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Abstract. Lie theory of transformation groups is applied to the study-ef» reaction-diffusion
systems in two-dimensional media. Our study proves that they are invariant with respect to a
five-parameter symmetry group. Multiple types of invariant solutions with physical interest are
possible, and some of them can be found in the literature applied to particular models.

1. Introduction

Nonlinear reaction-diffusion equations have been widely studied throughout recent years.
These equations arise naturally as description models of many evolution problems in the
real world, as in chemistry [1], biology [2], ecology [3], etc.

As is well known, complex behaviour is a peculiarity of systems modelled by reaction-
diffusion equations, and the Belousov—Zhabotinskii reaction [4—6] provides a classic
example.

Reaction-diffusion equations have been investigated for certain boundary and initial
conditions and in most cases explicit solutions cannot been found.

This paper deals with the application of Lie group theory to nonlinear reaction-diffusion
equations. Although group analysis of differential equations has been applied a great deal
in many fields of mathematical physics [7—11], much less has been applied in connection
with problems related to reaction-diffusion models. We think that the application of these
techniques to systems of reaction-diffusion equations may help to elucidate many types of
solutions, especially for models which possess the appropriate symmetries.

We have selected for investigation the denominated » models, introduced some
years ago by Koppell and Howard [12], which have been widely used in prototype studies
of reaction-diffusion processes. Their importance lies in the factithatw systems arise
naturally as the dominant part in the asymptotic analysis of many general reaction-diffusion
systems [13]. Spiral wave solutions of particular- » systems have been investigated,
for example, by Greenberg [14], Hagan [15] and Kuramoto and Koga [16]. Many other
solutions are also known and the list of references is extensive.

We show that the. — w systems in two-dimensional media are invariant with respect
to a five-parameter symmetry group. The invariance properties give rise to multiple types
of solutions and to theeduced equationswhich are essential in the study of bifurcating
solutions applied to particular models.
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2. Lie symmetries and\ — w reaction-diffusion models

The A — o reaction-diffusion systems with two reactants are described by systems of partial
differential equations (SPDE) of the form

u; = DV%u + 1(2)u — w(z)v

v, = DV + w(2)u + Az)v Q)

7= (uz + U2)1/2
where A(z) is a positive function of; for 0 < z < zp and negative forz > zg, w(z)
is a positive function ofz; u = u(x,y,t) andv = v(x, y,t) represent, for example,
concentrations of two chemical reactants which at the same time diffuse through the plane
(x, y). D represents the diffusion coefficientz)u —w (z)v andw (z)u+r(z)v are nonlinear
functions that describe the kinetics of the reaction. The spacially homogeneous system, has
a limit cycle solution with amplitudey and frequencyw(zo), thus,A —w systems have been
proposed as models for chemical or biological systems which exhibit oscillating behaviour
in homogeneous situations.

We have found, using Lie group theory of transformations [8], that this system is

invariant with respect to the five-parameter group which has associated with it the following
characteristics:

0" = ayuy + axuy + azu; + as (xuy — yuy) + asv @
Q" = ayvy + azvy + agv, +ag (xvy — yvy) — asu
where the sefa;}>_; represents arbitrary constants. Every get>_, is associated to a
one-parameter group of transformations.
Five simple one-parameter groups can be obtained by makirg 1,i = 1,...,5,
anda; = 0 with j # i. We denote each of theses groups @y, and the associated
characteristics by)! and Q;:

Gi: 01 = uy 01 = v«

Gy Q% = Uy Qg =y

Gs: Q% = U Q§ = (3)
Gy Q) = XUy — yuy Q0 = xvy — yvy

Gs . Qs =v Q¢ = —u.

The characteristics associated with, G, and Gz correspond to translations in the
coordinatesx, y and ¢, respectively. Those associated with, and Gs correspond to
rotations in the planeér, y) and (u, v), respectively.

Also, we denote byG;; the one-parameter groups obtained by making- 0, a; # 0
anda; =0 with k £, j.

It is convenient to change the variablés y) to polar variablegr, 9), and (u, v) to
polar variablegz, ¢). The characteristics af 4 and Gs are

Gy Q) = asug 0y = asvy @
Gs : Qi =0 0% =1
In terms of the variable&, ¢), system (1) reads
\Y
V2 +2(M(z) — |V$|?) — 2, = 0 v2¢+2v¢>7Z Y w@) —¢ =0. (5)

Let us now consider the general reaction-diffusion systems of the form
F=Vu+ f(u,v) —u, =0 G =V +gu,v) —v =0. (6)
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If these systems are invariant under the groups associated with the characteristics (2),
we can demonstrate that they are of the type w.

