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Potential symmetries of a porous medium equation
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Abstract. Potential symmetries, which are not local symmetries, are carried out for the porous
medium equationut = (un)xx + g(x)um + f (x)usux wheren 6= 0, when it can be written in a
conserved form. These symmetries are realized as local symmetries of a related auxiliary system,
and lead to the construction of corresponding invariant solutions, as well as to the linearization
of the equation by non-invertible mappings.

1. Introduction

The quasi-linear equation

ut = (un)xx + g(x)um + f (x)usux (1)

corresponds to porous media with sources or thermal evolution with sources and convection.
This equation exhibits a wide variety of wave phenomena, some of which were studied for
f (x) = constant andg(x) = constant by Rosenau and Kamin [58].

The third term on the right-hand side of (1) is of convective nature. In the theory of an
unsaturated porous medium, the convective part represents the effect of gravity.

The second term on the right-hand side describes volumetric absorption, which in the
case of plasma is caused by radiation to which the plasma is transparent. There is no
fundamental reason to assume the spatial-dependent factors in (1) to be constant. Actually,
allowing for their spatial dependence enables us to incorporate additional factors into the
study which may play an important role. For instance, in a porous medium this may
account for stationary factors like the medium’s contamination with another material, or in
plasma this may express the impact that solid impurities coming from the walls have on the
enhancement of the radiation channel.

Whenf (x) = 0 andg(x) = 0 equation (1) becomes

ut = (un)xx. (2)

A complete group classification for the nonlinear heat equation (2) was derived by
Ovsiannikov [53–55] by considering the PDE as a system of PDEs, and by Bluman [9, 13].
A classification for Lie–B̈acklund symmetries was obtained by Bluman and Kumei [9].

The main known exact solutions of nonlinear diffusion (2) are summarized by Hill [30].
In [31–33], Hill et al have deduced a number of first integrals for stretching similarity
solutions of the nonlinear diffusion equation, and of general high-order nonlinear evolution
equations, by two different integration procedures.

King [39] obtained approximate solutions to the porous medium equation (2), integral
results for the multi-dimensional nonlinear diffusion equation [40], and determined [38] new
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results by generalizing known instantaneous source and dipole solutions ofN -dimensional
radially nonlinear diffusion equations. He also applied generalized Bäcklund transformations
and obtained a number of equivalence transformations to derive links between a large number
of different types of nonlinear diffusion equations [42, 45].

Nonlinear diffusion with absorption arises in many areas of science and engineering.
It occurs in the spatial diffusion processes where the physical structure of the medium
changes with concentration. The same PDE also arises in the context of nonlinear heat
conduction with a source term. For example, materials undergoing heating by microwave
radiation exhibit thermal conductivities and body heating which are strongly dependent on
temperature.

If we suppose that the diffusivity and absorption term have a power-law dependence on
concentrationu(x, t) then the basic equation is

ut = (un)xx + g(x)um (3)

wheren and m are constants. In this case, forg(x) = constant, exact solutions and first
integrals of (3) were obtained by Hill in [33], by the technique of separation of variables
and the use of invariant one-parameter group transformations to reduce the governing PDE
to various ODEs. For two of the equations thus obtained, first integrals were deduced which
subsequently give rise to a number of explicit simple solutions.

Nonlinear diffusion with absorption is characterized by phenomena such as ‘blow-up’,
‘extinction’, and ‘waiting-time’ behaviour. The indicesn and m encompass a wide range
of this physical behaviour. For example, Kalashnikov [35] has shown thatu(x, t) ≡ 0 for
all x after a finite time provided thatn > 1 and 0< m < 1, a phenomenon referred to
as ‘extinction’. A well known exact solution of (3) applying form = 2 − n is due to
Kersner [37].

For m = 1, Gurtin and MacCamy [28] proposed a transformation that reduces (3) with
g(x) = constant andm = 1 to (2). However, in general, the background details necessary
to obtain solutions of (3) withm = 1 via this transformation and (2) are about the same as
those required to obtain the solutions directly from (3).

