MATHEMATICS OF OPERATIONS RESEARCH
Vol. 22, No 2, May 1997
Printedin US A

SIMPSON POINTS IN PLANAR PROBLEMS
WITH LOCATIONAL CONSTRAINTS.
THE POLYHEDRAL-GAUGE CASE

EMILIO CARRIZOSA, EDUARDO CONDE,
MANUEL MUNOZ-MARQUEZ anp JUSTO PUERTO

In this paper we address the problem of finding Swnpson points in planar models with
locational constraints when distances are measured by polyhedral gauges. Making use of the
results we have stated in a previous paper, we show here the existence of a finite set of points
in the plane, independent of the weights associated with the users, that contains at least a
Simpson point.

Connection between Simpson points (as a result of a voting process) and Weber points (as
the outcome of a planning process) are explored. It is shown by means of an example that the
existing relations for the unconstrained case are no longer true when locational constramts
are imposed. In order to reconcile both voting and planning processes, a biobjective problem
15 described, for which we construct a finite dominating set.

1. Introduction. Let A be a finite set of points (users) in R?; associated with
each a € 4, let u({a}) be a positive weight, and let »* be a gauge (see Durier 1990,
Durier and Michelot 1985, Michelot 1993, Rockafellar 1970). Given a nonempty set S
in R?, the Simpson function (Carrizosa et al. 1993b, Durier 1989) gives to each
feasible x € S the value W(x),

Ws(x) = rynea;(,u({a €A:vi(y —a) <v'(x—a)})

where p is defined as

w(B) = 3 u({0}).

beB

In this paper, exploiting the general properties given in Carrizosa (1992) and
Carrizosa et al. (1993b), we address the problem of finding the Simpson set 3(A, S)
(the set of optimal solutions to problem min, _ sWs(x)) under the following assump-
tions:

—Each »* is a polyhedral gauge in R2.

—The feasible set S is a polyhedron.

We use the same methodology than in Carrizosa et al. (1993b), which has a very
long tradition in the location field (see, e.g., Francis 1963, Hakimi 1964, 1990, Thisse,
Ward and Wendell 1984): we show the existence of a finite set—independent of the
weights—that contains at least an optimal solution.

The rest of the paper is organized as follows: §2 reviews some properties of
polyhedral gauges, and extends the definition of elementary convex sets and intersec-
tion points (see Durier 1990, Durier and Michelot 1985) to constrained problems.
Section 3 presents a localization result, namely: the set of intersection points contains
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292 E. CARRIZOSA ET AL.

at least a Simpson point. In §4 we show by means of an example that the existing
connections between Simpson and Weber points for the unconstrained case do not
remain valid when locational constraints are imposed. In order to reconcile the
processes of voting and planning, a biobjective problem is proposed, for which the set
of intersection points is a dominator.

In order to avoid redundancy, we have not repeated in detail the concepts and
interpretations used in this paper. We refer the reader to Carrizosa et al. (1993b) for
further details.

2. Polyhedral gauges and elementary convex sets. We recall (see, e.g., Durier
1990, Durier and Michelot 1985) that a function vy is said to be a polyhedral gauge if

there exists a polytope B (the unit ball of y) containing the origin in its interior such
that

v(x) = inf{t > 0 %x € B} Vx € R?.

Let {e', ..., e"} be the set of extreme points of B. Then, B consists of the convex
combinations of {e!,...,e"}:

m m
B = {xERZ:x= Y Ae', for some A, ..., A, 20, 1A, = 1}.
=1

=1
With that, for all x € R?,

y(x) = inf{t > 0: %x =Y Ae'; YA =12 OVi}

=1 =1

m m
=min{t20:x= Y we's Zpl=t;uleVz’}
1=1 =1

= min{ DINTRED DTS T OVi}.

i=1 =1

Hence, y can be evaluated by solving the linear program above, the dual of
which is:

max{{u, x): {u,e'y) <1Vi= 1,...,m},
where { -, - ) denotes the usual scalar product in RZ. Let BY denote the polar of B:
B ={u:{u,z) < 1Vz € B}
={u:{u,e’) <1Vi= 1,...,m}.