These systems are invariant with respecGtg G,, Gz and G4, becauser’ and G do
not depend explicitly or(x, y, t). The condition of invariance with respect € is

Vs(F) =0 Vs(G) =0 (7)
whenu is a solution of the system (6). We represent Wyythe prolongation of the Lie
operator forGs:

0

VS—_U7M+M*+Z_U17+M87UI (8)

where! is a multi-index referring to the multiple derivatives ofand v, with |7| > 0.
Then

a d d d
—Vzv—v—f—i—u—f—l-v,—o Vzu—v—g—l—u—g—u,—o 9)
ou av ou av
That is, substituting:, and v, from (6):
A L0808
—v= - — . 10
Vou Ty T 78 Vou oy = (10)
These equations may be written in the variallesy) as
af g
NG 2 = 11
6= ¢ 26 f (11)
so thus
f _of
=0 =
I+ 592 87 Tog

Consequently, the functiong and g take the form of the kinetics of the — w systems:

f =Az)zco9¢) — w(z)z SiN(@) = A(2)u — w(z)v
g = w(2)z C0gP) + A(z)z SiN(P) = w(z)u + A(2)v.
Thus, we have proved that— w systems are characterized, among reaction-diffusion
systems, by their symmetry properties. In the next section we show that the study of

solutions invariant with respect to some subgroups of the full symmetry group may be
useful to describe pattern formation.

(12)

3. Invariant solutions

Invariant solutionsu and v, for a subgroup of the full symmetry group, i.e. partially
invariant solutions [17], must satisfy system (1) and the characteristic equations

Q"(u,v) =0 Q'(u,v)=0 (13)

for some set of the constanfg;}. This requirement imposes special forms to the solutions.
Substitution in system (1) gives rise to the reduced equations, which are PDEs with the
number of independent variables reduced to one.

There exist two types of invariant solutions according to the value of the congtant

() If a5 =0, it is possible to change the variables y, r) to new variablegé,, &, n),
such that the characteristic equations are

u, =0 v, =0. (14)
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Hence, invariant solutions depend only @a, &,). Substitution in (1) leads to a new system
of PDEs with two independent variables.

(i) If as # 0, it is possible to change variables fram y, r) to (&1, &2, n) such that the
characteristic equations are

au, +v=0 avy, —u =0. (15)
Then
u=z(Enecos( +hEE) vz E)sin(l+pELE)). (16)

That is, invariant solutions are periodic functions with respectyto Substitution of
7 = z(£1, &) and¢ = (n/a) + B(&1, &) in (B) leads to the reduced equations foand .

If a solution is invariant with respect to a two-parameter group, the reduced equations
are ordinary differential equations (ODES).

In the following a solution invariant with respect to a groGp will be called aG;
solution. If it is invariant with respect to two grougs andGy, it will be called aG; + G,
solution.

4. Multiple solutions

In this section we consider solutions invariant with respect to different subgroups.

4.1. Homogeneous solutions
These areG; + G solutions. The reduced equations are
AMz)—z=0 ¢ —w(z) =0. (7)

As A(z) has a zero with negative derivative i3, then there exists a stable limit cycle
defined by the equations

u = 70 Cogw(z0)t + ¢o) v = zo SiN(w (20)f + Po). (18)

4.2. Travelling waves
These areG 5 solutions, and the characteristic equations take the form
7z, =0 a1, —1=0. (19)
Then
X . X
u=z(y,1) COS( + B, t)) v =2z(y,t)sin ( + B, t)) . (20)
ay ay
If in addition they areG3s solutions,
X t . by 1t
u=z(~y) COS< + — + a(y)) v=2z(y) S|n< + — + a(y)) (22)
a as a as

which are travelling wavetrain solutions.
The reduced equations are

1 , 1
Zyy +2 (A(z) -5 - af) =0 a2+ (w(z) - ) =0. (22)
a; z as
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4.3. Stationary bands
The characteristic equations for the two-parameter giGup+ G3 are

Zx:O ZZIO

1 23
Or = — ¢ = 0. ( )
ai
The solutions take the form
u=1z(y) cos(x + ﬂ(y)> v =2z(y)sin (" + ﬂ(y)> : (24)
ay ay

The reduced equations are

1 ,
1

4.4. Wave packets
The characteristic equations faf; 35 solutions are
a1zx +azz; =0 az¢y +ai¢, —1=0. (26)

A change of variables ta’ = x — ¢yt and¢’ = ¢, wherecy = ai/as, leads to new
characteristic equations:

aiZy = O a3¢t’ — 1 = 0 (27)
The amplitude and phase in the new variables take the form
z=2z(x,y) ¢ = Q'+ B, y) (28)

whereQ = 1/a3. The invariant solutions are
u=z(x', y)coIQ + B, y)) v=z(,y)sin(Q + B, y). (29)
We define the complex function
i=u+iv =z y)dPxn+an, (30)
It is easy to compare this expression with the wave packet travelling in-theection:

iW = f Gk, y) ekx=e®n gi (31)

