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Abstract

Growth hormone (GH), prolactin (PRL) and somatolactin (SL) are single chain proteins structurally and function-
ally related. Fish PRL and GH receptors (PRLR, GHR) have been characterized in several fish species. There
is limited evidence of fish PRLR isoforms, but emerging data support the existence of different GHR variants.
In gilthead sea bream, black sea bream, turbot and fugu, but not in zebrafish, GHR has retained an exclusive
fish intron (10/10A). In gilthead sea bream and turbot, this intron is not alternatively spliced, but the black sea
bream intron is either removed or retained during mRNA processing, resulting in a long GHR isoform with a 31
amino acid insertion that does not alter the open reading frame. This or any other GHR variant are not found in
gilthead sea bream, but a truncated anchored form has been reported in turbot. The latter GHR isoform comprises
extracellular and trans-membrane domains, the first 28 amino acids of the intracellular domain and 21 divergent
amino acids before a stop codon. This GHR variant is the result of alternative splicing, being the 3’ UTR and the
divergent sequence identical to the sequence of the 5" end of the 9/10 intron. The physiological significance of
different fish GHR isoforms remains unclear, but emerging data provide suitable evidence for season and nutrition
related changes in the somatototropic axis activity. The up-regulation of circulating GH together with the decrease
of plasma titres of insulin-like growth factor-I (IGF-I), an altered pattern of serum IGF binding proteins and a
reduced expression of hepatic IGF-I and GHRs represent a mechanism conserved through vertebrate evolution. It
secures the preferential utilization of mobilized substrates to maintain energy homeostasis rather than tissue growth.
Somatolactin also changes as a function of season, ration size, dietary amino acid profile and dietary protein source
creating opposite plasma GH and SL profiles. There is now direct evidence for a lipolytic effect of fish SL, acting
at the same time as an inhibitory factor of voluntary food intake. Indeed, long-term feeding restriction results in
the enlargement of the summer GH peak, whereas the SL rise coincident with shortened day length is delayed in
juvenile fish until late autumn. These findings agree with the idea that SL may act as a marker of energy surplus,
priming some particular process such as puberty onset. However, it remains unclear whether SL works through
specific receptors and/or dimers or heterodimers of GH and PRL receptors.

Introduction The pineal gland is known to be involved in the photo-

endocrine transduction, and circulating melatonin syn-
Seasona]ly-changing photoperiod is the primary envir- thesized from serotonin by phOtOfCCCptOf cells of the
onmental cue responsible for the endogenous process fish pineal gland reflects the prevailing light/dark cycle
of parr-smolt transformation in salmonids and growth- and calendar time (reviewed in Falcon 1999). In-

reproductive events in most temperate fish species. deed, administered intraperitoneally but not centrally,
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melatonin inhibits food intake in goldfish, which sug-
gests its role as a peripheral satiety signal (Pinillos
et al. 2001).

The entire system of melanocortin and MCH
(melanin-concentrating hormone) receptors has also
been conserved through the evolution of vertebrates
(Logan et al. 2003), and, in fish, melanin-stimulating
hormone (¢-MSH) and MCH peptides have retained
an antagonistic function in color change and perhaps
energy homeostasis (Pissios and Maratos-Flier 2003).
More confusing is the occurrence and nature of fish
adipostat signals. Tumor necrosis factor («-TNF) has
been cloned and sequenced in several fish species
(Garcia-Castillo et al. 2002; Hirono et al. 2000; Laing
et al. 2001), but it remains unclear whether mam-
malian leptin and leptin receptor counterparts exist in
fish. Doyon et al. (2001) failed to clone rainbow trout,
American eel or goldfish analogues of leptin. No effect
of mammalian leptin preparations was found in coho
salmon (Baker et al. 2000) and catfish (Silverstein and
Plisetskaya 2000). However, murine leptin injections
in lizards increased body temperature and metabolic
rate (Niewiarowski et al. 2000). Leptin injections
also affected cocaine and amphetamine-regulated tran-
script (CART) levels in goldfish (Volkoff and Peter,
2001), and fatty acid binding protein activity in green
sunfish (Londraville and Duvall 2002). Besides, leptin
was able to stimulate in vitro pituitary LH (luteinizing
hormone) secretion in European sea bass (Peyon et al.
2001), and both LH and FSH (follicle-stimulating hor-
mone) secretion in rainbow trout (Weil et al. 2003).
One possibility for these contradictory results may be
that the amino acid sequence of leptin is less conserved
than previously expected, and the effect of mammalian
leptin preparations on weight and fat losses in fish re-
quires higher doses and/or a longer time scale. If so,
target tissue responsiveness and even biological prop-
erties of leptin would have evolved in fish in a different
fashion, as the pressure to store energy efficiently at
times of abundance may be especially advantageous
for vertebrate species having low costs of locomotion
and thermoregulation.

In this scenario, the aim of this article is to re-
view recent data about the role of the growth hormone
(GH)/prolactin (PRL)/somatolactin (SL) family in fish
growth and energy homeostasis. Additionally, atten-
tion is focused on the structure and co-evolution of
hormones and receptors of GH and PRL, with special
reference to genomic organization of GH receptors in
relation to their emerging heterogeneity among fish
species.