BY is also a polytope, whose set of extreme points will be denoted by ext(B°).
Hence, we can obtain an equivalent expression of y in terms of ext(B"):

y(x) = max (v, x) Vx € R2.

veext(BY)
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Expression above implies a result that has been widely observed and successfully
used in the literature: every polyhedral gauge vy is a piecewise linear function.

Indeed, denoting for each v € ext(B’) by Nyi(v) the normal cone to B? at v, one
has that there exists a finite family @(y) of polyhedra, @(y) = {Ngo(v): v € ext(B°)}
that covers R?, and, within each of these polyhedra Nygo(v), y is a linear function.

With these ideas in mind, we can extend to the constrained case the definitions of
elementary convex sets and intersection points, given by Durier and Michelot (Durier
1990, Durier and Michelot 1985) for the unconstrained case. First, recall that, see,
e.g. Brondsted (1983), given a closed convex set X, a convex subset F of X is said to
be a face of X iff for any two distinct points x, y € X such that the open segment
with endpoints x, y intersects F then the whole closed segment with endpoints x, y is
contained in F.

DEFINITION 2.1.  Let 4 be a nonempty finite set of points in R, let {v° < 4 DE Q
set of polyhedral gauges, and let S be a nonempty polyhedron.

* A nonempty subset C of S is said to be an elementary convex set in S (e.c.s. in S) iff
for each a € A there exists Q¢ € @(v*) such that C is a face of S N N 2 4la + 0.

* A point x € § is said to be an intersection point in S iff x is an extreme point of
some e.c.s. C in S.

REMARK. From the definition, it follows that a set C is an e.c.s. in R2 iff C is an
e.c.s. following the definition of Durier and Michelot (1985). Analogously, a point x is
an intersection point in R? iff x is an intersection point following the definition of
Durier and Michelot (1985).

REMARK. From the definition of faces of a polyhedron and, since a nonempty
intersection of e.c.s. in R? is an e.cs. in R? (see Durier 1990), it follows that the
nonempty intersection of elementary convex sets in S is also an e.c.s. in S.

REMARK. The set I of intersection points in S has a very manageable form: given
a convex set X, denote by ext(X) the set of its extreme points; for each a € A, let B,
denote the unit ball of »*; given a, ¢ € R?, e # 0, denote by r(a, ) the closed ray
with apex at a in the direction of e, i.e.,

r(a,e) = {x: x = a + Ae for some A > 0}.

With that notation, as a direct application of the relations between normal cones to
B and faces of B (see Durier and Michelot 1985), it follows that the set I of
intersection points in S consists of the points in

eANS.

e ext(S).

cext{S Nr(a,e)acAd, ec ext(B,)}.

cext{S Nria,e)Nrial,el) a',a' € A, e € ext(B,), e/ € ext(B,,)i + j,}.

In particular, if |ext(B,)| = O(r) Va € A, then |I| = O( A|*r? + |ext(S))).

3. A localization result. The purpose of this section is to show that, for any
system of weights { u({aD): a € A4}, the set I of intersection points in S contains at
least a Simpson point, i.e., I N 3(A4, S) # &. The methodology used is very similar to
that used in Carrizosa (1992) and Carrizosa et al. (1993b): First, we describe
geometrically the set of weakly efficient points (see Carrizosa et al. 1993b for details),
and exploit the fact that the set 3(A4, S) of Simpson points can be represented as
intersections of sets of weakly efficient points.
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Given B C A, B #+ &, we denote by WE(B, S) the set of weakly efficient solutions
to the point-objective problem

. b _b
min (»*(x = b))ep
ie.,
WE(B,S) = {x € S:n0 y € § verifies »"(y — b) < v’(x — b) foreach b € B}.

Let us first give some results about WE(B, S) when B is an arbitrary nonempty
subset of A. Observe that such results are in most cases direct extensions of
analogous properties given in Durier (1990) for the unconstrained case. Given a set
X, let ri( X) denote its relative interior; see, e.g. Brondsted (1983).

LEMMA 3.1.  Forany x € S, there exists an e.c.s. F in S such that x € 1i(F).

