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Editorial Focus

Hypoxia exacerbates macrophage mitochondrial damage in endotoxic shock

Ana Navarro1 and Alberto Boveris2
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of Cádiz, Cádiz, Spain; and 2Laboratory of Free Radical Biology, School of Pharmacy
and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina

SEPSIS AND SEPTIC SHOCK are major causes of death after trauma
and a persistent problem in surgical patients. The prevalent
hypothesis regarding the mechanism of sepsis and septic shock
is that the syndrome is caused by an excessive defensive and
inflammatory response with massive increases of NO and
inflammatory cytokines in body fluids, systemic damage to
vascular endothelium, and impaired tissue and whole body
respiration despite adequate O2 supply. Human muscle biop-
sies from shock patients show, in correlation with the clinical
severity of the case, NO overproduction, glutathione depletion,
and mitochondrial respiratory dysfunction with decreased ATP
levels and O2 consumption, the latter especially with NAD-
linked and complex I-dependent substrates (3, 4, 16). The
selective mitochondrial damage associated with sepsis and
septic shock has been widely observed and reproduced in
experimental animal models (3, 5). However, the prevalent
hypothesis described above does not provide a complete de-
scription of the series of phenomena in the different cells due
to the multiple cell types and organs involved in sepsis and
septic shock.

The paper “Hypoxia accelerates nitric oxide-dependent dys-
function of mitochondrial complex I in activated macrophages”
by Frost et al. (12) in this issue of the American Journal of
Physiology-Regulatory, Integrative and Comparative Physiol-
ogy focuses on activated macrophages and describes a de-
creased complex I activity and whole cell respiration and the
enhancing effect of reduced O2 concentrations. The paper
reports that LPS/IFN-�-activated macrophages show a very
marked increase (�30 times) of the primary NO production
and a marked increase (�7 times) of the NO metabolites,
peroxynitrite and nitrite.

Macrophage respiration was significantly decreased after
cell activation with LPS/IFN-�, and the effect was partially
prevented by GSH and markedly inhibited by a nitric oxide
synthase (NOS) competitive inhibitor (L-N5-1-iminoethyl-orni-
thine; L-NIO). The inhibitory effect of LPS/IFN-� activation
on respiration and on complex I activity increased over time
and was accelerated by a low-O2 environment, despite less NO
and peroxynitrite being generated. The study by Frost et al.
(12) shows an elegant linear correlation between macrophage
O2 uptake and complex I activity at four time points and two
O2 conditions in the 0- to 24-h period. The direct relationship
found between cellular O2 uptake and complex I activity
emphasizes the importance of NADH-ubiquinone reductase as
a rate-limiting component of mitochondrial respiration in
pathological states. Indeed, complex I-decreased activities
have been recognized in hereditary and acquired mitochondrial
diseases (such as Parkinson’s disease) (7) and in normal

senescence (14, 15). The decreased NADH-dehydrogenase
activity present in dysfunctional mitochondria generates more
reactive oxygen species, primarily superoxide radical by au-
toxidation of the FMN semiquinone. It was suggested that the
oxidative damage produced by free radical reactions is a cause
of mitochondrial dysfunction in aging (14, 15).

Frost et al. (12) clearly identified inducible NOS (iNOS) as
the upregulated NOS isoform by Western blot. Recently, Al-
varez and Boveris (1) reported that diaphragm and heart of
LPS-treated rats show a selectively (1.3 to 2.2 times) increased
mitochondrial NOS (mtNOS) activity with a lower effect (1.5
to 1.1 times) in the cytosolic NOS. Considering the uncertainty
in the specificity of mtNOS antibody reactivity (13), it is
possible that macrophage mitochondria increase their mtNOS
activity and that the vicinity of NO source and target favor
complex I inactivation.

The study by Frost et al. (12) reports an increase in whole
cell tyrosine nitration that was inhibited by the NOS inhibitor
L-NIO, which was higher when cells were incubated at 21 %
O2 compared with 1% O2 and that seems to contribute to the
mechanism of complex I and whole cell respiration inhibitions.
Nitration was initially higher in mitochondria than in the
cytosol, although by 24 h, nitration level was higher in the
cytosol. The early mitochondrial nitration agrees with the
reported nitration of submitochondrial fractions by the activity
of mtNOS (11).

NO has three target sites at the mitochondrial respiratory
chain in which NO, directly or indirectly after peroxynitrite
formation, inhibits electron transfer. The three sites are
NADH-dehydrogenase (complex I), ubiquinone-cytochrome c
reductase (complex III), and cytochrome oxidase (complex
IV). Cytochrome oxidase (6, 9) and ubiquinol-cytochrome c
reductase (17) are directly inhibited by NO. Peroxynitrite, the
product of NO and superoxide radical, inhibits in a close-to-
irreversible manner both complex III (8) and complex I (10,
18) activities. The study by Frost et al. (12) describes in detail
and correlates complex I inhibition with respiratory inhibition
in activated macrophages.

Interestingly, NO is the first molecule that fulfills the re-
quirement for a physiological modulator of cytochrome oxi-
dase activity with an O2-competitive mode of binding and
inhibition. NO is intramitochondrially produced by mtNOS at
a significant rate near the target site, and it has been calculated
that endogenous mtNOS activity inhibits mitochondrial respi-
ration in the tissues by 18–25% (2). Cytochrome oxidase
inhibition should be even more important in tissues or condi-
tions with low O2 level, such as in inflammation areas. It is
then clear that hypoxia enhances both peroxynitrite-dependent
complex I inactivation and the reversible and NO/O2-compet-
itive inhibition of complex IV. The reversible cytochrome
oxidase inhibition by NO was not observed in the conditions in
which macrophage respiration was determined in the study by
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Frost et al. (12); the respiration assay included a cell dilution in
the reaction medium, with the corresponding increase in O2

concentration and decrease in the NO/O2 ratio, before the
measurement with the O2-sensitive electrode. The conditions
used were particularly convenient to detect the decrease in
complex I activity, the main point of entry of reducing equiv-
alents to the mitochondrial respiratory chain, and its relation-
ship to whole macrophage respiration.
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