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ABSTRACT 

A study was carried out on the radial atomic distribution of 

amorphous alloy As_35Se_30Te.35r using the data supplied by X-ray 

diffraction of its samples, which were obtained using the 

melt-quench method. Short-range order was determined by 

interpreting the Radial Distribution Function (RDF), using a 

theoretical expression which takes into account the variation in 

the atomic scattering factors with s (scattering vector module), 

and approximating them to polynomial functions. The tetra- and 

tri-coordinated arsenic hypotheses, quoted in the literature for 

glassy alloys containing this element, were taken into 

consideration. The result of the study is that, for the alloy in 

question, only the tri-coordinated arsenic hypothesis is 

compatible with the structural information obtained 

experimentally. According to this coordination for the arsenic, a 

spatial atomic distribution model was generated, using the 

conveniently modified Metropolis-Monte Carlo random method. This 

model consists of triangular pyramids with arsenic atoms at some 

of their vertices, joined together forming a network. A 

comparative analysis of the main structural parameters of this 

model revealed their good agreement with the values given in the 

literature for similar alloys. 

INTRODUCTION 

The knowledge of amorphous solids, materials whose atomic 

distribution lacks long-range order [l], is one of the most 

active fields of research in the physics of condensed materials 
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today. The great interest in these materials is largely due to 

their ever increasing applications in modern technology. Their 

possibilities in the immediate future are huge, based on 

characteristic properties such as electronic excitation 

phenomena, chemical reactivity and inertia, superconductivity, 

etc. Within twenty years, an industry with a great future, the 

transformation of different types of energy (light, heat, and 

chemical energy, among others) into electricity, will use large 

quantities of non-crystalline substances [2]. The data processing 

and storing industry will also use these materials, during the 

present decade. Their application in the manufacture of heat, 

corrosion and abrasion-resistant products will also increase 

considerably, as well as in catalysis for the manufacture of 

water desalinization membranes, among other basic chemical 

activities. 

For all these reasons, we may agree with Ovshinsky [3] in 

that, if the ages of Mankind take their names from the materials 

which predominate in them, the next century will be called the 

Glass Age. The current years are marking the transition from the 

age of ordered materials (crystalline state) to the age of those 

lacking long-range order (amorphous state). 

Among glassy materials, chalcogenides are remarkable for their 

semiconducting properties. Kolomiets [4] proved that chalcogenide 

glasses behave as intrinsic semiconductors and that their 

electric conductivity is not altered by the addition of 

impurities. Later on, Spear performed carrier mobility 

measurements in selenium glasses, and Taut et al. [5] studied 

semiconducting properties in amorphous germanium. But these 

materials began to grow in importance in 1968, the year in which 

Ovshinsky [6,7] discovered and published the switching phenomenon 

in chalcogenide glasses. 

Glassy solids, though lacking long-range order, do have short- 

range order in their bonds with first neighbours, up to a few 

atomic diameters, showing a characteristic spectrum in the 

diffractogram. Given the close relationship between macroscopic 

properties and structure, it is interesting to know the atomic 

distribution of a glassy solid and to establish short-range 

structural models, as every amorphous material possesses such a 

structure, which conditions its macroscopic behaviour. 

This work shows the structural information for the glassy 

alloy As.35Se,30Te.35r supplied by its Radial Distribution 

Function (RDF), obtained from the X-ray diffraction intensities; 

after analyzing this information, the coordination hypotheses 

were formulated, making it possible to establish the short-range 

order of the material. 
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Based on these hypotheses and on the geometric restrictions 

imposed by the experimental RDF, a spatial atomic distribution 

model was generated, using the Metropolis-Monte Carlo random 

method. An analysis of the main parameters (coordinations and 

bond lengths and angles) of this model shows their good agreement 

with the values quoted in the literature for similar alloys. 