In [24] Galaktionov presented a technique of ‘separation of variables’ for constructing
new exact solutions of the nonlinear heat conduction equations with a source, which are
reduced to equations with quadratic nonlinearities. Most of the solutions thus constructed are
not invariant under point transformation groups and Lie–Bäcklund groups. The proposed
method was first implemented in [6] to construct an exact solution of equation (1) with
f (x) = 0, g(x) ≡ C > 0 andm = n. In [25] a method is proposed to obtain exact blow-up
solutions for nonlinear heat conduction equations with source. Several references for the
classification of Lie and Lie–B̈acklund symmetries for heat equations, in homogeneous and
inhomogeneous media, are also listed in [34].

Equation (1) forg(x) ≡ 0 adopts the following form:

ut = (un)xx + f (x)usux. (4)

For s = 1 we obtain a particular case of the generalized Hopf equation. Lie symmetries for
this equation were obtained by Katkov [36].

The generalized diffusion equation

Tt = (D1(T )Tx)x + a(D2(T ))x + b(x, t)D3(T , )

whereT (x, t) denotes the temperature at a point,a is an arbitrary constant,D1, D2 andD3

are arbitrary functions of temperatureT andb(x, t) is another arbitrary function ofx andt ,
has been analysed via an isovector approach and some new exact solutions have been
obtained by Bhutani [7].



Potential symmetries of a porous medium equation 5921

The one-dimensional reaction–diffusion process, governed by a system of nonlinear
differential equations with arbitrary source functions

at = D1axx + A(a, b, x, t)

bt = D2bxx + B(a, b, x, t)

wherex and t are space and time coordinates,a andb are the reaction–diffusion variables,
A(a, b, x, t) andB(a, b, x, t) are arbitrary nonlinear functions describing the kinetics of the
process andD1 6= 0 andD2 6= 0 are diffusion constants, is studied by an isovector method;
similarity solutions and nonlinear ODEs are provided for fairly general forms of the source
functions by Suhubi [61].

Classical and non-classical symmetries of the nonlinear equation (3), withn = 1, are
considered by Clarkson and Mansfield [19] by using the method of differential Gröbner
bases, and by Arrigoet al [5] constructing several new exact solutions.

In [26] a group classification problem for equation (1) was solved, by studying those
spatial forms which admit the classical symmetry group. Both the symmetry group and the
spatial dependence were found through consistent application of the Lie-group formalism.
The reduction obtained from the optimal system of subalgebras were derived.

The fundamental basis of the technique is that, when a differential equation is invariant
under a Lie group of transformations, a reduction transformation exists. The machinery of
Lie group theory provides the systematic method to search for these special group-invariant
solutions. For PDEs with two independent variables, as is equation (1), a single group
reduction transforms the PDE into ODEs, which are generally easier to solve than the
original PDE. Most of the required theory and description of the method can be found
in [11, 30, 51, 55, 61].

Local symmetries admitted by a nonlinear PDE are also useful to discover whether
or not the equation can be linearized by an invertible mapping and construct an explicit
linearization when one exists. A nonlinear scalar PDE is linearizable by an invertible
contact (point) transformation if and only if it admits an infinite-parameter Lie group of
contact transformations satisfying specific criteria [10–12, 48].

An obvious limitation of group-theoretic methods based in local symmetries, in their
utility for particular PDEs, is that many of these equations does not have local symmetries.
It turns out that PDEs can admit nonlocal symmetries whose infinitesimal generators
depend on integrals of the dependent variables in some specific manner. It also happens
that if a nonlinear scalar PDE does not admit an infinite-parameter Lie group of contact
transformations, it is not linearizable by an invertible contact transformation. However, most
of the interesting linearizations involve non-invertible transformations; such linearizations
can be found by embedding given nonlinear PDEs in auxiliary systems of PDEs [10].