GH and PRL family

Evolutionary origin

GH and PRL are single chain proteins of about 190—
209 amino acids that were recognized as members
of the same protein family many years ago. Sub-
sequently, this family expanded with the discovery
of mammalian placental lactogens (PLs) (reviewed
in Walker et al. 1991), fish SL (Rand-Weaver et al.
1991), and more recently with a SL-like protein (Yang
and Chen 2003) that shares 56% homology with trout
SL. The evolutionary origin of PLs remains contro-
versial, and alternate genes are proposed for primate
PLs arising from the GH branch, and non-primate
PLs evolving from the PRL lineage (reviewed in For-
syth and Wallis 2002). However, the question of
whether SL evolved from already established GH and
PRL genes, or independently from the ancestral mo-
lecule, remains unresolved (Chen et al. 1995). Fur-
thermore, data from chum salmon and eel hormones
suggest that SL evolved from the GH gene (May et al.
1997), whereas comparisons of goldfish, lungfish and
European sea bass SL hormones support a PRL origin
or an independent evolution (Cheng et al. 1997; Com-
pany et al. 2000; May et al. 1999). It is then of special
relevance that cysteine residues involved in disulphide
bridges, one linking distant parts of the polypeptide
chain and another forming a loop close to the C-
terminus, are strictly retained in all the members of the
GH/PRL family. An additional N-terminal disulphide
loop in SLs occurs in PRLs of tetrapods, lungfish and
sturgeon, but not in teleostean PRLs or in any GH
(Noso et al. 1993a, b). This supports the idea that SL
appeared prior to the divergence of bony fish from the
lineage leading to tetrapods, and specific gene deletion
events most likely occurred between lungfish and the
amphibian lineages that lack SL-like peptides (Forsyth
and Wallis 2002).

In the latter scenario, the rate of evolution of fish
SL was slower than that reported for GH and PRL,
which suggested that SL remained more akin to the
ancestral protein. Indeed, fish GH and PRL sequences
differ markedly from one species to another, espe-
cially from eel, and from hormone sequences of lung-
fish and a primitive actinopterygian fish, the sturgeon
(Rand-Weaver and Kawauchi 1993). This presumably
explains the lack of activity of teleostean GHs in mam-
mals, although the reverse is not true, and mammalian
preparations of GH, PRL and PL potently compete for



fish GH and PRL binding sites (Le Bail et al. 1993;
Sandowski et al. 2000).

Genomic organization

As in mammals, the genomic organization of GH
genes in channel catfish (Tang et al. 1993) and Cyp-
riniformes such as common carp (Chiou et al. 1990),
silver carp (Hong and Schartl 1993) and grass carp
(Zhu et al. 1992) reveals the occurrence of five ex-
ons and four introns. In rainbow trout (Agellon et al.
1988; Yang et al. 1997), Atlantic salmon (Johansen
et al. 1989), tilapia (Ber and Daniel, 1992), flounder
(Tanaka et al. 1995), barramundi (Yowe and Epping,
1995) and yellowtail (Ohkubo et al. 1996), the GH
gene has an additional intron which probably evolved
by independent insertion events. In contrast, in higher
vertebrates and in all fish studied so far, including
common carp (Chen et al. 1991), chinook salmon
(Xiong et al. 1992), tilapia (Swennen et al. 1992) and
gilthead sea bream (Astola et al. 2003b), the PRL gene
has retained five exons and four introns. This exon-
intron organization has also been found in SL genes
of chum salmon (Takayama et al. 1991) and gilthead
sea bream (Astola et al. 2003a), but they contain large
introns in comparison to teleost GH or PRL genes.

GH and PRL receptors

Structural features. Mammalian receptor
heterogeneity

More than two decades ago, GH receptors (GHR)
and PRL receptors (PRLR) were first characterised
in mammals as specific and high affinity membrane-
anchored proteins (Boutin et al. 1988; Leung et al.
1987). Both receptors are single trans-membrane
spanning proteins and, despite a relatively low de-
gree of sequence identity, share several structural
and functional features in common with other unre-
lated receptors (Kopchick and Andry 2000). All these
receptors are now integrated in the superfamily of
class 1 cytokine receptors, which includes among oth-
ers interleukins, granulocyte-colony stimulating factor
(G-CSF), granulocyte macrophage-colony stimulating
factor (GM-CSF), leukaemia inhibitor factor (LIF),
oncostatin M (OM), erythropoietin (EPO), throm-
bopoietin (TPO), gp 130 and leptin receptors. All
of them have retained two pairs of disulphide-linked
cysteines in the N-terminal extracellular domain in-
volved in maintaining structural and functional proper-
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ties. Close to the trans-membrane domain, a conserved
WS motif (Trp-Ser-any amino acid-Trp-Ser), substi-
tuted in GHRs by the YGEFS (Tyr-Gly-Glu-Phe-Ser)
motif, is conserved and probably required for cel-
lular trafficking and correct folding and binding. In
the intracellular domain, the greatest degree of se-
quence homology is found in box 1, a hydrophobic
proline-rich segment of eight amino acids proximal
to the trans-membrane domain. Box 2, a cluster of
hydrophobic and acidic amino acids ending with one
or two basic residues, is less conserved and situated
towards the C-terminus, approximately 30 residues
downstream from box 1. Deletions or mutations in
these intracellular boxes prevent activation of cyto-
plasmatic tyrosine kinases of the Janus (JAK) family,
and consequently other signalling pathways that occur
after receptor dimerization and JAK phosphorylation
(Moutoussamy et al. 1998; Skoda 1999; Zhu et al.
2001).

Transcripts that encode deletions/truncations of
trans-membrane or intracellular domains yield soluble
forms (GH and PRL binding proteins; GHBP, PRLBP)
and different intracellular isoforms (reviewed in Bole-
Feysot 1998; Edens and Talamantes 1998). Box 1 but
not box 2 is conserved in all membrane PRLR iso-
forms described so far. In contrast, truncated variants
of mammalian GHRs do not retain box 1, and the
mechanisms which generate GHBPs can differ from
one species to another (Figures 1A and 1B).

