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In this work, a Gaussian function is fitted to exothermal peaks obtained through differential scanning calorimetry of 
amorphous semiconducting alloys. The validity of the approximation is tested by calculating the parameters E (activation 
energy), K 0 (frequency factor) and n (reaction order) which define the crystallization kinetics of two different alloys 
belonging to the Ge-As-Te and Cu-As-Te systems. Finally, the approximation is used to resolve thermographic peaks, by a 
numerical method, being applied to the kinetic study of two alloys in the Cu-As-Te glassy system which exhibit multiple 
peaks. 

1. Introduction 

The experimental determinat ion of  physical  
magni tudes  through analogical methods  often 
leads to graphic registers whose shape (fig. l(a))  
allows them to be given the generic name  of  
peaks .  A n  analysis of  the variables represented in 
the ordinates in relation to the values correspond-  
ing to the abscissas, based on a certain theoretical 
formalism, makes it possible finally to gain a 

Fig. 1. Examples for exothermal DSC peaks. 

knowledge of  the mechanism governing the mea-  
sured phenomenon .  However ,  it of ten happens  
that  because the p h e n o m e n o n  is complex or  dif- 
ficult to isolate or  because the measurement  tech- 
nique itself causes intrinsic interactions, the ex- 
perimental  registers obta ined are two or  more  
overlapping peaks, as seen in fig. l (b)  or  (c). In  
these cases, the theoretical conclusions reached for 
a single process are not  applicable, since there is 
an abscissa interval in which no  experimental  da ta  
are available for the magni tude  represented in the 
ordinate,  concerning a single phenomenon ,  bu t  for 
the added values of  the same for two simultaneous 
processes. 

The problem is generically called overlapping, 
and to discern the contr ibut ion of  each one of  the 
phenomena  to the value of  the ordinate,  in the 
c o m m o n  abscissa interval, is to  resolve bo th  peaks. 
The problem of resolving the peaks obviously 
presents various degrees of  difficulty, in relation 
to the degree of  overlapping. The overlapping can 
vary  between a min imum overlapping, in which 
the second process begins where the first is finish- 
ing, or  a high degree of  overlapping,  in which bo th  
phenomena  are nearly simultaneous. In  the former  
case, the existence of  the over lapping may  even be 
ignored; in the latter, the resolution might  be  so 
uncertain as to assume a single process. 

0022-3093/90/$03.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland) 



64 R.A. Ligero et al. / Resolving overlapping peaks in DSC 

Although the problem has been presented 
generically, being common to a great variety of 
physical problems, in this work it will be limited 
to differential scanning calorimetry (DCS) experi- 
mental techniques, carried out by continuous heat- 
ing, and applied to the study of the crystallization 
kinetics of bulk amorphous materials. 

This DSC technique gives curves whose abscis- 
sas correspond to temperatures (times), and whose 
ordinates register the instantaneous power that the 
oven gives the sample, in order to maintain the 
programmed thermal growth. When the crystalli- 
zation process begins, implying an exothermic re- 
ation, the power required varies, depending on the 
amount of glassy material that is gradually added 
to the crystallization reaction; thus, a typical ex- 
othermal peak is registered which goes from the 
start of the reaction to the crystallization of the 
whole sample. Certain glassy alloys exhibit several 
stages of crystallization, affecting more elementary 
compounds chemically produced during the reac- 
tion, or compounds with the same elements as the 
original, but with different stoichiometries. There- 
fore, the data obtained exhibit all the casuistry 
mentioned in the overlapping of crystallization 
peaks. 

In order to solve the problem of two overlap- 
ping peaks, the first thing one must know is the 
general shape of the curve corresponding to a 
single crystallization process. Then a mathematical 
approximation to it is deduced, so that by apply- 
ing the same analysis to this approximation as to 
the experimental one, equal kinetic parameters are 
obtained, or with differences below the working 
error. Based on the assumed theoretical function, 
it will then be possible to discern the two basic 
reactions from which the overlapping DSC data 
originate. 

2. Theoretical function associated to a single 
crystallization peak 

The theory of the crystallization processes is 
well represented by the formalism of Johnson- 
Mehl-Avrami [1-3] which, through different ana- 
lytical procedures, and from the experimental data, 
makes it possible to obtain the three parameters 

which define the crystallization reaction: E 
(activation energy), n (reaction order) and K 0 
(reaction frequency factor). 

It is more convenient, for our present purposes, 
to represent the exothermic peaks as crystalliza- 
tion fraction rates x, as the ordinate, versus time 
(temperature), as the abscissa. This relation is 
given by the relation 

dt - A -d-/- (1) 

existing between the power supplied d Q / d t  
(mcal/s), the crystallization rates d x / d t  (s-l), 
and the total area A (mcal) enclosed by the peak. 
The analyzed peaks are therefore seen as belong- 
ing to the family of f r equency  curves (normalized 
to unity). 

