

b 

Area= “xxi: 
s 

rPij(r) dr (5) 
T i,j 

‘J a 

where a and b are the abscissae of the limits of 
the aforementioned peak. 

Some authors ignore this expression, as they 
consider that the traditional relationship of the 
area as a function of the atomic numbers of the 
elements is equally accurate in all possible cases, 
which is true only when the atomic scattering 
factors, fi, can be considered independent of s and 
therefore constant and equal to the atomic numbers 
Zi. Only under this hypothesis can the identity of 
the two expressions of the area under the first 
RDF peak be proven, since, by substituting the 
equation for Z’ij(r) in relationship (5), the result 
is 

where 



s= 

s 

b r sin Sm(F-rij) 
dr 

a 
r-rij 
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F 
Rij(S) 

is an integral which, by carrying out the successive 
variable changes x =r -rij and y =s,x, gives way 
t0 

S=[COS s,(t?-rij)-COS S,(bbr~j)js,-l 

a relationship where y1 = ~,(a - rij) < 0, ~2 = 
s,@ - rij) > 0, and s,, which proceeds from the 
lack of experimental data for very high values of 
s, can be identified as infinite, being the upper 
limit of a Fourier transformation, whereby S=rijn. 
and expression (6) turns into 

C XillijZiZj 

Area= ‘;’ \2 (8) 

t 1 C xizi 
i 

thus proving that it is a particular case of the 
more general relationship (5). 

There are, however, practical cases in which it 
may be observed that the approximation con- 
sidering functions Rjj as constant and equal to 
Zizj/(~iXiZi)” is inaccurate enough to influence the 
short-range order postulated for the material. In 
relation to this, Fig. 1 [3] shows Rij versus s for 
all possible pairs of elements in amorphous SiOz. 
Relationship (8), based on the constancy of the 
atomic scattering factors, is obviously a good ap- 
pro~mation for the pair Si-0, but very inaccurate 
for the pairs Si-Si and O-O. Analogously, Fig. 
2 [3] shows functions Pij(X) versus x for the same 
pairs as in the previous figure. In addition to the 
ripples due to the errors in finishing the series, 
the curve for Si-Si is observed to have a sharp 
negative wing just outside the main peak, and the 
curve for O-O has a positive region at the end 
of the main peak. These positive or negative regions 
are a consequence of the shapes of the Rij(s) 
curves. A relatively broad, though not complete, 
analysis of cases such as amo~hous Si02 seems 
to make it advisable to express products Rij(s) 
through the mathematical functions which best fit 
the results obtained from the atomic scattering 
factors given in the International Tables. In this 
sense, Vazquez and Sanz [4] have developed an 
analytical method for evaluating the area under 
the first RDF peak, in which products Rij(s) are 

I I I I I I ; 
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Fig. 1. Representation of functions IQ(s) versus s in amorphous 
SiOz. 
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Fig. 2. Representation of functions Pii versusx for the different 
pairs of elements in amorphous SiO> 

expressed by n-order polynomials in s. When these 
polynomials are of the first order, as is frequently 
the case, the authors [4] propose the following 
expression: 

Area = ’ ]I: X;nijAij 
7T i,j (9) 



66 

with 

Aij = d J 
‘J a 

rpij(r) dr= & [BJij +B,jj+rjj(B3jj +B4ij)], 
'J 

the functions Bkij (k= 1, 2, 3, 4) being given by 
the relationships 

Blij= (AOijsm+Alij) 

COS S,U’ij-COS b!J,b’ij 

, 
sin 

B*ij=Aoij In g, 
‘J 

bij 

B3ij = 
s 

sins x 
m dx, 

x 
a$ 

B4ij =Aoij 
1 -COS s,b’ij 

b’ij 

1 -COS S,U’ij 1 a’ij ’ 

where Aoij and Alij are the slope and the zero- 
ordinate, respectively, of the straight regression 
line corresponding to the product of the scattering 
factors of atoms i, j, and ~‘ij =U - rij and b’ij = b - rij. 

Equation (9) is, as may be observed, a function 
of the relative coordination numbers, nij, and 
therefore of the number of chemical bonds, aij, 
between the i-type and j-type elements of the alloy. 
This fact made it possible to develop analytical 
methods [5, 61 for expressing the area under the 
first RDF peak as a function of the coordination 
of one type of element in the material and to the 
number of bonds between pairs of atoms. 