Krasil’shchik and Vinogrod [46, 47, 63] gave criteria which must be satisfied by nonlocal
symmetries of a PDE when realized as local symmetries of a system of PDEs which ‘covers’
the given PDE. Akhatovet al [2] gave nontrivial examples of nonlocal symmetries generated
by heuristic procedures. By using nonlocal symmetries, some exact solutions which are not
similarity solutions of (2) for special values ofn were obtained by King [43, 44]. When
n = 1 in (4) we obtain the Burgers equation. Nonlocal symmetries and Lie–Bäcklund
symmetries for this equation are well known [2, 35, 37, 51].

The main purpose of this paper is to obtain potential symmetries for the porous medium
equation (1). As far as we know, there are no results on potential symmetries for this
equation. In order to find the potential symmetries of (1), we must write this equation in
the conserved form. Whenm = s + 1 andmg(x) = f ′(x), equation (1) can be written in a
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conserved form

ut =
[
(un)x + f (x)

m
um

]
x

. (5)

In [10, 11] Bluman introduced a method to find a new class of symmetries for a PDE. By
writing a given PDE, denoted byR{x, t, u} in a conserved form, a related system denoted
by S{x, t, u, v} with potentials as additionals dependent variables is obtained. Any Lie
group of point transformations admitted byS{x, t, u, v} induces a symmetry forR{x, t, u};
when at least one of the generators of the group depends explicitly on the potential, then the
corresponding symmetry is neither a point nor a Lie–Bäcklund symmetry. These symmetries
of R{x, t, u} are calledpotential symmetries.

The nature of potential symmetries allows one to extend the uses of point symmetries
to such nonlocal symmetries. In particular:

(i) Invariant solutions ofS{x, t, u, v} yield solutions ofR{x, t, u} which are not invariant
solutions for any local symmetry admitted byR{x, t, u}.

(ii) If R{x, t, u} admits a potential symmetry leading to the linearization ofS{x, t, u, v}
thenR{x, t, u} is linearized by a non-invertible mapping.

In order to find the potential symmetries of (5) we write the equation in a conserved
form

DxF − DtG = 0 (6)

where

G = u

and

F = (un)x + f (x)

m
um.

The associated auxiliary systemS{x, t, u, v} is given by

vx = u

vt = (un)x + f (x)

m
um.

(7)

SupposeS{x, t, u, v} admits a local Lie group of transformations with infinitesimal generator

XS = p(x, t, u, v)
∂

∂x
+ q(x, t, u, v)

∂

∂t
+ r(x, t, u, v)

∂

∂u
+ s(x, t, u, v)

∂

∂v
. (8)

This group maps any solution ofS{x, t, u, v} to another solution ofS{x, t, u, v} and hence
induces a mapping of any solution ofR{x, t, u} to another solution ofR{x, t, u}. Thus (8)
defines a symmetry group ofR{x, t, u}.

If (
∂p

∂v

)2

+
(

∂q

∂v

)2

+
(

∂r

∂v

)2

6= 0 (9)

then (8) yields a nonlocal symmetry ofR{x, t, u} such nonlocal symmetry is called a
potential symmetry ofR{x, t, u}.

Bluman [10] gave theorems which give necessary and sufficient conditions under which
nonlinear partial differential equations (scalar or systems) can be transformed to linear PDEs
by invertible mappings. In particular such an invertible mapping does not exist if:

(i) a nonlinear scalar PDE does not admit an infinite-parameter Lie group of contact
transformations;
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(ii) a nonlinear system of PDEs does not admit an infinite-parameter Lie group of point
transformations.

SupposeR{x, t, u} cannot be linearized by an invertible mapping but an associated
systemS{x, t, u, v} admits an infinite-parameter Lie group of point transformations which
leads to its linearization by an invertible mapping. ThenR{x, t, u} is linearized by a non-
invertible mapping.

In section 2 we study the classical symmetries of (7) so that all the potential symmetries
for (5) are classified. We determine exact solutions of (7) that lead to exact solutions of (5)
which cannot be obtained as invariant solutions of its admitted local symmetries. For some
special values ofn andm it happens that (5) does not admit an infinite-parameter Lie group
of contact transformations, so is not linearizable by an invertible mapping; however, the
associated system (7) does admit an infinite-parameter Lie group of point transformations
and, consequently, equation (5) is linearized by a non-invertible mapping. In these cases,
the similarity solutions are discussed in terms of the linearized form. The cases withf = 0
represent well known results and we omit them.