PROOF. Let x € S; by Theorem 6.2 in Durier (1990), there exists an e.c.s. C in R?
such that x € ri(C). On the other hand, by Corollary 5.7 in Brondsted (1983), there
exists a face H of S such that x € ri(H). Hence, C N H is an e.cs. in §, and
x € 1i(C) N ri( H), thus (see page 25 of Brondsted 1983) x e ri{lC N H). o

LEMMA 3.2. Let x € WE(B, S), and let F be an e.c.s. in § such that x € ri(F).
Then, F ¢ WE(B, S).

PROOF. Let x € WE(B,S). By Theorem 1 in Lowe et al. (1984), there exist
{w,}, g, w, = 0 for each b € B with I, . gw;, = 1 such that

Y ow,pb(x —b) < Yo w,v’(y—b) VyeSs.

beB beB

In particular, if we define the function g: y > g(y) = ¢ W, v?(y — b), one has:
g(x) = ming(y) = ming(y).
yeSs yeF

The function g is affine in F, F is a polyhedron, and g attains its minimum in F at a
point x in ri(F). Hence, g is constant in F, which implies that any point y* € F
solves a Weber problem in S, namely:

g(y*) =g(x) = ;neigg(y)

thus y* € WE(B, S) for each y* € F. Hence, F C WE(B, ), as asserted. O
THEOREM 3.1. WE(B, §) is a connected union of bounded elementary conuvex sets.

PrOOF. Nonemptiness of WE(B, S) can be proved as follows: consider the func-
tion g: x = g(x) = L, zv"(x — b). Since g is convex (thus continuous), has com-
pact level sets and S is closed, there must exist some x* € S such that g(x*) =
min . ¢g(x). Such x* is obviously a weakly efficient solution. Furthermore, WE(B, S)
is also bounded; indeed, WE(B,S) C U,cplx €8 v*(x) < p?(x*)}, which is a
bounded set. In order to show that WE(B, S) is a union of clementary convex sets in
S, we have to show that, for any x € WE(B, § ), there exists an e.c.s. F in § such that
x € F c WE(B, S). Given x € WE(B, S), by Lemma 3.1, there exists an e.c.s. Fin S
such that x € ri(F). By Lemma 3.2, F ¢ WE(B, S). As WE(B, S) is bounded, F is
necessarily bounded. Finally, connectedness follows from the general results in
Warburton (1983), and the result holds. o
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We can give a geometrical description of the set 3(A4, S) of Simpson points and
state a localization result:

COROLLARY 3.1.  3(A, S) is not empty, and can be represented as a finite union of
bounded elementary convex sets in S.

PROOF.  Since W takes a finite number of different values, (A4, S) is nonempty.
Furthermore, if we let & = min, o (W(x), it follows from Theorem 3.1 in Carrizosa
et al. (1993b) that

3(A,8)= () WE(B,S);

w(B)>a

thus, by Theorem 3.1, the result holds. o

COROLLARY 3.2. The set I of intersection points in S contains at least a Simpson
point.

Proor. By Corollary 3.1, there exists an e.cs. F in S such that F C 3(A4, S).
Furthermore, as 2(A4, §) € WE(A, ), and WE(A, S) is bounded, F is also bounded,
thus has at least an extreme point x. By the definition of the set I of intersection
points, it follows that x € I, and the result holds. o

Hence, in order to find a Simpson point, one can follow the process below:

(1) Find the set I of intersection points in S.

(2) Evaluate W, at each x €I following the algorithm described in Carrizosa
(1992) or Carrizosa et al. (1993b).

(3) Take as Simpson point a point x € I with smallest value We(x).

As an illustration, consider the following example:

ExampLE 3.1. Let A4 ={a,b,c}, with a = (0,4), b = (=2,1), ¢ = (0,0), associ-
ated with the following gauges and weights:

v? is the [, norm, i.e., v*(x) = max(|x,], [x,).

v’ is the I, norm, i.e., »"(x) = |x,| + [x,].
v¢ is the asymmetric gauge whose unit ball is the triangle with vertices

(1, =1),(0,1),(—1, —1). In other words,
v“(x) = max({e;, x), ey, x),{es, x)),

with e; = (2,1), e, = (0, —1) and e; = (0, — 1), the extreme points of the ball dual
to ve.

pdad) = 2/9; u({b) = 1/3; ulch = 4/9.