Short-range order: basic parameters 

Analytically determining the parameters which 
depend on the alloy and on the coordination 
hypotheses 

A theoretical evaluation of the average coor- 
dination of a glassy alloy, from its radial atomic 
distribution function, involves determining the area 
under the first peak of this function as accurately 
as possible. This parameter will influence the 
formulation of short-range order hypotheses, so 
it is useful to relate this area to a parameter 
representing the postulated coordination for some 
element in the alloy. This will enable us to attribute 
a coordination to a certain element, according to 
its properties and to the coordination proposed 
in the literature for the same element in similar 

alloys. The postulated coordination is substituted 
in the theoretical expression of the area, and the 
value obtained for this magnitude is compared to 
the area enclosed by the first experimental RDF 
peak. If the difference between the two values is 
within the experimental error, the coordination 
hypothesis may be considered adequate; otherwise, 
the hypothesis is rejected and another one is tested. 
On the other hand, it is a well-known fact that, 
in glassy alloys, we may postulate the absence of 
bonds between certain types of elements, either 
because of the low concentration of one of them, 
or because the energy of this type of bond makes 
it very improbable in comparison to others. It is 
therefore very important that the theoretical 
expression of the area should reflect the existence 
or non-existence of the possible bonds between 
the different pairs of elements in the compound, 
in order to compare the experimental area to the 
theoretical areas obtained through different hy- 
potheses on bonded elements. In this sense, Vaz- 
quez et u1.[6] have proposed theoretical expressions 
of the area which reflect both the coordination 
hypotheses for a certain element, and the possible 
absence of different types of bond in the material. 

According to the mentioned authors, in the case 
of the ternary glassy alloy A,iB,;D;; for every 
hundred atoms of material, where elements, A, 
B and D are assigned subscripts 1, 2 and 3 re- 
spectively, supposing that element A has N-co- 
ordination in the compound and that the average 
coordination numbers, nlk, of this element, with 
all those it is bonded to, are proportional to their 
respective percentual concentrations, equation (9) 
gives us 

(10) 

where k obviously cannot take the values of the 
subscripts representing elements which are not 
bonded to element A. In this equation it is observed 
that, once element A is subscripted 1, the number 
of bonds between pairs of elements is represented 
by Uij, ij # 1. Bearing in mind that the total number 
of bonds, ai, of element i is given by the expression 
ai =2aii + ZZi+jaij, it is possible to change relation- 
ship (10) in such a way that it is a function only 
of the coordination attributed to element A in 
the compound and of the number of bonds between 
specific pairs of elements. In order to do this, two 
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parallel mathematical developments are carried 
out from the last equation for the area, using the 
expression for aij deduced from the one for ai, 
depending on whether i=j or i#j, The following 
expression is thus obtained for the area under the 
first RDF peak: 

A= kz hN+ff*A22-a3((A22_2Au)6ij 
F 

-(l-&j)A,,>+P &g, Aijyi s1 Aij 
i#j 

(11) 
where P is a parameter worth 2 if i= j, and - 1 
if 1 +j, h being a specific characteristic of each 
alloy given by the relationship 

k 

+ pa ‘s((Am - zAz,)&j - (I- &j)A33) -qa ‘A22 I 
(12) 

where parameters p and q are worth 1 when 
multiplying concentrations, a’k, of elements bonded 
to element A, and zero otherwise. By use of the 
symbol 6ij (Kronecker’s delta), relationships (11) 
and (12) condense two expressions for the area 
and another two for parameter h, when i =j and 
when ifj. 