In sections 3 and 4 we write, for some functionsf (x) g(x) and some parametersn, m

and s, respectively (3) and (4) in a conservative form. We study the classical symmetries
for the associated system. We obtain some potential symmetries for (3) and (4).

2. Potential symmetries of equation (5)

For n 6= 0, if system (7) is invariant under a Lie group of point transformations with
infinitesimal generator (8) then

p = p(x, t, v)

q = q(t)

r = −pvu
2 + (sv − px)u + sx

and

s = s(x, t, v).

The integrated equation

vt = n(vx)
n−1vxx + f (x)

m
(vx)

m (10)

is invariant under a Lie group of point transformations with infinitesimal generator

XE = p(x, t, u, v)
∂

∂x
+ q(x, t, u, v)

∂

∂t
+ s(x, t, u, v)

∂

∂v
. (11)

We can distinguish the following cases depending onn, m andf .

2.1. Case I:n 6= 1, m arbitrary

Besides the trivial subgroupsX2 = ∂
∂t

, X4 = ∂
∂v

, we obtain table 1.
Point symmetries of system (7) project onto local symmetries of equation (5).

2.2. Case II.a:n = −1, m arbitrary

BesidesX2, andX4 we obtain table 2.X1 andX5 project to point symmetries of (5).
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Table 1. Case I:n 6= 1.

(a) p q r s f m

X1 1 0 0 0 c arbitrary

X5 x 0
2u

n − 1

n + 1

n − 1
v cx

n−2m+1
n−1 arbitrary

X6 0 t
1

1 − n
u

1

1 − n
v arbitrary n

Table 2. n = −1, m arbitrary.

(a) p q r s f

X1 1 0 0 0 c

X5 x 0 −u 0 cxm

Table 3. Case II.b:n = −1, m = 1.

(a) p q r s f

X5 x 0 −u 0 cx

X6 −ctx t ctu + u

2

v

2
cx

X7 x

(
v2

4
− t

2

)
− ct2x t2 −uv2

4
+ 3tu

2
− u2vx

2
+ ct2u tv cx

X8
xv

2
0 −uv

2
− xu2

2
t cx

X9
bebt xv

2
0 −bebt (xu2 + uv)

2
ebt cx − bx log(x)

X10 ebt x 0 −ebt u 0 cx − bx log(x)

X11 − 1

c
t

u

2

v

2
becx

X∞ α(v, t) 0 −αvu
2 0 cx

2.3. Case II.b:n = −1, m = 1

BesidesX2 andX4 we obtain table 3 whereα(v, t) satisfies the following equation:

αvv + αt + cα = 0. (12)

X5, X6, X10 and X11 project onto point symmetries of (5), whileX7, X8, X9, and X∞
induce nonlocal (potential) symmetries admitted by (5).

(i) For X7 andX8 as the equation readily linearizes, we discuss the similarity solutions
in terms of the linearized form.

(ii) For X9 we obtain the similarity variable

z = t (13)
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Table 4. Case II.b:n = −1, m = −1, andf (x) = c.

(a) p q r s

X5 z1z2 z2
2

(
cz2

2 − z2
1

4
− 3z2

4

)
w2 − z1w1

2

(
cz2

2 − z2
1

4
− z2

2

)
w1

X6
z1

2
z2

(
cz2 − 1

2

)
w2 cz2w1

X7 z2 0 − 1
2(z1w2 + w1) − z1w1

2

X8 0 0 w2 w1

X∞ 0 0 αx(x, t) α(x, t)

and the similarity solution

v =
(

4 ln(x)

b
+ E(t)

)1
2

. (14)