THEORETICAL ASPECTS 

Structural research in all kinds of materials is based 

fundamentally on the interpretation of the phenomenon of 

radiation diffraction by the solid. Although several kinds of 

radiation are used as instruments for detecting atomic positions, 

X radiation is the most widely used, due to its simple 

technology. It was used for obtaining structural information on 

the semiconducting glassy alloy As.3SSeV30Te.3S. 

The well-known electromagnetic wave diffraction theory, for a 

spatial atomic configuration, makes it possible to deduce a 

relation between diffracted intensity in a given direction and 

the relative positions of the atoms in the material. When this 

relation is applied to an amorphous material, in which it is 

possible to postulate that these positions are completely 

randomly oriented, the diffracted intensity in each direction, 

expressed in electronic units (e.u.), is given by Debye's 

relation [S] 

sin sr 
I = 
e-u. 1 f,f, ST nm 

n,m nm 
(1) 

where s=(4x/X)sin0 is the scattering vector module, f, and f, are 

the scattering factors of atoms n and m respectively, and r,, is 

the distance between these atoms. 

In order to obtain structural information on a glassy solid, 

it is necessary to determine the relative positions between the 

atoms of the material from a set of diffracted intensities: in 

this sense, Zernicke and Prins [9] applied the Fourier 

transformation to a function of the diffracted intensities, 

obtaining an expression of the variation in atomic density with 

the distance to an arbitrary atom in the material. 

A strict evaluation of Debye's equation for ternary alloys 

Ax1Bx2Cx3 (xir i-1,2,3 atomic fraction of element i) makes it 

necessary to consider the atomic scattering factors as functions 

of Bragg's angle through magnitude s, as in the process carried 

out by Finbak [lo], later by Waser and Schomaker [ll], and later 



still by Warren [12]. According to the latter, the following 

relation is found for the radial atomic distribution function: 

2rT n.. - L xi+Pij(r) = 4nr2po 
"i,j 1~ 

+ rG(r) 

where G(r) is the Fourier transformation of the interference 

function, p. is the average atomic density of the material, nij 

is the number of j-type atoms surrounding an i-type atom, rij is 

the distance between them, and function Pij(r) is given by 

S 

Pij(r) =$ ij )‘s (3) 

where sm is the maximum value of s for which there are 

experimental data. By defining a function 

p(r) = 
1 T "ij 

2 ,L,~ xiPij(r) 
2n rl] 13 

representing the local atomic density affected by the Fourier 

transformation of the product of atomic factors, relation (2) 

changes thus: 

4rr2 p(r) = 4zr2po + rG(r) (4) 

which represents the average number of atoms surrounding a 

reference atom at a distance of r. 

In order to evaluate the average number of first neighbours 

an arbitrary atom, that is to say, its average coordination, 

is necessary to find the area under the first PDF peak, given 

the expression 

rPij(r)dr 

of 

it 

by 

(5) 

where a and b are the abscissae of the limits of said peak. The 

quoted area is, as can be seen, related to the relative 

coordination numbers, IIij, reflecting the hypotheses on the local 

order of glassy materials: these hypotheses obviously have an 

influence on the number of chemical bonds between the different 

pairs of elements in an alloy, and have made it possible for 

Vazquez et al. [13] to deduce the following relationship from 

eqn. (5), according to the literature [14]: 



1 
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I 1=-Jfl i,j#l 

i#j 

where h, ~4, p, y and 6 are parameters which depend on the alloy 

and on the coordination hypotheses, N is the coordination 

attributed to a certain element in the alloy, P is a parameter 

which is equal to 2 when, in the variable aij, i=j, and to -1 if 

ifj, and Aij is determined by 

J 
h 

1 
A.. = r. 
I'J 

11 a 
rPij (r)dr (7) 

The aforementioned relation makes it possible to theoretically 

evaluate the area under the first RDF peak as a function of the 

coordination attributed to a certain element in the alloy. The 

agreement between the value thus calculated and the 

experimentally obtained value makes it possible to establish the 

short range order hypotheses for the material, and to generate 

the most probable spatial atomic distribution model. 