Short cDNA clones identical in sequence to the full
receptor but few bases before the hydrophobic trans-
membrane domain are found in mouse and rat (Smith
et al. 1989; Zhou et al. 1996). At this point, the
trans-membrane and intracellular encoding-domains
are replaced by a short hydrophilic C-terminus (17-27
amino acids) and a divergent 3’ UTR that are encoded
by an alternative exon-intron (between exons 7 and 8).
Same as mice and rats, monkeys express an altern-
ative GHR transcript that diverges in sequence 8 bp
before the beginning of the trans-membrane encoding-
domain (Martini et al. 1997). Downstream of this
divergent point, the sequence of the monkey GHBP
transcript is identical to the 5’ end of intron 7/8. This
GHBP, however, can also be generated by proteolytic
cleavage of the full-length GHR. Indeed, in other spe-
cies like humans, proteolytic cleavage is considered
the only GHBP generating mechanism, although no
specific proteases intervening in this process have
been identified (Bauman and Frank 2002). Truncated
GHRs appear to be more susceptible to this posttrans-
lational processing, and the presence of different GHR
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Figure 1. (A) Diagrammatic representation of prolactin receptors (PRLR) and prolactin binding proteins (PRLBP) in mammals (modified from
Bole-Feysot et al. 1998). (B) Diagrammatic representation of growth hormone receptors (GHR) and growth hormone binding proteins (GHBP)
in mammals (modified from Moutoussamy et al. 1998).
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Figure 2. Diagrammatic representation of fish prolactin receptors (modified from Manzon 2002) and fish growth hormone receptors with
truncated and long isoforms of turbot (Calduch-Giner et al. 2001) and black seabream (Tse et al. 2003), respectively.



transcripts encoding membrane anchored GHR iso-
forms has been confirmed in humans by means of
PCR (Dastot et al. 1996). Cloning and sequencing
of these GHR transcripts reveals that deletion of the
first 26 bp of exon 9 would give rise to a protein with
the first 273 amino acids of GHR (the 246-amino acid
of the extracellular domain, the 24-amino acid trans-
membrane domain, and the first 3 amino acids of the
intracellular domain), followed by 6 novel intracel-
lular amino acids before a stop codon (GHR279). A
second related GHR messenger has been isolated from
the same human hepatic cDNA library. In this tran-
script, exon 9 is absent due to direct joining of exon
8 and exon 10, with a resulting frame shift that would
produce a GHR protein with a divergent 7-amino acid
intracellular domain (GHR377).

Fish GHRs and PRLRs. Genomic organization and
alternative splicing

The first full-length PRLR cDNA was cloned and se-
quenced in tilapia (Sandra et al. 1995). Since this
initial discovery, PRLRs from goldfish (Tse et al.
2000), rainbow trout (Le Rouzic et al. 2001), gilthead
sea bream (Santos et al. 2001) and Japanese flounder
(Higashimoto et al. 2001) have been cloned and se-
quenced. All of them retain the characteristic features
of PRLRs, and the homology between fish and higher
vertebrate PRLRs is equal to the homology between
fish and mammalian PRLs (37%), which suggests co-
evolution of PRL and its receptor (see Manzon 2002).
However, it is of interest that the most divergent se-
quence is that of gilthead bream, which is 70-100
amino acids shorter that any other PRLR, and sev-
eral gaps should be introduced for a proper alignment
of the cytoplasmatic region. Thus, cytoplasmatic tyr-
osines and key regions like box 1 and box 2 are highly
conserved, but distances among these landmark do-
mains are highly variable as was also reported for fish
GHRs.

Fish GHRs were first cloned and sequence in gold-
fish (Lee et al. 2001) and turbot (Calduch-Giner et al.
2001). More recently, full-length GHRs have been
cloned and sequenced in two sparid fish: black sea
bream (Tse et al. 2003), and gilthead sea bream
(Calduch-Giner et al. 2003). The amino acid sequence
identity between these two closely related species is
near to 96%, and decreases to 76%, 52% and 27%
when comparisons are made with turbot, goldfish
and human GHR sequences, respectively. Therefore,
phylogenetic trees based on GHR sequences display
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clustering similar to that found for the hierarchy of
vertebrate species, and sequence homologies parallel
GH sequences of Sparidae (Martinez-Barberd et al.
1994), Cypriniformes (Law et al. 1996) and Pleur-
onectiformes (Pendén et al. 1994). The consensus
sequence also shows conservation of all the character-
istic features of GHRs, with three pairs of extracellular
cysteine residues that establish disulphide bonds (Fuh
et al. 1990). These cysteine residues are also present
in unpublished sequences of halibut (GenBank ac-
cession number, AB058418), grass carp (GenBank,
AY283778) and catfish (GenBank, AY336104) GHRs.
Three other unpublished GHR sequences of salmonids
(GenBank AB071216; AF403539; AF403540), lack
the fifth and sixth cysteine residues. Nevertheless,
partial cloning and sequencing of GHR in rain-
bow trout reveals strict conservation of extracellular
cysteine residues (GenBank, AF438178). The un-
paired cysteine that participates in the human GHR
dimerization, forming an intermolecular disulphide
bond (Zhang et al. 1999), is present in all vertebrates
studied so far. Nevertheless, in Xenopus and fish spe-
cies, this seventh cysteine is located upstream instead
of downstream of the FGEFS motif.