Substituting (14) into (10) we obtain an ODE whose solution is

E(z) = k1 exp(bt) − 4c

b2
− 2

b
(15)

from which we obtain the exact explicit solution

v =
(

4 ln(x)

b
+ k1 exp(bt) − 4c

b2
− 2

b

)1
2

. (16)

By means of the first equation of (7)

u = 2

(
b2x2

(
4 ln(x)

b
+ k1 exp(bt) − 4c

b2
− 2

b

))− 1
2

. (17)

The nonlinear equation (5) withn = −1 andm = 1 does not admit an infinite-parameter
Lie group of contact transformations; however, its associated auxiliary system (7) admits
an infinite-parameter Lie group of point transformations with infinitesimal generatorX∞,
whereα(v, t) is an arbitrary function satisfying the linear equation (12). One can obtain
the invertible mapping

z1 = v z2 = t

w1 = x w2 = 1

u

(18)

which transforms any solution(w1(z1, z2), w2(z1, z2)) of the linear system

∂w1

∂z1
= w2

∂w2

∂z1
= ∂w1

∂z2
− cw1

(19)

to a solution(u(x, t), v(x, t)) of the nonlinear system (7) and hence to a solutionu(x, t)

of (5).
We now study the classical symmetries of (19), and besides the trivial subgroupsX1

andX2, we obtain table 4 whereα(x, t) satisfies the following equation:

αt − αxx − cα = 0.
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X6 andX8 project to point symmetries,X5 andX7 induce potential symmetries:
(i) For X5, solving the characteristic equation leads to the similarity variable

z = z1

z2
(20)

and to the similarity solution

w1 = E(z)√
z2

exp

(
cz2 − z2z2

4

)
(21)

w2 = 2H(z) − zz2E(z)

2z
3/2
2

exp

(
cz2 − z2z2

4

)
. (22)

Substitution of (21) and (22) into (19) leads to

E′(z) − H(z) = 0

E′′(z) = 0.

Solving this system we obtain the exact solution

w1 = k1z1 + k2z2√
z3

2

exp

(
cz2 − z2

1

4z2

)
(23)

w2 = 2k1z2 − k1z
2
1 − k2z1z2

2z
5/2
2

exp

(
cz2 − z2

1

4z2

)
. (24)

By (18), we obtain the exact solution in an implicit form of (7):

x
√

(t) −
(

k1v

t
+ k2

)
exp

(
ct − v2

4t

)
= 0 (25)

u(k1v
2 + k2tv − 2k1t) + 2t

5
2 exp

(
v2

4t
− ct

)
= 0. (26)

(ii) For X7, we obtain the similarity variable

z = t (27)

and the similarity solution

w1 = E(z) exp

(
− z2

1

4z2

)
(28)

w2 =
(

H(z) − z1E(z)

2z2

)
exp

(
− z2

1

4z2

)
. (29)

Substitution of (28) and (29) into (19) leads to

H(z) = 0

2zE′(z) − 2czE(z) + E(z) = 0.

Solving this system we obtain the following exact solution of (19):

w1 = k

z
1/2
2

exp

(
cz2 − z2

1

4z2

)
w2 = − kz1

2z
3/2
2

exp

(
cz2 − z2

1

4z2

)
.

By (18), we obtain the following exact solution of (7):

v = (2t (−2 ln(x) − ln(t) + 2ct + 2 ln(k)))
1
2 (30)

u = −(2t)
1
2 (x2(−2 ln(x) − ln(t) + 2ct + 2 ln(k)))−

1
2 . (31)
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Table 5. Case II.c:n = −1, m = −1 andf (x) arbitrary.

(a) p q r s

X5 heg 0 −(hf eg + 1)u 0

X6 0 t
u

2

v

2

X7 heg

(
v2

4
− t

2

)
t2 −uv2

4
+ 3tu

2
+ heg

(
−u2v

2
+ f tu

2
− f uv2

4

)
tv

X8
hegv

2
0 −heg u

2
(u + f v) − uv

2
t

X∞ α(v, t)eg 0 −eg(αvu
2 + f uα) 0

2.4. Case II.c:n = −1, m = −1 andf (x) arbitrary

Besides the trivial subgroupsX2 andX4 we obtain table 5 whereα(v, t) satisfies the heat
equation

αt + αvv = 0. (32)

g(x) =
∫

f (x) dx

and

h(x) =
∫

e−g(x) dx.