The group speedy = dw/dk is assumed to be approximately constant in the interval
whereG is significantly different from zero. Thew(k) = wo + cgk’, with k' = k — ko for
some arbitrary wavenumbeég in that interval, so

= / G'(k', y) kox+kx—wor—cgk'n) g — A (!, y) @*@'y) @ kox—won) (32)
with G'(k', y) = G(ko + k', y), and
A, y) €7 = ( / G'(K, y)e® e dk/). (33)

This expression may be identified with tli& 35 solutions if
wo = kocg — 2 ax',y) =B, y) —kox'. (34)
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The reduced equations are
oy + Zyy + Z()\(Z) - ,3)(/2 - ﬂyz) + Cglx = 0

Zx' Z
IBX’X’ + ﬂyy + Zﬁx’?x + 2,3\? + CL)(Z) - Q+ Cgﬂx’ =0.

(35)

If the solutions areG, + G135 invariant, the functiong ands do not depend ory, that
is the wavefronts are straight lines.

4.5. Solutions with rotational symmetry
These areG,4 solutions, with characteristic equations

ug =0 vy = 0. (36)
4.5.1. Stationary target patterns.These are&5,+G3 solutions. The additional characteristic
equations are

u, =0 v, = 0. (37)

The solutions are of the form = u(r), v = v(r). The reduced equations are

urr + L;‘*’ +ur(z) —w(z)v =0 Upr + % +uw(z) + A(z)v =0. (38)

4.5.2. Travelling circular waves. These areG4 + G35 solutions, with characteristic
equations

zz=0 azp, —1=0. (39)
The solutions are of the form
t e
u=2z(r) COS( + ,3(r)> v =z(r)sin ( + ﬁ(r)) . (40)
as as
The reduced equations are
r r r 1
tt T 20— BN =0 put 4287 0~ L =0 (41)
r r Z as

If B(r) is not constant these solutions are travelling circular waves with speed1/a38,.

4.5.3. Stationary circular waves.If B(r) is a constanf8, thenw(z) must be also constant
with value Yas, and the solutions are of the form

u=1z(r) COS(I + ,3) v=2z(r) sin(t + ,B) (42)
as as

which are stationary circular waves.
The reduced equation is

Zpr + % + Z)\,(Z) =0. (43)
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4.6. Rotating waves

These areG34 solutions, with characteristic equations

asug +azu; =0 asvg +azv; =0 (44)
which may be written in the variables = 6 — Q¢ andt’ = ¢, whereQ = a4/as, as

azuy =0 azvy = 0. (45)
Then,u = u(r,0’) andv = v(r, 0’). The reduced equations are
Vu+urz) —w@v+uyQ=0 Vv+uwi@) +12)v+ve2=0 (46)

whereV’ is the nabla operator in the new variables.

4.7. Solutions witls, symmetry
These areG,5 solutions. The characteristic equations are

aszg =0 aspy —1=0. 47
Then,z = z(r, t) and¢ = (0/as) + B(r, t). The solutions are of the form

u=z(rt) cos(e + B(r, t)> v =2z(r,t)Sin (9 + B(r, t)> . (48)
ag ag

These solutions must be continuous in the pléney), that isu(r, 6,t) = u(r, 0 + 2r,1)
andv(r, 0,t) = v(r, 0 + 2r, t), SO thenay = 1/n, wheren is an integer. The solutions are
of the form

u = z(r,t)cognd + B(r, 1)) v =z(r, t)sin(né + B(r, 1)). (49)
There aren equations for the curves of constant phase 2
1
0=—"Br+2r  m=012...n-1 (50)
n n

The reduced equations are

r

2
zrr+z:+z<>»(z)—ﬁr2—’:2>—zz=0 B+ " +26,7 to@) - =0 (51)

4.7.1. Stationary solutions with, symmetry. The solutions and reduced equations with
G45 + Gz symmetry have the same form as above, with the conditionghand z arer
independent.