Northern blot analysis shows that the sizes of GHR
transcripts in goldfish (Lee et al. 2001) and gilthead
sea bream (Calduch-Giner et al. 2003) are close to 4—
5 Kb. However, a shorter alternative transcript is found
in turbot (Calduch-Giner et al. 2001), and it encodes
a membrane anchored protein that comprises extracel-
lular and trans-membrane domains, the first 28 amino
acids of the intracellular domain and 21 divergent
amino acids before a stop codon is reached (GHR325).
In black sea bream, Tse et al. (2003) also reported
an alternatively spliced intron of 93 bp that is either
removed or retained during mRNA processing. This
short DNA insertion, encompassing 106 amino acids
downstream of the trans-membrane domain, does not
alter the open reading frame and the lack of alternat-
ive splicing should give rise to a longer GHR variant
(GHRg40) (see Figure 2). Exhaustive searches for al-
ternatively spliced GHR variants in gilthead sea bream
by means of Northern blot, 3’ RACE, and PCR screen-
ing failed to detect transcripts encoding soluble forms
or any other GHR variants, although cross linking GH
assays show two bands as the result of a different de-
gree of glycosylation of the same core protein — full
GHR - (Calduch-Giner et al. 2003). Nevertheless,
partial PCR mapping of genomic DNA with primers
derived from cDNA sequences (Table 1) shows the
same exon-intron organization of GHRs in Pleuronec-



248

Table 1. Forward (f) and reverse (r) primers for PCR mapping (exon-intron organiza-
tion) of GHRs genes of gilthead sea bream (fsb, rsb) and turbot (ft, rt). PCR consisted

of 35 cycles of 1 min at 94 °C, 2 min at 55-57.5 °C and 3 min at 72 °C

Primer cDNA position
4fsb: 5'-CGC ATT TCA CGG AGT GCA TAT CG 53-75
5rsb: 5'-CTA CGG TGA AAC AGT AGT CCT CGT CCA G 304-331
5fsb: 5'-CCA ACA GTG AAT GGA AAG AGT GTC CG 176-201
6rsb: 5'-GGC TCC CAG TTG ACC ATG ACA TCA TAA C 404-431
6fsb: 5'-CCC TCT GGG CTC AGT TAT GAT GTC ATG G 391418
7rsb: 5'-TCT CAG TCA CTT GAA TGA ACA CGG AGT C 634-661
7fsb: 5'-GCC GCA CAC CCA GCA GAC AAT CTAC 531-555
8rsb: 5'-GCT GAG AGA TGC CAA TGA GCA AGA TGA G 730-757
8fsb: 5'-TTT GGG CAT CCT CAT ACT CAT CTT GCT C 714-741
9rsb: 5'-AGG AAC CGG CGG CAA CAG AAT C 774-795
9fsb: 5'-ATT CTG TTG CCG CCG GTT CCT G 775-796
10rsb: 5’-GTT GGC GCA CCC TGT GTT CAT G 1041-1062
10fsb: 5-AGA CGA GCC ATG GGT GGA GTT CAT CGA 918-944
I1rsb: 5’-CGT TGC TGA CCT GGG CAT AGA AGT C 1282-1306
12rsb: 5-CCT AAA GTG GCA GTG TCA TTT CATGGT G 1823-1850
4ft: 5-GCC TCA TTT CAC TGA GTG CAT CTC AAG 57-83
5rt: 5’-GAA GAA GCA CTC CCG CTT CGA ATG 217-240
5ft: 5’-AGA GAG TGT CCA CAG TAC ATC CAT TCG AAC 196-225
6rt: 5'-GGG CTC CCA GTT GAC CAT GAC ATC 412435
6ft: 5'-CAG TGT CTC TAA ACT GGA CCC TCC TGA AC 359-387
7rt: 5’-CAC GTG AAT GAA GAT GGA ACT GCT GAA C 630-657
7ft: 5'-CCC AGA GTC AGC AGA CAA TCT TCG G 536-560
8rt: 5'-CAT GAT GAG TAT GAG GAT GCC CAC AAT C 714-741
8ft: 5'-TTC CCT CTC GCG GTT GTT CTT G 685-706
9t: 5'-CAG GAA CTG GTG GCA GCA GAA TCA TC 774-779
9ft: 5'-GAT TCT GCT GCC ACC AGT TCC TGC 777-800
10rt: 5'-ACC CTA TGT TCA TGT GGT GGC TGA CG 1032-1057
10ft: 5'-AGA CGA GCC ATG GGT GGA GTT CAT CGA 921-947
11rt: 5'-CAT TGC TGA CCT GCG CAT AGA AGT C 1285-1309
12rt: 5'-CAC CCA TAG GTC CAT TGG CAT TGT C 1834-1858

tiformes (turbot; GenBank, AY345330) and Perci-
formes (gilthead sea bream; GenBank, AY345329).
The results of PCR amplification of turbot and gilt-
head sea bream genomic DNA yields several clones
that cover 6 different exons, homologous to exons 4—
9 of the human GHR gene. Besides, the divergence
sequence and the 3" UTR of the truncated variant
of turbot GHR is identical to the sequence of the 5’
end of the 9/10 intron. The alternative spliced intron
(10/10A) of black sea bream also exists in gilthead
sea bream and turbot. In gilthead sea bream, this in-
tron (non spliced) has the same length (93 bp) as that
of black sea bream, but with a relative low degree
of amino acid identity (60%). In turbot, the 10/10A
intron (113 bp) contains stop codons, which indicate
that longer GHR isoforms are not feasible. Indeed, all
intron-exon boundary sequences conform to the GT-

AT rule, and surrounding nucleotides closely relate
to consensus sequences found near spliced junctions.
Fish introns are, however, much shorter than those
found in higher vertebrates, and the major part of the
translated GHR sequence extends over 6 Kb, with
exons 47 coding for the extracellular domain, exon
8 coding for the trans-membrane domain, and exons
9, 10 and 10A coding for intracellular and 3’ UTR
domains (Figure 3).