X5 and X6 project onto point symmetries of (5), whileX7, X8 and X∞ induce potential
symmetries of (5).

For X7 andX8 as the equation readily linearizes, we discuss the similarity solutions in
terms of the linearized form.

The nonlinear equation (5) withn = −1, m = −1, does not admit an infinite-parameter
Lie group of contact transformations; however, its associated auxiliary system (7) admits
an infinite-parameter Lie group of point transformations with infinitesimal generatorX∞,
whereα(v, t) is an arbitrary function satisfying the linear heat equation (32). One can easily
obtain the invertible mapping

z1 = v z2 = t

w1 =
∫

e− ∫
f (x) dx dx w2 = −e− ∫

f (x) dx

u

(33)

which transforms any solution(w1(z1, z2), w2(z1, z2)) of the linear system

∂w1

∂z1
= w2

∂w1

∂z2
= ∂w2

∂z1

(34)

to a solution(u(x, t), v(x, t)) of the nonlinear system (7) and hence to a solutionu(x, t)

of (5).
The classical symmetries of (34) are the same obtained for (7) forc = 0, and the

infinitesimal generators are listed in table 4.X6 and X8 project to point symmetries,X5

andX7 induce potential symmetries.
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(i) For X5, solving the characteristic equation leads to the similarity variable

z = z1

z2
(35)

and to the the similarity solution

w1 = E(z)√
z2

exp

(
−z2z2

4

)
(36)

w2 = 2H(z) − zz2E(z)

2z
3/2
2

exp

(
−z2z2

4

)
. (37)

Substitution of (36), (37) into (34) leads to

E′(z) − H(z) = 0

E′′(z) = 0.

Solving this system we obtain the exact solution

w1 = k1z1 + k2z2√
z3

2

exp

(
− z2

1

4z2

)
(38)

w2 = 2k1z2 − k1z
2
1 − k2z1z2

2z
5/2
2

exp

(
− z2

1

4z2

)
. (39)

By (33), we obtain the exact solution in an implicit form of (7):

h(x)
√

t −
(

k1v

t
+ k2

)
exp

(
−v2

4t

)
= 0. (40)

u(k1v
2 + k2tv − 2k1t) + 2t

5
2 exp

(
g(x) + v2

4t

)
= 0. (41)

(ii) For X7, we obtain the similarity variable

z = t (42)

and the similarity solution

w1 = E(z) exp

(
− z2

1

4z2

)
(43)

w2 =
(

H(z) − z1E(z)

2z2

)
exp

(
− z2

1

4z2

)
. (44)

Substitution of (43) and (44) into (34) leads to

H = 0

2zE′(z) + E(z) = 0.

Solving this system we obtain the exact solutions

w1 = k√
z2

exp

(
− z2

1

4z2

)
(45)

w2 = − kz1

2z
3/2
2

exp

(
− z2

1

4z2

)
. (46)

By (33), we obtain the exact solution of (7)

v = 2(t (− ln(h(x)) + ln(k) − ln(
√

t)))
1
2 (47)

u = t
1
2 hx

h(− ln(h(x)) + ln(k) − ln(
√

t))
1
2

. (48)
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Table 6. Case II.d:n = −1, m = −2.

(a) p q r s f

X5 (x + a)

(
v

6c
+ ln(x + a)

4

)
t − (x + a)u2

6c
− uv

6c
+ u

4
[1 − ln(x + a)]

v

2
+ t

3c

c

(x + a)2

X6 x + a 0 −u 0
c

(x + a)2

2.5. Case II.d:n = −1, m = −2

BesidesX2, and X4, we obtain table 6. In this caseX5 induces a nonlocal (potential)
symmetry of (5), whileX3 projects onto point symmetries.