Although there are many methods for generating structural 

models of amorphous materials, the Metropolis-Monte Carlo method 

seems to be the most appropriate, among the random methods, for 

describing the local order of a glassy solid obtained by 

quenching, as is the case of the alloy in question, and for 

simulating the structural characteristics of this type of 

materials. 

In this work, a variation on the Monte Carlo method is used, 

similar to the procedure used by Rechtin et al. [15] and 

described in detail in [161. The variations refer to the 

geometrical and coordination restrictions imposed by the 

experimental RDF, which imply a certain semi-randomness in the 

generation of the atomic configuration. In order to build the 

model, one must first determine the number of atoms which, 

according to the experimental density, can be located within an 

adequate volume, and a number of positions is semi-randomly 

generated, greater than the number of atoms quoted in order to 

avoid a low coordination in the model. The positions with lowest 

coordination are then eliminated, and the different kinds of atom 

are randomly assigned to the rest, thus obtaining the initial 

configuration. Its reduced RDF, rG,,d(r), is determined by 

simulating a diffraction process in this configuration, and it is 

compared to the experimental RDF by mean square deviation, used 

as a criterion for deciding on the validity of the generated 

configuration. 



Once the initial atomic configuration is accepted, we proceed 

to its refining, which basically consists of randomly modifying 

the initial position of a randomly chosen atom, and accepting the 

new position if, while all the restrictions imposed by the 

experimental RDF are met with, the mean square deviation 

diminishes. The refining process is considered finished when the 

calculating time necessary in order to obtain a valid movement is 

too long and the mean square deviation does not considerably 

improve. 

Once the refining process is finished, it is possible to 

compare the values of the model's main parameters (coordination, 

bond lengths and angles) to those quoted in the literature for 

similar alloys, in order to obtain the optimum approximation to 

the true structure of the material. 

EXPERIMENTAL 

Preoaration and irradiation of the samples 

The samples of semiconducting glassy alloy As_35Se.30Te.35 

were prepared in bulk form, by melting its elements and quenching 

the molten mixture, in order to avoid nucleation and crystalline 

growth, highly probable processes near the melting point. 

Commercial As, Se and Te, of 99.999 % purity, were pulverized to 

a grain size under 40 I.cm, and mixed homogeneously in adequate 

proportions, in order to obtain 7g samples of the compound. The 

samples were put into quartz ampoules, which were submitted to an 

iterative process of filling with inert gas He, and emptying, 

until a residual pressure of 10m3 torr was reached, in order to 

avoid oxidation. Under these internal pressure conditions, the 

ampoules were sealed with an oxy-acetylene burner, and put into a 

heating furnace at 600°C for 72 hours, turning at l/3 r.p.m. in 

order to ensure homogeneity. The ampoules were then quenched in 

ice-water. 

Due to the characteristic fragility of these materials, and 

in order to obtain ingots of the alloy which could be used to 

carry out electrical measurements, the samples were taken out of 

the capsules by dissolving the latter in a mixture of 

hydrofluoridic acid and oxygen peroxide. The material looked 

homogeneous, from a macroscopic point of view, and exhibited the 

concoidal fracture characteristic of solids with random atomic 

distribution. 

Part of the material was pulverized and pressed into bricks of 

approximately 20x20~1 mm3, and tested by X-ray diffraction for 

the characteristic peaks of a crystalline phase, which it did not 

show, as can be seen in the diffractogram shown in Fig. 1, thus 

confirming the glassy nature of the alloy. 
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Fig. 1. Diffractogram of alloy As.35Se_3,-,Te.35. 

The density of the material was determined by a pycnometric 

method at a constant temperature. The average value obtained, 

after performing a series of measurements, was 5.12 gcmm3, with a 

relative error under 3%. 

