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Abstract We derive a formal expansion for a distribution in terms of another distri-
bution. As a particular case we get the formal Edgeworth expansion. The heuristic
procedure that we present is used to obtain approximations for distribution func-
tions of the Cramér-von Mises and Watson goodness-of-fit statistics. Finally we
compare our results with some obtained in the literature.
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1 Introduction

The representation of a distribution in terms of another is widely used as a technique
for obtaining approximations of distribution functions. One of the most popular
representations is the Edgeworth expansion to approximate a distribution in terms
of its cumulants and the normal distribution. General applications of the Edgeworth
expansion have been discussed by Wallace (1958).

In this work, we present a heuristic procedure to obtain approximations of a
distribution function F1 in terms of another, F2, which is known. As a particular
case we get the formal Gram-Charlier type A expansion which is arranged to obtain
the Edgeworth expansion for the normalized sum of n iid random variables.
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The main purpose of this work is to give heuristic approximations for the small-
sample distribution functions of the Cramér-von Mises and Watson goodness-of-fit
statistics from their asymptotic distributions.

The statistics of Watson and Cramér-von Mises are used to test the null hypoth-
esis that n observations come from a continuous cumulative distribution function
F(x). The exact sampling distributions under the null hypothesis of these statis-
tics for any sample size n, are not known. For most goodness-of-fit purposes, the
percentage points in the upper tail are required. It is clear that the upper tail of the
distribution is far too difficult to calculate exactly, and attempts have been made to
approximate the distribution by well known systems of curves.

The paper is structured as follows. In the following section we present a heuris-
tic procedure to approximate distributions. In section 3 we apply step by step this
procedure to the Cramér-von Mises distribution. We show some results and com-
pare with some given in the literature. Similarly, in section 4 we give corresponding
results for the Watson distribution.

2 Heuristic approximation

We consider two distribution functions F1, F2, and a system of orthogonal functions
with respect to the distribution F2, denoted by {ψk}k≥0, with ψ0 ≡ 1.

If we consider the indicator function of a random variable X with distribution
function F1, in a formal way we have

I(−∞,x] (X) = F2 (x)+
∞∑

k=1

αk (x) ψk (X) (1)

with

αk (x) =
∫ x
−∞ ψk (y) d F2 (y)

‖ψk‖2
2

, (2)

where the norm, ‖ · ‖2 is given by:

‖ψk‖2
2 =

∫ ∞

−∞
ψ2

k (x) d F2 (x) .

So, taking expectations (with respect to F1) on both sides of (1), we have

F1 (x) = F2 (x)+
∞∑

k=1

αk (x) E [ψk (X)] . (3)

Considering truncated expansions in the right hand side of (3), we get approxima-
tions to the distribution function F1, in terms of F2, i.e.

F1 (x) � F2 (x)+
j∑

k=1

αk (x) E [ψk (X)] . (4)
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It appears formidable to develop rigorously this heuristic method in any gen-
erality. As a possible justification of this procedure we will show that it is possible
to obtain formal Edgeworth expansions following the above method.

Let X1, . . . , Xn a random sample from one distribution F which has cumulants
k1, k2, k3, . . .. Consider Zn = √

n(Xn − µ)/σ where µ = k1 and σ 2 = k2. The
expansion of the indicator function I(−∞,x](y) in terms of the Hermite polynomials
is

I(−∞,x](y) = �(x)− φ(x)
∞∑

k=1

Hk−1(x)

k! Hk(y), (5)

where �(·) and φ(·) denote respectively the distribution and density function of
a standard normal variable, and Hk is the Hermite polynomial of order k. These
polynomials satisfy the three terms recurrent formula

Hk(x) = x Hk−1(x)− (k − 1)Hk−2(x), k ≥ 1

H−1(x) = 0, H0(x) = 1,

see Chihara (1978). Substituting y by Zn , in (5) we obtain

I(−∞,x](Zn) = �(x)− φ(x)
∞∑

k=1

Hk−1(x)

k! Hk(Zn). (6)

Taking expected values with respect to F in (6) and truncating the series we get

P(Zn ≤ x) � �(x)− φ(x)

[
k3

3!√n
H2(x)+ k4

4!n H3(x) (7)

+ k5

5!n3/2 H4(x)+ 1

6!

(
k6

n2 + 10k2
3

n

)
H5(x)

]
+ · · · .

The right hand side of (7) is the formal Gram-Charlier Type A expansion for the
distribution function of the normalized sum of n iid random variables having a
common cdf F (Cramér (1946)), and after reordering (7) in ascending powers of
1/

√
n we obtain the Edgeworth expansion for the distribution of the standardized

sample mean, given by

P(Zn ≤ x) � �(x)

−φ(x)
[

k3 H2(x)

3!√n
+

(
k4 H3(x)

4! + 10k2
3 H5(x)

6!

)
1

n

]
+ · · · .