For X5, solving the characteristic equation leads to the similarity variable

z = v√
t

− 2
√

t

3c
(49)

and to the normal solution in an implicit form

x = exp

(
2
√

tz

3c
+ 4t

27c2
+ t

1
4

E(z)

)
− a. (50)

Substitution of equation (50) into the integrated equation (10), leads to the symmetry
reduction

4E(z)4E′′(z) − 2zE(z)4E′(z) − 2cE′(z)3 − 8E(z)3E′(z)2 − E(z)5 = 0. (51)

Unfortunately we do not know the solution for this ODE, but the implicit ansatz for the
solution is

E(z)

(
v√
t

− 2
√

t

3c

)
(18cv − 27c2 ln(x + a) − 8t) + 27c2t

1
4 = 0. (52)

We must note that the similarity variables which depend on the dependent variablev

such as (49) are unusual and cannot be obtained by the direct method of Clarkson and
Kruskal [18], as was pointed out by King [42], but could be obtained by the direct method
extension due to Arrigoet al [4].

2.6. Case III.a:n = 1, m arbitrary

BesidesX2, and X4 we obtain table 7. HereX5 and X6 project onto point symmetries
of (5).

Table 7. Case III.a:n = 1, m arbitrary.

(a) p q r s f

X1 1 0 0 0 c

X5
x
2 t − u

2 0 cxm−2

X6 0 0 u v 0
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2.7. Case III.b:n = 1, m = 2

We have obtained potential symmetries only forf = constant; in that case equation (5)
becomes the Burgers equation and we omit the results as they are well known.

2.8. Case III.c:n = 1, m = 3

Besides the symmetries corresponding ton = 1, m arbitrary we obtain table 8.X5 projects
onto a point symmetry of (5).

Table 8. Case III.c:n = 1, m = 3

(a) p q r s f

X5
ax + b

2a
t −d + 1

4
u −d − 1

4
v (ax + b)d

2.9. Case III.d:n = 1, m = 1

Equation (5) becomes the Fokker–Planck equation

ut = uxx + (f (x)u)x = 0.

The potential symmetries for the natural potential system

vx = u

vt = ux + f (x)u.
(53)

were classified by Pucci and Saccomandi [56].

3. Potential symmetries for equation (3)

Equation (3) corresponds to nonlinear diffusion with absorption. Equation (3) form = n

becomes

ut = (un)xx + g(x)un. (54)

In order to find potential symmetries of (54), we write this equation in the conserved
form (6), where

G = w(x)u

F = w(x)(un)x − w′(x)un

andw(x) satisfies

w′′(x) + g(x)w(x) = 0.

3.1. Case IV.a:f = 0, n = m, n 6= 1, −1

BesidesX2 andX4 we obtain table 9.X1, X5 andX6 project onto point symmetries.

3.2. Case IV.b:f = 0, n = m, g(x) = ∫
dx

w(x)
, w(x) arbitrary, n = − 1

3

BesidesX2 andX4 we obtain table 10.X1, X5 andX6 project onto point symmetries.



Potential symmetries of a porous medium equation 5931

Table 9. Case IV.a:f = 0, m = n, n 6= 1, −1.

(a) p q r s w(x)

X1 1 0 0 0 c

X5 x 0
2u

n − 1
0 cx

1+n
1−n

X6 0 (1 − n)t u v arbitrary

Table 10. Case IV.b:f = 0, m = n, g(x) = ∫ 1
w2 , w arbitrary,n = − 1

3 .

(a) p q r s

X1 − 2g

g′ 0

(
3 − 3gg′′

g′2

)
u v

X5
3g

2g′ t

(
9gg′′

4g′2 − 3

2

)
u 0

X6
1

g′ 0
3g′′

2g′2 u 0

Table 11. Case IV.c:f = 0, m = n = −1, w(x) = c2(x+b)2

4 .