Let S be the square [1,4] X [—4,2]. See Figure 1.

The set I of intersection points in S is easily shown to consist of ten points, whose
coordinates and values of W; are given in Table 1.

Hence, z'° is a Simpson point; moreover, one can see that z!° is the unique
Simpson point (i.e., 2(A4,S8) = {z'}. Indeed, if there were some z # z'°, with
z € 2(A, S), then, there would exist some bounded e.c.s. F in S such that z € ri(F)
CF c2(A,S). Then, all the extreme points of F (and at least one of them is
different to z'”) would be both Simpson points and intersection points in S, which is
false (see Table 1). Hence, 3(A4, S) = {z1°), as asserted. O

4. Simpson and Weber points. Perhaps the most popular and extensively studied
problem in location theory is the constrained Weber problem, which seeks (see, e.g.
Love, Morris and Wesolowsky 1988, Plastria 1993), a point x* € S (a Weber point)
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FIGURE 1. The intersection points in S.

TABLE 1

W, at the intersection pownts in S.

Coordinates Ws
G, 1
1,2 7/9
2,2) 7/9
4,2) 1
“.D 1
4,0) 1
4, -4 1
a, -4 1
(1,-D 5/9
(1, 4/9

that minimizes the average distance from the users to this point. In other words, if we
define the function M,

M:x—>M(x) = 2 w({a})v(x —a),

ac€A

the Weber points are the minimizers in § of M.

Connections between Weber points (as outcome of a planning process) and the
outcome of a voting process have received considerable attention for both networks
and planar topologies (see, e.g., Hansen and Thisse 1981, Labbé 1985 for networks,
Demange 1983, Durier 1989 for planar models) because of their obvious and
important implications in real world locational decision-making: if both processes give
the same output x, then, locating the facility at x not only maximizes the efficiency of
the system, but also attains the highest user satisfaction (measured by the consensus
obtained by x in terms of votes).

In this sense, some successful results have been obtained. For the planar case, the
most general one (valid under less restrictive assumptions than those stated here) is
due to Durier (1989):

THEOREM 4.1. Suppose that v* = v for each a € A. Then, any point x € R? with
Wg2(x) < 1/2 is also a Weber point.

copynont © Z0UT All Rights Reserved
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Hence, as soon as there exists some point x € R? with Wy(x) < 1/2 (ie., x is a
Condorcet point), then we have that x is also a Weber point in R2.

This result is, however, rather limited, since Condorcet points are unlikely to exist
(Demange 1983). A significant exception is the /; norm case: if »* = v for each
a € A, and v is the /; norm, then it is well known (see, e.g., Demange 1983, Durier
1989) that Condorcet points exist whatever the set A is. Hence, in the / | norm case,
every Simpson point is a Weber point.

Unfortunately, things may be rather different when the feasible region S is a
proper subset of R?:

* The theorem above is no longer true: there might exist points x € S with
Ws(x) < 1/2 not being Weber points.

» In the /; norm case, although the existence of Condorcet points in constrained
problems has been proved (see Carrizosa et al. 1993a), there does not seem to be a
direct connection between Condorcet and Weber points.

As an illustration, consider the following example:

EXAMPLE 4.1. Let v be the [, norm, let 4 = {a, 4%, 4%, a*, a®}, with

a' = (0,2), a’* = (1,3), a’ = (2,1), a* = (3,5), a’ = (4,4),

and let the weight associated with each a' equal 1/5. If S is the triangle with vertices
(0,0),(2,0),(0,1), it is easy to check that

*2(A4,8) ={(2,0)}, and Wy(2,0) = 2/5 < 1/2.

» The point (1,1/2) is the unique Weber solution in S. ©

In real world location problems, decision-makers might be interested in locating
the facility at a point x € S with a very high system efficiency, but, at the same time,
with a negligible social reaction against. In terms of competitive location (see, e.g.,
Hakimi 1990), making both values small means having low transportation costs and
capturing at the same time a high portion of the market.