It is not our present purpose to find a mathe- 
matical function, or superposition of functions 
which describe the experimental peak with com- 
plete rigour. A compromise between mathematical 
simplicity and the greatest degree of approxima- 
tion between the kinetic parameters derived from 
the theoretical curve and those obtained from the 
experimental peak is sought. 

The theoretical function which has given the 
best results belongs to the family of Gaussian 
functions: 

f(t)  = a e -b(t- t°)2 (2) 

where a and b are adjusted to each individual 
experimental peak in such a way that 

N 

S = • ( y ,  - a e -b( t ' - t ° )2)  2 (3) 
i = 1  

is minimal, Yi being the ordinates corresponding 
to the N abscissas, ti, of the experimental peak. 
The constant t o is the value of the abscissa (tem- 
perature or time) at which the crystallization rate 
is a maximum. It is a simple translation factor for 
making the maximum values of the experimental 
and theoretical curves coincide. The function de- 
scribed by eq. (2) is denoted from now on as 
associated theoretical function (ATF). 

The adoption of these ATFs to fit the ex- 
othermal peaks given by the DSC admits an im- 
mediate formal objection: ATFs are symmetrical, 
with respect to the value of the ordinate at which 
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Fig.  2. Expe r imen ta l  curves  and  assoc ia ted  theore t ica l  func t ions  for d i f ferent  alloys. M1 = Geo.14Aso.43Teo.43,  M2 = Cu0.1oAso.4oS%.50 . 

the maximum is observed. Experimental peaks do 
not exhibit this symmetry, as shown in the adjust- 
ment represented in fig. 2, and as deduced from 
the theoretical Jolmson-Mehl-Avrami model. 
This model points out that the maximum crystalli- 
zation rate is reached when the crystallization 
fraction is x = 0.63 [4,5]. A correction for this 
difference could be introduced by an appropriate 
asymmetry factor in eq. (2). However, the good 
agreement existing between the areas limited by 
the experimental peaks and the ATFs, as well as 
between the kinetic parameters deduced from both 
curves, have made it advisable to use the above 
mentioned ATFs, with no corrections, for the sake 
of formal simplicity. 

The minimization of expression (3) can be for- 
mally solved by imposing the conditions 

8S/8a  = O, 8S/8b = 0. (4) 

However, this minimization does not guarantee 
that the maximum ordinate of the ATF will coin- 
cide exactly with the maximum experimental value. 
This fact is very important, since some techniques 
for calculating kinetic parameters rely on experi- 
mental data obtained from different heating rates 
[5-7]. In order not to lose this condition and, at 
the same time, to minimize S, we have opted for 
making the value of parameter a coincide with the 
maximum experimental ordinate. Carrying out the 
minimization with 8S/8b = 0, with the result that, 
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in order for S to be minimal, it must be true that 

N 

E [ t i -  to]2yi e - ( t i - ' ° ) '  
i=l 

N 

= a E [ t i -  t0] a e-Zb(ti-'°)2, (5) 
i=1  

a condition that can be easily imposed on the 
experimental data by a numerical procedure, giv- 
ing the needed value of parameter b. In this way, 
the exothermic peak registered by the DSC for a 
single crystallization process can be approximated 
by an ATF deduced from the experimental data of 
the peak itself. 

In order to verify the validity of the method, 
glassy alloys, Ge0.14As0.43Te0.43 (M1) and Cuo.10 
As0.40Se0.s0 (M2), were chosen, their crystallization 
kinetics having been previously studied [4,6], and 
the corresponding ATFs were adjusted. Figure 2 
shows the graphic representation of these, and the 
experimental curves for M2, as well as the super- 
position of both, for two heating rates, in the case 
of sample M1. 

In order to study the crystallization kinetics, 
two different methods were used: the maximal 
values method [5,7] and the constant interval method 
[8], which were applied to the experimental peaks 
and to the best fit ATF. Table 1 shows the values 
obtained in each case for the kinetic parameters, 
where the validity of the theoretical substitution 
carried out may be observed. There is no deviation 
> 5%, an error inherent to the experimental 
method. 

In order to reaffirm the validity of these ATFs 
for representing the crystallization reactions of 
amorphous materials, it is advisable to analyze the 
constant interval method for determining kinetic 
parameters. An iterative procedure is used, which 
gives converging values for E, n and K 0. It is 
based on the successive selection of crystallized 
fraction intervals in which the characteristic func- 
tion of the model is presumably constant. 