(a) p q r s

X5 (x + b)v 0 − c2(x + b)3u2

4
− uv v2

X6
x + b

2
0 −u

2
v

X7 −x + b

4
t

3u

4
0

3.3. Case IV.c:f = 0, n = m = −1, w(x) = c2(x+b)2

4

BesidesX2 and X4 we obtain table 11. We obtain symmetriesX5 and X6 that project
onto point symmetries of (54) and the potential symmetryX6. w(x) = c2(x+b)2

4 , that
is g(x) = − 2

(x+b)2 . For X6 we obtain the similarity variable

z = t

and the similarity solution

v = E(t)(x + b).

Substituting the similarity solution into (10) we obtain an ODE whose solution is

E(z) = k

from which we obtain the exact solution

v = k(x + b)
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u = 4k

c2(x + b)2
.

We must note that this solution, although trivial, cannot be obtained by means of Lie classical
symmetries.

4. Potential symmetries for equation (4)

Equation (4) corresponds to nonlinear diffusion with convection. Equation (4) fors = n−1
becomes

ut = (un)xx + f (x)

n
(un)x. (55)

In order to find potential symmetries of (55), we write this equation in the conserved form
(6), where

G = u

f (x)

F = (un)x

f (x)
+ cun.

4.1. Case V:g = 0, s = n − 1.

BesidesX2 andX4 we obtain:

Table 12. Case V:g = 0 ands = n − 1.

(a) p q r s n f (x)

X1 1 0 0 0 n arbitrary k

X5
(n−1)(ax+b)

2an
0 u

n
v arbitrary k

c(ax+b)

X6
ax+b
2an

t − u
n

0 n arbitrary k
c(ax+b)

X7 (n + 1)
1−n
1+n (ax + b)

1−n
1+n 0 −2an + 1− 2n

n+1 (ax + b)
− 2n

n+1 u 0 6= −1 2n
(n+1)c(ax+b)

X8
2
a
(ax + b)v 0 4c(ax+b)2u2

3a2 − 2uv v2 −1 − 3
2c(ax+b)

X9 0 (1 − n)t u v arbitrary arbitrary

Here X5, X6, X7 and X9 project onto point symmetries of (55); whileX8 induces
potential symmetries admitted by (55).

Solving the characteristic equation we obtain the similarity variablez = t and similarity
solutionv = √

ax + bE(t) whereE(t) satisfiesE′(t) = 0 soE = constant. We obtain the
trivial solution

v = C1

√
ax + b

u = − 3a2C1

4c(ax + b)
3
2

.

We must note that although the infinitesimalp depends explicity onv the similarity
variable does not depend onv; however the solution obtained is not invariant under a Lie
group of point transformations.
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5. Concluding remarks

In this paper we have classified the potential symmetries of the quasi-linear parabolic
equation (5). Potential symmetries of (5) are found by studying the classical point
symmetries of the auxiliary system (7). Recognizing the importance of the space-dependent
parts on the overall dynamics of (5), we have studied the different choices for the
function f (x), and constantsn andm, for which system (7) is invariant under a Lie group
of point transformations, as well as their infinitesimal generators. Consequently we have
obtained the class of functionsf (x) as well as the constantsn andm for which equation (5)
admits potential symmetries. By using these symmetries we have found similarity solutions
of the auxiliary system (7) that yield to exact solutions of (5) which cannot be obtained
by classical Lie symmetries. Some of these solutions appear in implicit form, and as the
similarity variable depends on the dependent variable, cannot be obtained by the direct
method of Clarkson and Kruskal either.

The nonlinear equation (1), withn = −1, m = 1 andn = −1, m = −1, does not
admit an infinite-parameter Lie group of contact transformations, so cannot be linearizable
by an invertible contact (point) transformation. We have constructed nonlocal symmetries
(potential symmetries) which are realized as local symmetries of a related auxiliary system
of differential equations, by using potential symmetries we have also linearized (1) by an
explicit non-invertible mapping.

In a forthcoming work, a method based on the ‘nonclassical symmetries’ due to Bluman
and Cole [12], will be used to obtain new solutions to (3), the new solutions being
unobtainable by the method of Lie classical symmetries or potential symmetries.
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