In order to deal with these two (and as shown in the example above) criteria, two
classical approaches may be followed:

(1) The constraint approach.

(2) The bicriterion approach.

In the constraint approach, one of the two objectives is taken as objective function,
and the other one is considered as constraint. Hence, one could consider as feasible
the set those points x € § such that at most a portion « will be against, and one
minimizes M:

min  M(x),
(CPy(a)) st. Wy(x) < a,
xeSs.

On the other hand, one might control the efficiency of the system (by considering as
feasible only those points x € § with M(x) < ¢) and will minimize, among these
points, the votes against the location. This leads to solving the optimization problem
(CP,(1)):

min W, (x),

(CP(1) st. xSt

with S(¢) = {x € §: M(x) < ).
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Finally, in the bicriterion approach, one considers the biobjective (BP) problem of
simultaneous minimization of M and Wj:

(BP) min (M(x), Wy(¥)).

The results developed in the section above enable us to conclude that the set 1 of
intersection points helps to solve these problems:

THEOREM 4.2. For each «, 0 < a < 1 such that (CP{«a)) is feasible, the set I
contains at least an optimal solution to (CP(«a)).

PROOF. We first show that we can restrict ourselves to the case a < 1. Indeed, if
a = 1, the set {x € §: W(x) < a} equals S, thus (CP(1)) becomes

minM(x).
x€S
As M has compact level sets and S is closed, it follows that there exists some x* & S,

optimal solution to (CP(1)). Furthermore, such x* must be in WE(A, S), thus, by
Theorem 3.1 of Carrizosa et al. (1993b), W (x*) < 1. Hence, (CP,(1)) is equivalent to

min  M(x),
st. W(x) < a”,

with a* = max{W,(x): x minimizes M} < 1. Hence, we restrict ourselves to the case
a < 1. Let x € § such that W(x) < . By Theorem 3.1 in Carrizosa et al. (1993b),
one has that

x € WE(B,S) foreach B C A with u(B) > Wy(x).

Furthermore, since W (x) < @ < 1, x € WE(A, §). By Lemma 3.1 there exists an
e.cs. F in S such that x € ri(F). We will show that an extreme point of F domi-
nates x.

By Lemma 3.2,

x €ri(F)
CF

c (N WE(B,S).

p(B)>W(x)
This implies that F is bounded (F is a subset of the bounded set WE(A,S)), and
Ws(y) < Ws(x) Vy €F.

Now, consider the optimization problem min, . »M(y); since F is an e.cs. in §,
each v is linear in F, so M has the same property. Furthermore, F is a polyhedron,
and, as shown above, is bounded. Hence, there exists an extreme point x* of F such
that M(x*) < M(x). With that, we have shown:

(1) x* e L

Q) M(x*) < M(x).

(3) Wi(x*) < « (because x* € F C {y: Wy(y) < a}).

Hence, the result holds. ©
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Concerning problem (CP,(2)), it should be observed that the corresponding set S(¢)
is a polyhedron, so the results obtained in the previous section can be used to find an
optimal solution (one just has to inspect the intersection points in S(¢), which would
be an easy task when the shape of the gauge is simple enough to enable the explicit
construction of S(¢) at a low computational cost).

Theorem 4.2 can be used to show that 7 is also a dominating set for the biobjective
problem (BP):

COROLLARY 4.1.  For every x € S, there exists x* € I such that
Ws(x*) < Wy(x),
M(x*) < M(x).

PROOF. Just take o = Wy(x) in the theorem above. 0O

5. Conclusions. Exploiting the results obtained in Carrizosa et al. (1993b), we
have addressed in this paper the problem of finding Simpson points in planar models
with locational constraints when distances are measured by polyhedral (and possibly
different for the different points) gauges. The most remarkable result states that a
finite set of points (the set / of intersection points) contains a Simpson point. Hence,
the problem is reduced to finding 7 and evaluating the points in I, a task that can be
done using the algorithm proposed by the authors in Carrizosa et al. (1993b).

We show with an example that the weak existing links between Weber and Simpson
points may disappear when locational constraints are introduced. In order to recon-
cile both voting and planning, we propose some optimization models, which can be
solved with the tools developed in this paper.
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