Variations in the coordinations of the elements 
in a compound obviously influence the theoretical 
area under the first RDF peak. If an unusual 
coordination N is attributed to element A in the 
alloy, it may involve the electronic transference 
between all or some of the elements present in 
the material, which is reflected in the number of 
chemical bonds between atoms of the different 
types of element in the solid and, consequently, 
in the area under the first RDF peak. When 
expressing this magnitude, therefore, certain pa- 
rameters should be included which depend on the 
coordination hypotheses. If the normal coordi- 
nations of the different elements in the sample 
are denoted by Ci, the number of bonds for element 
A will be 

a, = Null = Ga’, + 1x1 

1x1 being the variation in the number of bonds 
for the element in question when it goes from 
~ordination C, to N. Elements B and D can 
simultaneously change their coordinations and, 

therefore, the number of bonds in them is given 

bY 

Ui=(:iU’if(Yil (i#l) 

where lyil represents the variation in the number 
of bonds for element i. Considering that the vari- 
ation in the number of bonds of a given element 
is equal to the number of electrons it transfers, 
and that this variation is proportional to the per- 
centual concentration of the said element, the 
following system of equations results: 

ixicj~ IYil; 
lYi1 
z =lC 

(K’ = proportional& constant) 

whence the following relationship is obtained for 
the number of bonds of element i: 

a, =c_ar, + a’~a’i(IN-Cll) 
1 ,I- C a’i 

if1 

which enables us to find the expressions that 
depend linearly on the N-coordination attributed 
to type A 

a2-a3=cr+/3N, as= y-6N (131 

where parameters LY, p, y and 6, which depend 
on the specific characteristics of the alloy and on 
the coordination variations of the different con- 
stituent elements, are related among themselves 
through the equations 

cr=~ar2- Cc&‘3 - C,P, 

/3=6-c, y=C,af3+C16 

where [E[ =a’i~‘~/‘Z ,,,a’,, 161 =U’,U’JZ1_lU’i. Pa- 
rameters 6 and E reflect the evolution of the 
coordinations of elements 1 and if 1 as the com- 
pound takes form. When one of these type of 
elements increases its coordination and the other 
decreases it, the corresponding parameter is pos- 
itive; if both types increase or decrease their 
coordinations, it is negative; and the parameter 
is annulled when element 1 or i# 1 keeps its 
coordination, in which case i cannot take the value 
of the subscript of the indicated element. These 
parameters, which depend on the coordination 
hypotheses of the elements in the material, are 
introduced into relationship (11) using equation 
(13) and the following expression is thus obtained 
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for the area under the first RDF peak: 

+P I= Aij- x Aij 
i-j+1 ij # 1 

i+;j 

(14) 

which is a function of the coordination postulated 
for element A and of the number of bonds among 
a single type of pairs of elements, and where 
parameter Q is defined by the relationship 

Q = &ji zl Aij + Cl- 4jIi T+ 1 Aij (l-9 
am. 

i#j 

The expression of the theoretical area, deduced 
above, enables us to find, according to the ex- 
perimental area, the variation interval of the num- 
ber of bonds between the elements of a certain 
pair, for each coordination hypothesis. This fact 
is very useful when choosing the most adequate 
coordination for the elements which usually make 
up compounds with different coordinations. 

Deducing the relative coordination numbers 
The relative coordination numbers, nij, of the 

different pairs of elements of a compound, are a 
very interesting set of parameters when postulating 
the short-range order of a glassy solid. These 
parameters, which represent the average number 
of j-type atoms surrounding an i-type atom, can 
be related to the coordination, N, attributed to 
a certain element; and bearing in mind the re- 
strictions imposed by its intrinsically positive na- 
ture, it is possible to choose the most adequate 
value for N. 

When postulating the absence of bonds between 
certain types of elements; the corresponding nij’s 
are null. As it is always possible to assign subscript 
I to one of these types, considering the above 
mentioned hypothesis to the effect that the average 
coordination numbers of this element with all the 
elements, k, bonded to it, are propo~ional to their 
respective percentual concentrations, the following 
expressions are obtained: 

lYYkN U’,N -- nlk- c alk -- r&l-- 2 atk 
k k 

which depend on the coordination attributed to 
element A. Bearing in mind that the relative 
coordination numbers are given by nij=aij/a’i, 
expressions can be deduced for the nijs (i, j# 1) 

enabling us to hypothesize on the short-range order 
of the solid. 

From the equation ai =2aii +Z;i+jUij, and con- 
sidering relationship (13), expressions are obtained 
for the coordination numbers nij (i, j + 1) as func- 
tions of the number of aij bonds. In order to find 
these expressions, two parallel deductions were 
carried out, according to whether i = j or if j, with 
the following result: 

condensing, through the symbol $j, the two possible 
expressions for each one of the coordination num- 
bers deduced. The fact that these numbers must 
be positive or null makes it possible to find the 
variation of the number of bonds, aij, for each 
value attributed to N. The intersection of this 
interval with the one deduced from the experi- 
mental area, is extremely useful for choosing the 
value of N which best agrees with the structural 
information supplied by the RDF, when postulating 
the local order of the material. 