The screening of zebrafish and fugu genome data-
bases (http://www.ensembl.org) for the analysis of
assembled DNA sequences of GHRs show a strict
conservation of exons 4-9. Indeed, the exclusive fish
intron (10/10A) is retained in fugu but is absent from
zebrafish (Figure 4). The evolutionary significance of
intron 10/10A is now unclear, although probably this
intron evolved from different DNA insertion events
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6 179 344-522 cctggeagTACGTCCG..GGGAAGCAgtgagtgt 6/7 695

7 154 523-676 tattgtagTTGGAGAT..CAGCAGAGgtaaaatc 7/8 174

8 91 677-767 tttttcagAGACTACT..CAGCACAGgtaggaac 8/9 146

9 70 768-837 tgctgeagACTCATGA.. TGTTGAAGgtacactt 9/10 992

10 236 838-1073 acatgcagAAGGGGAA..GCCATTAGgtactgca 10/10A 113
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Figure 3. Diagrammatic representation of exon-intron organization of human (GenBank, AHO002706), gilthead sea bream (GenBank,
AY345330) and turbot (GenBank, AY345329) growth hormone receptors. Exon 2 (orange) codes for signal peptide; exons 3—7 (blue) for
extracellular domains; exon 8 (grey) for trans-membrane domain; exons 9, 10 and 10A for intracellular (red) and 3’ UTR (green) domains.
Exon-intron junctions of turbot and gilthead sea bream GHRs are indicated. The alternative spliced region of intron 9/10 of turbot is noted.
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after the divergence of fish and mammalian lineages
approximately 450 million years ago. Further studies
on primitive fish are needed to better understand the
structure and evolution of fish GHRs, and their rela-
tionship with the new GHR isoforms being identified.
The existence of these alternative GHR isoforms rep-
resents an additional level of regulation of GH action
in target tissues, although a high degree of variability
even for very close related species is suspected.

Functions and regulation of the hormones

Nutritional regulation of somatotropic axis:
molecular and physiological aspects

Nutritional status plays a major role in regulating
circulating levels of GH, insulin-like growth factor-I
(IGF-]), and their respective binding proteins (GHBP,
IGFBP) as well as cell membrane receptors. In gilt-
head sea bream, as in other fish species, fasting is
accompanied by the elevation of plasma GH levels.
An increase in plasma GH is also observed follow-
ing decrease of ration size and dietary energy content
(Pérez-Sanchez et al. 1995; Company et al. 1999).
However, the amount of dietary proteins seems to be
the most important factor regulating GH availability
and GH-liver responsiveness in the gilthead sea bream,
which has high dietary protein requirements (Marti-
Palanca et al. 1996; Company et al. 1999). A pro-
nounced increase in circulating GH was also observed
in gilthead sea bream fed diets with poorly balanced
amino acid profiles (Gémez-Requeni et al. 2003b),
and a high level of fish meal replacement by plant pro-
teins (Gomez-Requeni et al. 2003a). This observation
was related to decrease in plasma IGF-I levels in con-
currence with a reduced expression of hepatic IGF-I
and GHR genes, the features characteristic for cata-
bolic state. Therefore, liver GH desensitization and the
inverse relationships between plasma GH and IGF-I
concentrations represent, a conserved mechanism for
the preferential utilization of mobilized substrates to
maintain energy homeostasis, rather than cell growth
and proliferation, under either reduced nutrition or
malnutrition (reviewed in Renaville et al. 2002).

In tilapia, an inverse relationship between food in-
take and circulating GH levels has also been reported
(Toguyeni et al. 1996), but studies in salmonids of-
ten fail to demonstrate the down-regulation of GH at
greater than maintenance rations (Pierce et al. 2001;
Storebakken et al. 1991). Indeed, feeding during

winter is required to maintain sensitivity of the GH-
IGF-I axis (Larsen et al. 2001), although fine-tuning
of the somatotropic axis varies among fish species
and perhaps fish strains (Valente et al. 2003), which,
in turn, would reflect changes in basal GH release,
metabolic clearance rate of GH, and IGF-I mediated
feedback. Interestingly, a recent study on rainbow
trout shows that the concurrent increase of temper-
ature and ration size promotes growth through the
enhancement of hepatic synthesis and release of IGF-
I (Gabillard et al. 2003). However, these authors also
found that white muscle expression of IGF-I and IGF-
II remained unaltered irrespective of growth rates, so,
they concluded that the paracrine/autocrine expres-
sion of IGFs does not play a key role in the growth
promoting effects of temperature and nutrient supply.

Current understanding of the physiological role of
fish IGFBPs is also gaining momentum: There is now
evidence for at least three serum IGFBPs, including
a high molecular weight form (40-50 kDa) and two
IGFBPs in the 31-24 kDa size range (Kelley et al.
1992; Niu and Le Bail 1993; Park et al. 2000). A 41
kDa IGFBP has been purified from chinook salmon
serum (Shimizu et al. 2003), and a complementary
tilapia cDNA with a 50% homology to mammalian
IGFBP-3 has also been cloned and sequenced (Cheng
et al. 2002). As in mammals, this higher MW IGFBP
is the most abundant circulating IGF carrier under nor-
mal physiological conditions, up-regulated by feeding
and GH treatment. In contrast, lower MW IGFBPs
are often at or below the limit of detection in fed
fish, and up-regulated several folds under catabolic
conditions (Kelley et al. 2001, 2002). After gilthead
sea bream IGFBP-2 (Funkenstein et al. 2002) and
zebrafish IGFBP-1 and -2 (Duan et al. 1999; Maures
and Duan 2002) have been cloned and sequenced, it
became very likely that the <31 kDa IGFBPs, ori-
ginally identified by Western ligand blotting, might
indeed be IGFBP-1 and -2. Alternatively, doublets
of higher molecular weight proteins might represent
different glycosylated forms of IGFBP-3.