In order to obtain structural information on the alloy in 

question, the samples were submitted to X-ray diffraction 

processes. The intensities of the diffracted radiations were 

measured in an automatic SIEMENS D500 powder diffractometer with 

Bragg-Brentano geometry by reflection. The proper selection of a 

narrow frequency interval centred on the frequency of the 

radiation used was obtained with a bent graphite monochromator. 

The device is equipped with a scintillation detector, with a Tl- 

enriched NaI photosensitive window. 

Since the detection system used consists of counting the 

number of photons perceived randomly, whose statistical error 

depends on the number of photons that reach the detector, the 

intensities were measured by fixing the number of counts and 

digitally registering the time used in making them; the error 

throughout the series of measurements is thus kept constant. The 

number of impulses was fixed at 4,000, the relative error being 

kept under 1.5%. The intensities diffracted by the samples were 

measured in the 0.77 A-1 to 14.48 A-1 range, using MoK, 

radiation (x=0.71069 A), and supplying the generator with a power 

of 50 XV-30 mA. Four series of measurements were performed, two 

ascending and two descending, at Bragg's angle, using an angular 

interval of 0.2" in the 5" to 70" scan, and 0.5' in the 70" to 

110" scan. The average values of the four measurements carried 

out for each angle were taken as the intensities of the 

radiations diffracted by the samples. 

Treatment of the X-ray intensities. 

These intensities were corrected as to background, 

polarization and multiple scattering [12], in order to eliminate 

the part of radiation which does not carry structural 
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Fig. 2. Corrected intensities in arbitrary units. 

information. Figure 2 shows these corrected intensities, expressed 

in arbitrary units. 

The normalization to electronic units (e.u.) was done bearing 

in mind the high angle technique [12], according to which, for 

high values of s, the experimental intensity curve must oscillate 

around the independent scattering curve, with a decreasing 

amplitude. The normalization method [14] consisted of adjusting, 

by least squaras, the experimental curve I(s) in arbitrary units 

to the independent scattering curve f(s), by minimizing the 

function. 

M 

S = 1 (f(si) -. K,I(si)exp(-K2(si)*))* 
i=l 

(8) 

where Kl is a normalization constant and the term exp(-K2(Si)2) 

is related to the Debye Wailer temperature factor, which 

diminishes as the angle and temperature increase. The normalized 

intensities were corrected for the Compton effect, resulting in 

the coherent spectrum, Ie.u.(s), from which the reduced 
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intensities are obtained: 

I e u (s) - fXifi%) 
i(s) = _ e 

(:xifi(sH2 
i 

(9) 

which give way to the interference function, F(s) = s.i(s) and 

from which the radial atomic distribution function given by 

eqn. (4) is obtained, by applying a Fourier transformation. 
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Fig.3. Radial distribution function. 

The spurious oscillations which appear in the RDF for low 

values of r, due to the lack of experimental data for high values 

of s, make it necessary to extend the interference function up to 

those values of s for which this function tends towards zero. The 

extension was done using the method described in the literature 

[171, based on the one proposed by Shevchik [18], according to 



whom, for high values of s, the experimental interference 

function can be approximated by 

F theoretical(s) = s exp(-a:s2) sin s L (10) 

where C, r and c are parameters obtained by an iterative method 

of square leasts from the initial values Cl, r1 and al, 

representing the area, the position and the half-width of the 

first RDF peak evaluated up to s = 14.48 A-l, which is the 

maximum value for which data have been obtained with the 

experimental device used. A Fourier transformation was applied to 

the interference function, extended up to 30 A-l, thus obtaining 

the RDF shown in Fig. 3, which supplied the following structural 

information: Position of the two first maximum values: 2.60 A and 
3.90 A; limits of the first peak: 2.00-2.95 A; area under the 

first peak: 2.23 to.1 atoms; average bond angle: 97.18". 