Application to some practical cases 

The method described, for determining the pa- 
rameters enabling us to postulate the short-range 
order of an amorphous solid, was applied to a 
relatively wide set of glassy alloys whose experi- 
mental data are quoted in the literature. Different 
structural hypotheses were used, and the theo- 
retical results obtained agree with the mentioned 
experimental data, confirming the reliability of the 
theoretical method developed. This work shows 
the theoretical analysis of the five alloys considered 
most representative of the set studied, whose ex- 
perimental values are shown in Table 1. The 
constituent elements of each alloy were subscripted 
1, 2 and 3 in the order in which they appear in 
the alloy. The coordination hypotheses used for 
obtaining the parameters which define the possible 
local order are shown in Table 2, where C’i (i=2, 
3) represents the coordination of element i in the 
compound. The existence of bonds between all 
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TABLE 1. RDF characteristics of the analyzed alloys 

Alloy First peak Area Ref. 

(at.1 
a (A) b (.@ 

Aso.mSeo.~oTeo.~ (Ml) 2.05 2.90 2.10 1111 
A~o.zoA%.~‘N.~ WI 2.20 3.05 2.18 PI 
~e0.14A~.Jb.~3 (M3) 2.25 3.05 2.42 [13] 
Cu0.&%.&e~.50 (M4) 2.10 2.90 3.23 fl41 
Cuo.oGe,t~Teo.7~ (M5) 2.20 3.10 2.58 ll5] 

TABLE 2. Coordination hypotheses 

All01 N G c, c3 C’2 C’3 

Ml 4 3 2 2 <2 <2 
M2 4 3 3 2 >3 >2 
M3 3 4 3 2 >3 >2 
M4 4 1 3 2 >3 >2 
M5 4 1 4 2 4 >2 

TABLE 3. Parameters related to the coordination hypotheses 

Allo) fY P Y 6 

Ml 55 -5 82.5 7.5 
M2 -30 -10 75 -1.5 
M3 43 0 114 7 
M4 -5 -5 87.5 - 12.5 
M5 -68 -8 140 -8 

TABLE 4. Average bond lengths for each alloy 

Pair rij (A) ref. 

Ml M2 M3 M4 M5 Ml M2 M3 M4 MS 

l-1 2.49 2.86 2.51 2.58 2.58 [16] 1201 j23] 1261 (261 
l-2 2.38 2.43 2.44 2.53 2.39 [17] [Zl] 1231 [U] 
1-3 2.68 2.53 2.58 2.42 2.53 [18] [17] [17] [27] 

1171 
[17] 

2-2 2.34 2.49 2.57 2.57 2.51 [17] [16] [24] [24] [23] 
2-3 2.54 2.68 2.58 2.38 2.58 [17] [18] [24] [17] [17] 
3-3 2.71 2.83 2.60 2.34 2.71 1191 [22] [25] (171 [19] 

pairs of elements in all alloys was postulated, 
except in M2, where the absence of Al-Al bonds 
was presumed [12]. Bearing in mind the mentioned 
structural hypotheses, and using the previously 
deduced theoretical expressions, the values shown 
in Table 3 were calculated, corres~~ding to the 
parameters that depend on the specific charac- 
teristics of each alloy and on the coordination 
variations of its elements. Table 4 shows the average 
bond lengths, which were used for calculating 
parameters Aij and h, shown in Table 5. 

The described theoretical method enables us to 
test different structural hypotheses in relation to 
the c~rdinations or the absence of some types 
of bond, as the expressions deduced for the relative 
coordination numbers and for the area under the 
first RDF peak depend on these hypotheses. On 
the other hand, when deducing this area the 
polynomial functions were used which best fit the 
products of the atomic factors in those cases in 
which said magnitudes differ greatly from the 
approximate values Z,zjl(~iXiZi)‘, a fact which is 
of great interest when accurately evaluating the 
average number of first neighbours in a glassy 
alloy. 