In mammalian IGFBPs, two glycosylation sites are
always utilised, and the incorporated carbohydrates
account for an estimated 4—4.5 kDa increase in mo-
lecular weight. The third alternative glycosylation site
incorporates 5 kDa of carbohydrates, accounting for
the characteristic doublet (40-45 kDa) with a core
protein size of 29 kDa (reviewed in Firth and Baxter
2002). Fish IGFBP-3 also exists as glycosylated pro-
tein (Shimizu et al. 2003), and Shimizu et al. (1999)
found in coho salmon serum a doublet of 45-34 kDa.
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Exén 4 Exén 5

gilthead : ..RGSVFVMDHMTSSAPVGPHFTECISREQETFRCWWSPGGFHNLSSPGALRVFYLKKESPNSEWKECPEYSHLKR-ECFFDVNHTSVWIPYC : 90
turbot : PGLAFVSDRDHTNPSAPLEPHFTECISREQETFRCWWSPGTFHNLSTPGALRVEYFKK®SPTSEWRECPQYIHSNR-ECFFDKNHTSIWIPYC : 92
fuga: | esaaesesdeemeie PYEPHFTECVSRNQETFQCWWSLGSFHNLSLPGALRVFYLKRSSLVNEWKECPKYIHSNR-ECFFDKNHTSVWTNYC : 76
zebrafish @ ....... ... i PHLTGCRSSEQVTFRCWWSSGTFONLCEPGALRIFYQT-WALSSDWYECPDYTQTVKNECYFNKTFTRIWTSYC = 73
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Exén 5 Exén 6 Exén 7

gilthead : MQLRGONNVTYLDEDYCFTVENIFRPDPPVSLNWTLLNISPSGLSYDVMVNWEPPPSADVGAGWMRIEYEIQYTERNTTNWEALEMQPHTQQT : 183
turbot : MQLRSQ-NTTFFNDDDCFTVENIRPDPPVSLNWTLLNISPSGLSYDVMVNWEPPPSADVRTGWMRIMYEIQYRERNTTKWEALEMOPQSQQOT : 184
fugu H MQLRSH-NVTYSDQDYCFFVENIuyPDPPVSLNWTLLNISPSGLSYDVIVNWBEPPSADVKAGWMRIEYEIQYRERNSTNWEALEVQRHTHQT : 168
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turbot : IFGLHIGKGYEVHIRCRMQAFTKFGEFSSSIFIHVTEIPS TFPLAVVLVFGIVGILILIMLIIVSQQHRIMMILLPPVPAPKIKGIDPEL : 277
fugu : IYGLTIGKEYEVHIRCRMQAFQKFGEFSDSILIEVTEIPIRESPFSLTLALVFGAVSILVLIVLVAVSQOOSLMMILLPPVPAPKIKGINPEL : 261
zebrafish : IYGLHTDKEYEVRVRCKMSAFNNFGEFSDSVFLQVAQIPSKESTFPMmLVLSFILIGVVILLIFIVISQQ LMVIFLPPIPAPKIKGIDPEL : 256
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gilthead : LKKGKLDELNFILSGGGMGGLSTYAPDFYQDEPWVEFIEVDAEDADAAEKEENQGSDTQRLLD-PPQPVSHHMNTGCANAVEFPDDDSGRASC : 368
turbot : LKKGKLDELNLFLSGGGMGGLSTYAPDFYQDEPWVEFIELDTEDADSGEKEDNQGSDTQRLLA-LSQPVSHHMNIGCSNAIFFPDDDSGRASC : 369
fugu : LEKGELDDLNFILSSGGMGSLPSYAPEFYRDEPWVEFIEVDVEEGDAGEKLNSRDSDTLKLLG-LPLSVSHSVNTMGSNTIFIPHDDSGHISE : 353
zebrafish : LENGKLDQLDSLLSSHDM----- YKPDFYHEDPWVEFIQLDIDDPAD--K---KNSDTQHLLGLSHSGSSHNLNLKN------~— DDDSGRASC : 332
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gilthead : YDPDLHDQDTLMLMATLLPGQPEDGE-DSFDVVERAPVI---ERSERPLVQTQTGGPOTWLNTDEYAQVSNVMPSGGVVLSPGQOLRFQESTS 457
turbot : YDPDLLDQETLMLMATLLPGQPEGGE-ASLDVEEGASAS---ERSKRALIQTOTAGPQTWVNTDFYAQVSNVMPSGGVVLSPGQQLRIQESTS : 458
fugu : YDPETFNPDTQVLMGALLPSQAEEDS-SKDGSVTGSPSQ---DTRKTPGVQGQAGGAQTWVNTDEYAQVSNVMPSGGVVLSPGQOLRIQESMA : 442
zebrafish : YDPEIPDPEDLAS---LLPNHSEQGEHQHSLVSRSSSANPDF-QQESEVVETPIQTQPSWVNMDEYAQVSDFTPAGEVMLSPG————- QLNTS 416
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fugu : ATKVEKQKKAKDPEDGEDAEDKKEGEQRPQVLLMDPEGSGYTTESSARQF-NTPPCSPEPAEGYGATTPQ-—-—- {2 ey AATAERHQSPYI : 524
zebrafish : PEKKK----———=——==—=—= KEEENEKKIQFQLVSDG--AYTSETTARQFSADVPSSPGPEQEYQAFPTQGVEGNLWNGDYLVSVNDSQTPYL : 492
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Figure 4. Alignment of deduced amino acid sequences of mature gilthead sea bream, turbot, fugu and zebrafish growth hormone receptors.
Exon alternatig is shown by changing background color. Amino acid residue overlap is shown by a black background. Fugu and zebrafish
sequences are the result of the predicted assembled analysis (htpp://www.ensembl.org). The precise start of exon 4 is unresolved in gilthead sea
bream and turbot (cDNA position: < 53-57). Note that exons 10 and 10A exist as a single exon in zebrafish (exon 10). Trans-membrane (bold
letters), Box 1 and Box 2 domains are indicated. Conserved cysteines and cytoplasmatic tyrosines are indicated by black and white triangles,