ANALYSIS OF RDF AND SHORT-RANGE ORDER 

The analysis of the structural data supplied by the radial 

atomic distribution function shows, among other things, that the 

definition interval of the first peak, corresponding to the first 

coordination sphere of alloy AsW35Se.30Te.35 (As=l, Se=2, Te=3 ), 

is such that all types of bonds are possible among the different 

elements of the compound, as can be deduced by comparing the 

mentioned interval to the bond lengths, rij, of all possible 

pairs, quoted in the literature and shown in Table I. 

Table I. Bond lengths. 

Pair 

As-As 2.49 [I91 
As-Se 2.38 [201 
As-Te 2.62 [211 
Se-Se 2.34 [201 
Se-Te 2.54 [201 
Te-Te 2.71 [I71 

Bearing in mind that the Te-X bonds (X=As, Se, Te) are perhaps 

the ones which should most contribute to the diffraction 

spectrum, it would seem logical to suppose that the first RDF 

maximum is between the values defining the bond lengths of the 

corresponding pairs, which is in good agreement with the weighed 

average value, 2.62 A, for these three types of bond. Given the 
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RDF's character as a probability function, the positions of its 

maximum values can be interpreted as the average distances of the 

different coordination spheres to an arbitrary atom taken as a 

reference origin; the abscissa of the first maximum value, in 

particular, represents the average distance between first 

neighbours. 

A parameter of great interest, when postulating short-range 

models of a glassy solid, is the area enclosed under the first 

RDF peak, as it represents the average coordination of the 

material. In order to theoretically evaluate this area according 

to eqn. (6), depending on the N-coordination attributed to the 

As, it is necessary to calculate parameters Aij. Bearing in mind 

that, according to the literature [22], the finding of these 

parameters implies the establishment of the order of the 

polynomials in s, which approximate the functions 

Rij (s) = fi(s)fj(s)/(Cxifi(s))2, in this work the functions 

mentioned were adjusted to the straight regression lines of the 

corresponding pairs of elements of the alloy, whose eqns., 

F'ij(s) = AoijS + Alij, are shown in Fig. 4. Parameters A. 8 13 ’ 
shown in Table II, were calculated according to the literature 

1231, from the bond lengths, rij, given in Table I, and the 

coefficients AOij and AIij of the mentioned straight regression 

lines, shown in Table II. 

Table II. Coefficients of straight regression lines fitted to 
values of Rij(S) and Aij parameters. 

Pair 

As-As -5.24~10-~ 0.6690 0.9551 
As-Se -5.06~10-~ 0.6903 1.0574 
As-Te 1.36~10-~ 1.0767 1.8666 
Se-Se -4.87~10-~ 0.7123 1.1449 
Se-Te 7.63~10-~ 1.1109 1.6364 
Te-Te 1.59x10-2 1.7300 3.1249 

In order to express the area under the first RDF peak as a 

function of the coordination, N, assigned to the arsenic atoms in 

this alloy, the characteristic parameter h=41.5489, and those 

depending on the coordination hypotheses, were calculated [13]: 

ol=-10, P=O, ‘d =70, 6=0, for N=3 

Q(=-18.08 8=2.69, x=126,54, 6=18.85, for N=4 
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The following expressions of the area were obtained from these 

data and from parameters Aij, using equation (6): 

Area=2.1791 + 0.0127a33, for N=3 

Area=2.0706 + 0.0127a33, for N=4 (11) 

which are of basic interest when trying to formulate hypotheses 

on the short-range order of the alloy in question. These 

expressions may also he observed as being functions of the number 

of Te-Te bonds, a33, a fact which makes it possible to limit the 

variability field of the theoretical area. 

2.00 
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P-Te 
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Se-Te 

As-Te 

0:75 

Se-Se 
As-Se 
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0.50 
s (A-', 

0 4 8 12 lb 20 

Fig. 4. Straight regression lines fitted to values of Rij(S). 