Surffaach et al. [9] have proven that the theoreti- 
cal function which best adapts itself to the experi- 
mental results, obtained both in isothermal 
processes and with continuous heating techniques, 
is the Johnson-Mehl-Avrami equation 

f (x)  = n(1 - x)[  - l n ( 1  - x)]  ("-a)/" (6) 

which practically reproduces the experimental 
plots of ln[K0f(x)] versus x. 

Figure 3 shows representations of such plots, 
derived from applying the method to the ATFs, 
for alloys M1 and M2, at the different heating 
rates at which the calorimetric experiments were 
done. It can be seen that the shape of the func- 
tions ln[K0f(x)] is identical to those derived from 
the analysis of the experimental peaks, and coin- 
cides with the behaviour observed in the above- 
mentioned work by Suri~ach et al. 

These results seem to imply that the theoretical 
Johnson-Mehl-Avrami model for the fraction 
transformed in a crystallization reaction, de- 
scribed by equation (6), can also be expressed, in 
terms of the crystallization rate, d x / d t ,  by a 
theoretical function of the type 

d x / d t  = a e -b(t'-*°)2. (7) 

Table 1 
Kinetic parameters calculated for alloys M1 and M2, by two methods,  using the experimental peaks a), and the associated theoretical 
functions b); E (Kcal /mol) ,  K 0 (s -1)  

M1 M2 

n E Ko n E K0 

Maximum values 2.83 35.6 
method 2.61 38.7 

Constancy interval 1.90 34.4 
method 1.87 39.1 

4.1 × 1011 
7.4 × 1012 
1.8 x 1011 
1.4 × 1013 

2.63 46.8 1.4 × 1016 a) 
2.63 46.8 1.4 X 1016 b) 
1.78 45.2 4.0 × 1015 a) 
2.09 46.4 1.2 X 101~ b) 

M1 = G%.14As0.43Te0.43; M2 = CUo.loAS0.40S%.50 . 
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3. Resolving for overlapping peaks 

Once the mathematical function representing 
one exothermic crystallization peak is found, the 
solution for two overlapping peaks is simple. Let 
us, in effect, consider an experimental curve such 
as the one given in figure 4, the result of two 
crystal l ization react ions which over lap  in a cer tain 
interval of temperature (time). The experimental 
measu remen t  of  the ordinate,  in such an interval,  
is the sum of those supplied by both processes, 
and the object is to find the fraction correspond- 
ing to each individual reaction• 

The predominant  peak is chosen, a fact which 
is only relevant in deciding in what order to apply 
the numerical method described forthwith. In the 
example given, this peak would be the first (I). 
According to the formal expression of the ATF, 
we can assume that: (a) the abscissa of the maxi- 
mum for peak  II ,  t 2, was not  al tered by  react ion I, 
although the apparent  maximum value, Y2, will 
generally increase; and (b) the influence of peak I I  
on peak I will never make the real maximum value 
of the latter be located to the right of the position, 
t], of the apparent  maximum, Yl. The symmetry 
of the ATF with peak I I  makes it possible to state 
that the reaction represented by this peak will 
extend, ahead of t2, up to all amount  equal to 

Yl 

Y2 

YO 

Z• I 

.ii:i L /  

• ,:; C..':.: 

t o t t I t 2 t m 

Fig. 4. Hypothetical experimental curve with two overlapping peaks. Dot-shaded area represents the region where real maximum of 
the first process is located. 



Table 2 
Area of the experimental curve and the associated theoretical 
functions (mcal) and relative error of the approximation car- 
fled out  

d__xx 
dt 

Aexp A1 A2 A1 + A2 (r 

M3 195.99 97.99 88.36 186.35 0.05 
M4 156.98 53.72 97.98 151.70 0.03 

M3 = Cuo.osAso.5oTeo.45; M4 = CuoasAso.aoTeo.45. 

At = t m --t2, which determines an abscissa inter- 
val, A = t I -- to, to the left of the apparent maxi- 
mum value of the first peak, the ordinates of 
which are the result of the overlapping of the first 
reaction with the beginning of the second. This 
overlapping means that the real maximum value 
of the first process will necessarily be located in 
one of the abscissas of interval A, and that it must 
be between Y0 and Yl- Let us call the position and 
value of the maximum t and y, respectively; in 
this case the experimental data from the beginning 
of the experimental curve up to t belong to the 
first reaction, with no interference due to the 
second, and can therefore be used to make a least 
squares fit to an ATF, according to the method 
described in the preceding section, representing 
the afore-mentioned reaction: 

f l ( t )  = y  e -bx(, ' -02,  (8) 

\ 
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Fig. 5. Theoretical solution of two superposed peaks obtained 
for two amorphous alloys. M3=Cuo.osAso.soT%.45; M 4 =  

Cu 0.15 Aso.40Teo.45. 

where b I is the parameter resulting from the ad- 
justment. 