respectively.

Using trout IGF-I as a radioligand, we also detec-
ted by Western ligand blot two bands in trout serum,
and the 45/34 kDa IGFBP ratio increased when more
plant protein was supplied by fish meal replacement.
Total circulating levels of IGF-I, and hepatic expres-
sion of IGF-I and GHRs remained unaltered, but the
reduction of growth rates with a plant proteins im-
plies that the nutritionally regulated IGFBP-3 ratio can
play an important role in target tissue responsiveness
to IGF action (Gémez-Requeni et al. unpublished res-
ults). However, the regulation of metabolic needs to
enhance animal growth by somatotropic axis is based

not only on the nutritional supply, but also on the
genetic background. Unfortunately, few studies exist
on a possible relationship between gene polymorph-
ism and fish metabolism, and future investigations
are needed to forward these studies in relation to fish
enhanced growth and well-being.

GH and SL paradigm

In mammals, leptin is part of the negative feedback
loop of GH, stimulating GH release through the down-
regulation of hypothalamic neuropeptide Y (NPY)
(reviewed in Harris 2000). There is no data about the
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effect of mammalian leptin on fish GH, but a recent
in vitro study shows a stimulatory effect of murine
leptin upon European sea bass somatolactin (Peyon
et al. 2003). The physiological significance of this
leptin effect remains unclear. However, it highlights
the complex regulation of the fish pituitary axis, and
the emerging role of SL in maintaining energy homeo-
stasis. In this context, the nutritional regulation of fish
SL has been addressed in gilthead sea bream, and there
is now evidence for an inverse relationship between
plasma GH and SL levels. Thus, plasma SL levels el-
evate with the increase in ration size and fatness, and
this SL responsiveness often parallels the increase in
circulating IGF-I levels (Company et al. 2001). How-
ever, a single intraperitoneal injection of GH, but not
of SL, increases circulating levels of IGF-I in juvenile
gilthead sea bream (Vega-Rubin de Celis et al. 2003a).
This lack of enhancement of IGF-I by SL is consist-
ent with previous in vitro studies in salmonids (Duan
et al. 1993, 1994), reinforcing the idea that SL has
not retained a growth promoting effect through fish
evolution. To the contrary, both GH and SL decrease
the respiratory quotient (CO; output per O, uptake)
in juvenile gilthead sea bream, inhibiting the hep-
atic activity of acetyl-coenzyme A carboxylase, a key
lipogenic enzyme (Vega-Rubin de Celis et al. 2003a).
These findings provide direct evidence for a lypolytic
action of both GH and SL, which agrees with the in-
volvement of SL in energy mobilisation as has been
proposed in salmonids on the basis of plasma changes
during reproduction (Kakizawa et al. 1995b; Rand-
Weaver et al. 1992; Taniyama et al. 1999), acute stress
(Rand-Weaver et al. 1993) and exhaustive exercise
(Kakizawa et al. 1995a).

Changes in growth associated with changes in diet-
ary amino acid profiles and protein sources also affect
plasma SL availability in gilthead sea bream. In a
characteristic pattern, plasma SL levels decrease with
impaired growth performance, confirming the differ-
ent regulation of SL and GH (Vega-Rubin de Celis
et al. 2003b). The post-prandial regulation of these two
hormones also differs: plasma GH levels are higher
following overnight fasting than few hours after feed-
ing (Gémez-Requeni et al. 2003b), while plasma SL
levels are higher at six hours after feeding than fol-
lowing overnight fasting (Vega-Rubin de Celis et al.
2003b). Therefore, for a given nutritional condition
and particular fish size, the increase of circulating
GH levels would reflect some energy deficit, whereas
plasma SL levels are up-regulated in a direct or indir-

ect manner by energy surplus and perhaps adipostat
signals.

Seasonal timing

Light is considered to be a determining factor that
adjusts circannual rhythms by delaying and/or short-
ening periods of reduced growth. In salmonids, a
growth-promoting effect of continuous light has been
reported on fish maintained either in freshwater (Han-
deland and Stefansson 2001) or seawater environment
(Hansen et al. 1992; Endal et al. 2000; Handeland
et al. 2003). Similar results have been documented
in marine fish, e.g. turbot (Boeuf et al. 1999), cod
(Otterlei et al. 1999), halibut (Jonassen et al. 2000),
European sea bass (Rodriguez et al. 2001) and gilthead
sea bream (Silva-Garcia, 1996; Kissil et al. 2001).
This has led to the use of seasonally compressed pho-
tocycles or phase advanced photoperiods to inhibit
sexual maturation or advance the timing of smolti-
fication in farmed fish stocks (Berrill et al. 2003;
Komourdjian et al. 1976; Porter et al. 1999).