359 

In order to elaborate a local order model of a glassy 

material, it is necessary to establish the mean coordinations of 

its elements. In the case of alloy As.35Se_30Te_35, it is a 

relatively complex matter to attribute a certain coordination to 

the arsenic, given the wide range of hypotheses quoted in the 

literature for its different compounds. Some authors [24,25] 

propose tetrahedral coordination for arsenic or similar elements 

in binary and ternary alloys with chalcogens while others [26,27] 

attribute tri-coordination to arsenic in this kind of compounds, 

which means that both hypotheses must be considered. 

In order to establish the most adequate coordination 

hypothesis in the present case, it is necessary to compare the 

theoretical areas, for each value of N, to the experimental area. 

The relations (11) are observed to vary linearly with the number 

of Te-Te bonds. Since the area is a function of the relative 

coordination numbers, which in turn depend on the coordination 

number, N, of a certain element, arsenic, in the alloy [14], it 

is necessary to determine the variation interval of a33, due to 

the restrictions imposed by the intrinsically positive nature of 

the nij parameters. When local order models of amorphous 

materials are proposed, the mentioned interval supplies the 

possible range in which the structure develops. 

According to the literature [14], if the area is expressed as 

a function of the number of Te-Te bonds, the nij's, which contain 

Table III. Theoretical results obtained for the coordination 

hypotheses of the arsenic atom. 

Variation intervals for parameter a33 

N Coordination numbers ~~____._ ~_.~ _ -.___~ _~ ~~ ~~ 

nij,i,j#l Defined by the Defined by limits Intersection 

nij parameters of error of the of intervals 

experimental area 

n22=-0.1583 + 0.0667a33 
3 

n23= 1.1083 - 0.0667a33 
2.37~a~~~16.62 -3.87<a33~11.88 2.37ia33L11.88 

n22=-0.0103 + 0.0667a33 
4 0.151a33L1.08 

n23= 0.0718 - 0.0667a33 
4.68ia33120.43 

--__.____ -~-.__.-_-_.. - __ 
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parameter a331 are given for each value of N by the expressions 

shown in Table III, together with the variation intervals of a33 

defined by the relative coordination numbers. On the other hand, 

the comparison of the experimental area, with its margin of error 

of +O.l atoms, to the theoretical area, defines a new variation 

interval of the number of Te-Te bonds for each coordination 

considered for the arsenic, intervals which are shown in Table 

III together with their intersections with those corresponding to 

the positive character of the nij's. 

The analysis of the intersection of intervals leads to the 

conclusion that, in this alloy, the tetracoordinated arsenic 

hypothesis is incompatible with the structural information 

obtained from the experimental data and, therefore, the most 

probable short-range order can be described as a network of 

AsX3,3 structural units (X=As, Se, Te) forming triangular 

pyramids in which at least one vertex is occupied by an arsenic 

atom. 

GENERATION AND ANALYSIS OF THE SPATIAL MODEL 

The basic aim of determining the structure of an amorphous 

solid is to make tridimensional atomic models, which necessarily 

verify the structural information obtained experimentally from 

the analysis of the radial atomic distribution function, and at 

the same time are as close as possible to the known physical- 

chemical properties of the material in question and of its 

elements. 

The spatial atomic distribution model of alloy 

As_3,3Se_30Te.35 was randomly generated, but bearing in mind the 

tricoordinated arsenic hypothesis, which is compatible with the 

experimentally obtained structural information. 

The mathematical space considered adequate, for the generation 

of the spatial atomic configuration, is the volume enclosed by a 

10 A-radius spherical surface, as it best verifies the condition 

of being big enough to conveniently represent the sample, from a 

statistical point of view, and small enough for the computation 

time not to be too long. The number of atoms that can be placed 

in this volume according to the experimental density is 137, 

distributed as follows: 48 As atoms, 41 Se atoms and 48 Te atoms. 

The atomic positions were generated by determining the 

Cartesian coordinates from three random numbers [16], and bearing 

in mind the geometrical and coordination conditions which must be 

met with, deduced from the analysis of the experimental RDF and 

which are the following: 

(i) The distance between first neighbours must be within the 

limits of the first peak of the radial distribution function. 
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(ii) The bond angle between an atom and two of its first 

neighbours can vary between the values @min=63.3" and r#~~~x=180", 

[16] deduced from the extreme positions that can be occupied by 

the two atoms which, together with the reference atom, determine 

the bond angle. 