4.7.2. Multi-armed rotating spiral waves.These aré5 45+ G 35 solutions. The characteristic
equations forGss are

z=0 azp; —1=0.
Then the solutions are of the form
u = z(r)cognb + Q2 + B(r)) v =z(r)sin(nd + Qt + B(r)) (52)

with Q@ = 1/a3. The reduced equations are

2
er+zrr+z<)"(Z)_IBr2_n>:o ﬂrr+ﬂr+2ﬂrﬁ+w(Z)_Q:o (53)

r2 r Z

The phase curves rotate rigidly with angular sp&ed
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5. Conclusions

The A —w systems are characterized, among reaction-diffusion systems, by symmetry group.
Solutions invariant with respect to different subgroups of the full symmetry group exhibit
many different patterns with physical interest. These solutions have a lower degree of
symmetry than the system, so they are probably the emerging solutions in spontaneous
symmetry-breaking processes. The study of the reduced equations with appropiate boundary
conditions applied to specific models is necessary to delimitate the ranges of the parameter
values, inherent to each model, associated with different types of solutions. We are now
concluding a study relative to a model for the Belousov—Zhabotinskii reaction [18], which

is ar — w system.

Appendix. Determination of Lie symmetries

In this appendix we briefly sketch, without technical detail, the method used for obtaining
the characteristics of — w systems. A complete reference can be found in [8].

A.1l. Group of transformations

Let G be a local Lie Groupx = (x1, x2, ..., x,) the set of independent variables, and

u = uh u? ..., u™) the set of dependent variables, in a space of functiosu(x). A

local Lie group of transformations in the spape u) is given by the set of equations:
x¢=X(x,u,e¢€) u*=U(x,u,e¢) (A1)

wheree is a continuous parameter of a local groups 0 being the value of the parameter

for the identity element. The expression local means that the group properties are valid at
least in some neighbourhood o= 0. If the functionsX andU depend not only onr and

u but also on some derivatives, the transformations (A1) have no geometrical interpretation,
and must be seen as transformations in a space of funcations In this case they are
called generalized transformations.

A.2. Infinitesimals
For every transformation (Al) there is an infinitesimal transformation given by
Sx = &(x, u)e du = n(x,u)e (A2)

with ¢ small enough;é = (&%, &2, ...,&") andn = (4, n% ..., n") are called the
infinitesimals of the transformation and are given by

X U
g - <86>5:0 = (ae>e:O. (A3)

A.3. Characteristics

The characteristic of the transformation group is definedas n — £'u;. An equivalent
transformation [8] to (A1) that leaves invariant thevariables is given infinitesimally by

Su= Q(x,u,{u;})e whereQ = (%Z) . (A4)
e=0
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This is a generalized transformation which has an equivalent geometrical transformation.

The expressior{u;} represents the set of derivatives®/ax’ with « = 1,2,...,m and
i=12,...,n.
We represent byu;}, wherel = (iy, i, ..., i,) iS a multi-index, the set of derivatives,
given explicitly by the expressions
8|” (o3 n
{u;} — u a:l,2,...,m;|1|:Zij>O.

i1q .02 in
0x770x5 ... 0x, =1

The infinitesimal transformation far; is given by
du; = (D;Q)e

where D; is the total derivative operator
b Rl b
D; = — — — J|>0
! x’+u18u+zj:u“8u1 71>

with
9 9l

ax! Bxilaxéz . Oxim )
A.4. Invariant functions

A function u(x) is said to be invariant if it is left unchanged by the action of the
transformation group, that i&u¢/de¢ = 0, or equivalently

Q(x,u, {u;}) = 0. (A5)

A.5. Symmetry group

A system of partial differential equations,
F(x,u,{u;}) =0 (A6)

is said to be invariant under a transformation group if every soluiiégs transformed by
the group into other solution®, that isF (x, ¢, {u5}) = 0. The corresponding infinitesimal
condition is

oF oF

QT+D1(Q)7=0 7] >0 (A7)
u duy

whenever is a solution of the SPDE.

A.6. Invariant solutions

Invariant solutions are solutions of the SPDE that are invariant with respect to a symmetry
group. Then they must be solutions of equations (A5) and (A6). When the SPDE models a
physical system, invariant solutions are very often functions that exhibit interesting patterns
with physical interest.
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A.7. Procedure

In order to find a symmetry group of a SPDE we first substitute the partial differential
equations into (A7). The resulting equations are treated as forms in the derivatives of
whose coefficients depend dn, x, ) and the infinitesimalgn, £). After the substitution

we collect together the coefficients of like derivative termsa iand set all of them equal to

zero. The resulting equations are called the determining equations of the group. In practice
these equations are solvable and thus the infinitesimals and characteristics of the group are
determined. The subsequent study is clearly shown in this paper.

A.8. Mathematical packages

These calculations, although not difficult in themselves, are clearly complicated as the order
of the SPDE and the number of equations increase, so a software package for symbolic
mathematics becomes really useful. To our knowledge, the best package for these kinds of
calculations is Macsyma. Programs written by the authors in Macsyma 4.0, running in a
Convex, have been used to obtain the results shown in this paper.
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