Life-history decisions are, however, not fixed and
often depend on critical size and sufficient energy at
a specific stage ‘opportunity window’ several months
prior to transformation itself. For instance, the de-
cision in salmonids to become smolts or to sexually
mature is linked to growth and fat deposition at mid
summer and spring (Shearer and Swanson 2000; Sil-
verstein et al. 1997, 1998). The factors underlying the
fine tuning of these decisions need to be investigated,
but circumstantial evidence indicates that the GH-IGF-
I axis provides an integrated signal for growth and
nutrient partitioning year-round. Thus, plasma GH
levels commonly peaked at late spring and early sum-
mer (Beckman and Dickhoff 1998; Einarsdottir et al.
2002; Pérez-Sanchez et al. 1994), whereas ongoing
studies on gilthead sea bream revealed that the plasma
peak of PRL is delayed in non-mature fish to mid-
summer. The time of SL increase was further delayed
until autumn, although juvenile growing fish need to
attain a threshold size before they can up-regulate
plasma SL during day shortening period in the autumn
(Mingarro et al. 2002). It appears therefore in gilthead
sea bream, that the regulation of the annual cycle of
GH, PRL and SL is different for each hormone irre-
spective of some overlapping functions (Figure 5). In
agreement with this, pituitary expression of GH, PRL
and SL in growing and maturing masu salmon is sens-
itive to GnRH during different seasons (Bhandari et al.
2003).
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Figure 5. Annual changes of plasma levels of growth hormone
(A), prolactin (B) and somatolactin (C) in juvenile gilthead sea
bream (modified from Mingarro et al. 2002). Fish were fed restric-
ted diets over experimental period. Prolactin was measured by an
enzyme-linked immunosorbent assay based on the use of recom-
binant gilthead sea bream prolactin as a ligand. The ED5q value
was 6.5 ng ml~!. Data are the mean +SEM of 12-15 animals.
Different case letters indicate significant differences at P < 0.05
(Student-Newman-keuls). Black and white bars at the top of the
figure refer to summer and winter period.

Of particular interest is the different effect of IGF-I
on fish GH and PRL secretion. The inhibitory action
of IGF-I on pituitary GH release was demonstrated
several years ago (Pérez-Sanchez et al. 1992; Weil
et al. 1999). In contrast, there is an emerging evidence
for a stimulatory action of IGF-I on PRL secretion
(Fruchtman et al. 2000, 2001). Since the summer in-
crease in circulating IGF-I is often delayed in relation
to the seasonal GH peak, it is tempting to suggest that
IGF-I mediates, at least in part, the summer spurt of

253

PRL in non-maturing gilthead sea bream. Fish PRL
has been traditionally considered a lipolytic factor
(Sheridan and Kao 1998; Leena et al. 2001), but liter-
ature provides evidence that lactogenic hormones may
have lipogenic as well as lipolytic effects in vivo. It
has been reported that: a) PRL stimulates food intake
and fat deposition in female rats (Byatt et al. 1993;
Sauve and Woodside, 1996) and contributes to the
seasonal fattening of birds in preparation for migra-
tion (Sharp et al. 1998; Sharp and Blache 2003); b)
hyperprolactinemia in men and non-pregnant women
may be accompanied by weight gain (Greenman et al.
1998; Ferreira et al. 1998). Finally, PRL knockout
mice show hypoleptinemia and reduced weight gain
and abdominal fat mass (Freemark et al. 2001). If
so, we cannot exclude a role for PRL in the replen-
ishment of body fat stores of fast growing gilthead
sea bream over the course of the second half of the
summer period. After this, the autumn rise of SL may
reflect a state of energy surplus, acting perhaps as a
trigger of different processes, like reproductive onset,
if the required energy status is reached at the precise
time of the year.

Several studies have been performed to confirm
this hypothesis of nutritionally regulated hormone re-
sponsiveness, the results of which suggest that there
is a critical window for GH and SL release that can
be overridden by changes in the metabolic energy bal-
ance. Attention was focused on feeding regimens and
there is evidence for an improved growth perform-
ance and immunological status in fish on long-term
restricted feed (Sitja-Bobadilla et al. 2003). In these
fish some kind of compensatory growth occurs dur-
ing the summer growth spurt. At the same time,
fish fed ad libitum show the higher amplitude of the
summer GH peak whereas the autumn rise of SL is
delayed (Figure 6). Besides, our studies in progress
have indicated that a single intraperitoneal injection
of SL (0.1 ug g~! fish) provokes a transitory inhib-
ition of voluntary food intake in gilthead sea bream.
These findings suggest that SL could act not only
as a marker of energy surplus, but also as a peri-
pheral satiety factor. However, further studies are
needed to better understand the nutritional regulation
of SL and somatotropic axis. Also, it remains to be
established whether fish SL works through specific re-
ceptors and/or dimers or heterodimers of GH and PRL
receptors. Solving these problems would represent a
key step for the understanding of the regulation of fish
growth and adiposity year-round.
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Figure 6. Effect of long-term feed restriction on plasma levels of
growth hormone (B) and somatolactin in juvenile gilthead sea bream
(C). Graph at the top of the figure (A) refers to food intake in
restricted fed fish (percentage of non-restricted feeding). Values
of growth hormone and somatolactin are the mean £+ SEM (n =
12-15). Restricted diet (white bars); non-restricted diet (black bars).
* Significant differences between restricted and non-restricted fish
(Student #-test, P < 0.05).
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