Through eqn. (14), and using the set of param- 
eters obtained, the theoretical expressions of the 

Through the developed procedure, it is possible 
to postulate certain structural characteristics and 

area shown in Table 6 were deduced. These expres- 
sions, together with the experimental areas (Table 
1) with an error of +O.l atoms, made it possible 
to determine the variation intervals for aij (i, j # l), 
shown in Table 6. Equations (16) supply the relative 
coordination numbers, which, due to their intrin- 
sically positive nature, define the new limits for 
magnitude aij, shown in TabIe 6 together with 
their intersections with the intervals corresponding 
to the margin of error of the experimental area. 
These coordination numbers are such that the 
sum of those corresponding to one type of element 
with all those bonded to it is equal to the co- 
ordination postulated for that element. Thus in 
the case of alloy M5, where tetra-coordinated 
copper is postulated, and the electrons necessary 
for the sp3 hybridation of the copper are supplied 
by the tellurium, the coordinations are: four for 
the copper and the germanium, and 86137 for the 
tellurium. The same results are obtained by adding 
the nijs with a fixed i and j= 1, 2, 3 for each 
element. 

To illustrate the theoretical calculations, Fig. 3 
shows the theoretical areas obtained, versus the 
number of Ujj bonds (i, j + 1) for three of the alloys 
studied. This figure shows the intervals in which 
the theoretical areas are simultaneously compatible 
with the experimental area and the corresponding 
coordination numbers. 

The agreement between the theoretically de- 
duced parameters and those obtained from the 
experimental data makes it possible to select the 
most adequate coordination hypotheses in order 
to establish the most probable short-range order 
of a glassy solid. 

Conclusions 
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TABLE 5. Values of parameters A,, and h obtained for s, = 12 Ai-’ 

Alloy Ai1 h 

l-l l-2 1-3 2-2 2-3 3-3 

Ml 1.0707 1.1186 1.8885 1.1778 1.8334 3.0638 22.6048 
M2 0.1417 0.3463 0.6354 1.1012 1.7829 2.8337 - 25.4865 
M3 0.9376 0.9488 1.5577 0.9975 1.6123 2.6009 12.6039 
M4 1.2049 1.3133 1.4012 1.5715 1.6953 1.8347 20.9832 
M5 0.5492 0.6539 1.0651 0.7399 1.1388 1.9535 4.6769 

TABLE 6. Theoretical results obtained for the different alloys 

Alloy Theoretical area Coordination numbers 
nij, ij # 1 

Variation intervals for parameter aij, ij # 1 

Defined by the Defined by limits 
nij parameters of error of the 

experimental area 

Intersection 
of intervals 

Ml 

M2 

M3 

2.0636 + 0.0073ass 

2.2421- 0.0023a2s 

2.4228 + O.O048a,, 

nzz = (19 + 2a,,)/50 
nz = (28.5 - 2a,,)/50 
ns, = 2asJ30 

n2r = (45 - a,)/20 
n, = ass/20 
n3s = (75 - a,)/60 

nr2 = (43 + 2as,)/43 
n, = (74.94 -2a&43 
ns, = 2a,J43 

0 G a3, G 14.25 

O<a,G45 

0 Q as, G 37.47 

0 G ass < 18.68 

0<azg70.48 

0 G as3 G 20.25 

Ogass~14.25 

OgassG4.5 

0 Q ass Q 20.25 

M4 
nz2 = ( - 9 + 2a&/30 

3.2522 + 0.0002ass nz = (97.5 - 2as,)/30 4.5 Q ass G 48.75 O<a,,<389 4.5 d as, Q 48.75 
nss = 2asJ50 

M5 2.1420 + O.O053a,, 
n, = ( - 82.08 + 2a,,)/18 
nss = (148.32 - 2as,)/18 
nss = 2asJ74 

41.04<a,,<74.16 63.77 <a,, G 101.51 63.77 Q a,,< 74.16 

33 23 

Fig. 3. Area of the first RDF peak versus the number of nij bonds (i,j#l) for alloys Ml, M2 and M5. 
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to obtain, from these, the average theoretical 
coordination of a solid, which is compared to the 
experimentally determined coordination. If the 
difference is within the experimental error, it may 
be considered that the hypotheses describe the 
most probable local order of the material. 
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