(iii) The coordination attributed to each element must be such 

that the weighed mean coordination of the model is in agreement 

with the experimentally obtained one. 

Considering the geometrical and coordination restrictions 

mentioned, 200 positions were generated and reduced to 137, the 

value predicted from the experimental density, by eliminating the 

positions with the lowest coordination. The next step was to 

assign the atoms to their respective positions, placing the 

arsenic atoms in tricoordinated positions and the other elements 

randomly in the rest. The reduced RDF of the initial 

configuration was determined and compared to the experimental 

RDF, modified by the finite size simulation function proposed by 

Mason [28], showing that the configuration was adequate for 

developing and obtaining from it the most probable spatial model 

of the alloy in question. This initial atomic distribution was 

then adjusted by successive moves of its atoms in random 

directions, adding the restriction of not allowing moves implying 

breaks in the bonds between arsenic atoms, therefore keeping the 

predicted coordination for this element. The amplitude, P, of the 

atomic moves is arbitrarily fixed and can be modified throughout 

the refining process, varying according to the literture [29] 

between 0 .!i A at the beginning of the process and 0.1 A at the 

end, in order to achieve a faster convergence. 

During the position refining process, the model evolved as 

follows: after 402 0.5 A amplitude movements, the mean square 

deviation was 0.0390 A; during the next 73 movements, 0.3 A in 

amplitude, the deviation was reduced to 0.0292 A, and after 110 

movements at P=O.I A, the refining process was considered 

finished with a mean square deviation of 0.0205 A, as the number 

of rejected moves was too large and the deviation did not improve 

noticeably. Figure 5 shows the reduced RDF of the model after the 

refining process, together with the corresponding experimental 

RDF. The spatial representation of the atomic distribution of 

alloy As_35Se_30Te_35 is shown in Fig. 6, where triangular 

pyramids with arsenic atoms in some of their vertices may be 

observed. These pyramids are joined together either directly or 

by chains of chalcogen atoms, forming networks of structural 

elements which make up the model. 
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Fig. 6. Spatial representation of the model of alloy 

As.35Se.30Te.35. 



This theoretical model, generated randomly and bearing in mind 

the structural information obtained from the experimental RDF, 

must be as representative as possible of the true structure of 

the alloy under consideration. One way of estimating the 

concordance between this model and the atomic distribution of the 

compound is by analyzing the main structural parameters, 

coordinations and average bond lengths obtained from it. 

One important point to bear in mind, when statistically 

analyzing the generated model, is the comparison of the resulting 

coordinations of its elements to those of the structural units 

which, according to the established hypotheses, can be postulated 

from the information supplied by the experimental data. Table IV 

shows the coordinations of each element in the atomic model of 

the alloy and, in brackets, the coordinations predicted 

theoretically from the trieoordinated arsenic hypothesis. 

Coordination defects are observed in the model, showing the 

presence of atoms with unsaturated bonds, partly justifiable by 

the finite size of the model. Sixty-four per cent of the Se atoms 

and 52% of the mono-coordinated Te atoms are less than 2 A from 

the surface of the sphere limiting the model, and can therefore 

saturate their bonds with other elements outside it, It is also 

important to point out the presence of overcoordinated atoms, 

Se(3) and Te(3)i a fact which is in agreement with the litarature 

1301 on alloys containing these elements. 

Table IV. Model coordinations. 