By subtracting the above function from the 
experimental curve, a residual  curve is obtained, 
which is related only to the second crystallization 
reaction, and which makes it possible to calculate, 
by the same least squares procedure, the ATF for 
this second crystallization reaction: 

f2( t )  =Y2 e-b2("-t2)2, (9) 

Y2 being the corresponding maximum. 
The experimental curve was thus resolved into 

two peaks, each representing an individual crys- 
tallization reaction, and to whiCh the pertinent 
techniques can be applied in order to calculate the 
kinetic parameters. 

The above reasoning is based on the knowledge 
of point (t, y) ,  which identifies the real maximum 
of the first peak. However, the only thing we know 
is that it is located within the area limited by 
intervals [to, ta] and [Yo, Yl] and the experimental 
curve itself. By applying the described technique 
to each of the experimental points in this area, a 
pair of AFTs will be obtained in each case. Aex p, 
A 1 and A 2 being, respectively, the areas enclosed 
by the experimental curve and the above men- 
tioned AFTs, the quadratic difference between the 
areas 

D = (Aex p - A  a - A 2 )  2 (10) 
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Table 3 
Kinetic parameters calculated for alloys M3 and M4 using graphic solutions a) and associated theoretical funct ions b); E (Kcal /mol) ,  
K o (S -1) 

Alloy Stage M ax i mum values method Constancy intervals method 

n E K o n E K 0 

M3 

M4 

I b) 1.41 46.3 2.3 X 1019 1.92 44.3 2.0 × 1018 
a) 1.03 49.2 5.0 x 1020 1.98 48.6 1.2 × 1020 

IIb) 2.77 51.8 2.4 × 10 20 1.87 58.8 3.3 × 10 23 
a) 2.98 49.2 2.2 × 1019 1.83 57.7 1.2 X 1023 

I b) 1.43 49.6 5.0 × 1020 1.90 47.7 5.2 × 1019 
a) 1.23 50.6 1.5 × 1021 1.92 47.8 4.5 × 1019 

IIb) 1.98 43.6 4.0 × 1016 1.89 43.6 4.0 × 1016 
a) 1.95 44.6 1.3 X 1017 1.77 52.2 2.3 × 1020 

can be written as follows: 

N 

D='r E [Yi--Y e-b'(t'-O~--Y; e-b2(t'-tD2] 2, 
i=1  

(11) 

where "r is the abscissa interval separating the 
experimental values, t i. The pair of values (t, y),  
to which the above minimum quadratic difference 
corresponds, defines the two Gaussian functions 
that resolve the overlapping DSC peaks. 

The method was applied to two semiconducting 
glassy alloys, Cu0.05As0.50Te0.45 (M3) and Cu0a s 
As0.40Te0.45 (M4), the thermograms of which ex- 
hibit multiple peaks. Figure 5 shows these experi- 
mental peaks, for a heating rate of 16 K /min ,  
together with the calculated ATFs which resolve 
them. Table 2 shows the experimental areas and 
those enclosed under each ATF, as well as the 
relative error estimated for the approximation, for 
the calorimetric experiment carried out at a heat- 
ing rate of 8 K /min .  

The crystallization kinetics of both ATFs were 
analyzed using the two methods described above, 
and the values obtained in both cases are shown in 
table 3. These values were also calculated for the 
same alloys, using the same techniques, through a 
classical method for graphically resolving overlap- 
ping peaks. 

4. Conclusions 

The Gaussian function deduced in this work 
has proven to be useful for substituting the single 
peak of a monophase crystallization reaction. The 
same information on the crystallization kinetics is 
basically obtained by using the experimental peaks 
as through the theoretical function. 

When the amorphous-crystal transformation 
supplies DSC thermograms with two overlapping 
peaks, the previous result makes it possible to 
resolve them into two Gaussian functions and to 
calculate the kinetic parameters which describe 
each of the overlapping reactions. If both reac- 
tions are controlled by the same kind of mecha- 
nisms (long-range diffusion or interfacial re- 
arrangement), the information obtained through 
the associated theoretical functions makes it possi- 
ble to interpret their respective kinetics correctly. 
When crystallization is more complex, both con- 
trol mechanisms coexist, and where both surface 
and internal crystallization could occur simulta- 
neously, the kinetic results obtained from the 
Gaussian functions must be considered just as 
doubtfully as those obtained from the experimen- 
tal curve itself. 
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