Atom type Coordination 

3 2 1 0 

As 
Se 
T@ 

45(48) 3(0f O(O) O(O) 
Ii(Q) 16(41) X1(01 3(Q) 
2(O) 33(48) 13(O) O(O) 

Another interesting aspect of the generated model is the 

knowledge of the average bond lengths of the different pairs of 

elements in the material: As-As 2.51 A, As-Se 2.49 A, As-Te 2.51 

A, Se-Se 2.43 A, Se-Te 2.53 A, and Te-Te 2.59 A. The concordance 

between these lengths, theoretically calculated from the 

experimental data of the analyzed alloy, and those known for 

other similar compounds, is a criterion for establishing the 

validity of the model., In this work, the comparative analysis of 

the mentioned lengths with the bibliographical data was done as 

follows: 
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(i) The average As-As bond length, theoretically calculated, is 

approximated by defect and by excess to 2.53 A and to 2.47 A, 

which are the lengths of this bond in alloys Al_10As.40Te_50 [21] 

and As_20Se_50Te.30 [30] respectively: it also coincides with the 

As-As bond length quoted in the literature [31] for rhombohedric 

arsenic. 

(ii) The average value of the As-Se bond length in this model is 

slightly higher than the sum of covalent radii of the elements, 

but very near 2.43 A [32], which is the length of this bond in 

glassy solid As2Se3, and equal to the value quoted in the 

literature [30] for the mentioned bond in amorphous alloy 

As.20Se.50Te.30- 
(iii) In the case of the As-Te length, the theoretical model 

supplied a value which, although slightly lower than the 2.58 A 
of this bond length in alloy As.45Se.10Te_45 [33], is practically 

the same as the 2.52 A and 2.50 A found in glassy compunds 

As~20Se_50Te~30 [30] and As_40Se_30Te_30 [34], respectively. 

(iv) The comparison of the Se-Se bond length in the generated 

spatial atomic distribution, to the data found in the literature 

[35-371, shows that the former is slightly higher, although the 

difference is never over 4%. If we also take into account that 

the value obtained in this study is similar to the 2.40 A [36,37] 

of trigonal and amorphous selenium, it may be admitted that the 

theoretically deduced average Se-Se length is adequate for glassy 

alloy As.35Se.3OTe.35. 

(v) The Se-Te length in this model is acceptably enclosed between 

2.58 A and 2.49 A, the length of this bond in alloys 

As_45Se_10Te_45 [33] and As.20Se_50Te.30 [30] respectively, and 

almost exactly equal to 2.54 A, sum of the covalent radii of the 

elements. 

(vi) The generated spatial structure gives an average Te-Te bond 

length slightly lower than the 2.67 A corresponding to this 

length in compound As_45Se.10Te_45 [33], but very close to the 

2.62 A of this bond in alloys Ge_14As_43Te_43 [38] and 

Al.2OAs.4OTe.40 1211, which allows us to consider it as adequate 

in this study. 

The analysis of the theoretical values therefore shows good 

agreement between these values and the bibliographical data, so 

they may be considered as representative of the bond lengths in 

the true structure of the alloy. 

CONCLUSIONS 

According to the radial atomic distribution function of the 

alloy studied, obtained from X-ray diffraction data, and with the 

coordination hypotheses for arsenic quoted in the literature, 
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the consideration of tri-coordinated arsenic was found to 

correctly explain the average number of first neighbours 

experimentally determined for the compound in question. 

The use of the most approximate expression of the area under 

the first RDF peak made it possible to discard tetrahedral 

coordination for the arsenic, as it did not allow us to find a 

number of Te-Te bonds that, while keeping coordination numbers 

"22 and "23 positive, would at the same time give a theoretical 

area within the margin of error of the experimental area. 

Considering the tricoordinated arsenic hypothesis, a model of 

the spatial atomic distribution of the alloy was built, using the 

Metropolis-Monte Carlo random method and bearing in mind the 

geometric conditions, deduced from the radial atomic distribution 

function obtained by K-ray diffraction of the samples. 

According to the analysis of the model, the structure of the 

material can be described as a tridimensional network of covalent 

bonds with tricoordinated arsenic atoms at one of the vertices 

of the triangular pyramids, joined together directly or by 

chalcogen atoms, making the structure compact. 
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