(8)

3 Approximation to the Crámer-von Mises distribution

Consider the Cramér-von Mises statistic

W 2
n = n

∞∫

−∞
(Fn (x)− F (x))2 dF (x) ,
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where Fn(x) is the empirical distribution function of a random sample of size n
from a population with distribution function F assumed to be a continuous function
on the whole line. We refer to Csörgő and Faraway (1996) for the historical expo-
sition of this goodness-of-fit statistic along with the main mathematical results and
a review of the relevant literature with many corrections. Here we list only those
properties of this statistic and of its asymptotic distribution, denoted W 2∞, which
are necessary to get the approximation given in (4).

– Anderson and Darling (1952) obtained one expression for the distribution of
W 2∞ from the solution of a certain differential equation:

FW 2∞ (x) = 1

π3/2x1/2

∞∑

k=0

� (k + 1/2)

k! (4k + 1)1/2 (9)

× exp

{
− (4k + 1)2

16x

}
K1/4

{
(4k + 1)2

16x

}
, x > 0,

where Kν (·), ν > −1/2, is the modified Bessel function of the second kind.
– The cumulants of W 2∞, say ks , verify the following relation, see Pearson and

Stephens (1962):

ks = 2s−1 (s − 1)!
π2s

∞∑

j=1

1

j2s
(10)

– Therefore the moments of all orders exist and the first eight moments of W 2∞
obtained from (10) are:

m1 = 0.16666666666, m2 = 0.05, m3 = 0.02420634921,
m4 = 0.01667989418, m5 = 0.01496212121, m6 = 0.01651200982,
m7 = 0.02160988831, m8 = 0.03269556345.

– The first four moments of W 2
n obtained from the central moments given in

Pearson and Stephens (1962):

mn,1 = 1

6
,

mn,2 = 1

20
− 1

60n
,

mn,3 = 61

2520
− 37

1512n
+ 1

126n2 ,

mn,4 = 1261

75600
− 3833

113400n
+ 2071

75600n2 − 1

120n3 .

We can determine a system of orthogonal polynomials with respect to the den-
sity of asymptotic Cramér-von Mises statistic, which is obtained from (9), using the
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method given in Chihara (1978), page 17, Exercise 3.1. So, the first four orthogonal
polynomials obtained from the first eight moments of W 2∞, are

ψ1 (x) = x − 0.1666666666,

ψ2 (x) = x2 − 0.7142857143x + 0.06904761905,

ψ3 (x) = x3 − 1.660541586x2 + 0.6170535139x − 0.04402152221,

ψ4 (x) = x4 − 3.009453709x3 + 2.542564319x2 − 0.6517911511x +
+0.03767163579.

We also need the norm of the above polynomials:

‖ψ1‖2
2 = 0.022222222222,

‖ψ2‖2
2 = 0.002842025699,

‖ψ3‖2
2 = 0.0008935723022,

‖ψ4‖2
2 = 0.0005206325960.

Let En,k = E
[
ψk

(
W 2

n

)]
, then from the expressions given for the polynomials and

for the moments of W 2
n , we have:

En,1 = 0,

En,2 = −0.016666666666
1

n
,

En,3 = 0.003204793630
1

n
+ 0.007936507937

1

n2 ,

En,4 = −0.002532738271
1

n
+ 0.003509626646

1

n2 − 0.008333333333
1

n3 .

If we denote FW 2
n

as the distribution function of the Cramér-von Mises statistic
we have the following approximation in terms of its asymptotic distribution:

FW 2
n
(x) � FW 2∞ (x)+

4∑

k=1

αk (x) En,k, (11)

with

αk (x) =
∫ x
−∞ ψk (y) d FW 2∞ (y)

‖ψk‖2
2

. (12)

We note that the coefficients (12) are easily calculated on a computer, so we have
the necessary elements to get the approximation (11).

In Table 1 we show some comparisons with the approximation given by Csörgő
and Faraway (1996) and the values considered as exact obtained by Csörgő and
Faraway (1996), a part of which is from Knott (1974). As we can notice we have
obtained results slightly more accurate than those given by Csörgő and Faraway
(1996). This is remarkable since their results rest on a fully rigorous mathematical
approximation, firmly developed by Götze (1979).
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Table 1 Approximations to the Cramér-von Mises distribution

n x FW 2
n
(x) Approx. (11) Approx. Csörgő and Faraway (1996)

2 0.48901 0.975 0.9769954760 0.9681751969
2 0.55058 0.99 0.9881409934 0.9808432316
3 0.8224 0.999 0.9981970834 0.9978556645
3 0.6398 0.99 0.9910413971 0.9884969825
6 0.69443 0.99 0.9904452092 0.9885935585
7 0.34397 0.9 0.9002770924 0.8998157898
8 0.7072 0.99 0.9903136860 0.9898779312

10 0.3450 0.9 0.9001813058 0.8999070681

4 Approximation to the Watson distribution

The Watson statistic is a modification of the Cramér-von Mises statistic, given by

U 2
n = n

∞∫

−∞



Fn (x)− F (x)−
∞∫

−∞
(Fn (x)− F (x)) dF (x)




2

dF (x) ,

where F is continuous as before. We can observe that U 2
n has the form of a variance

while the Cramér-von Mises statistic has the form of a second moment about the
origin; in this sense the modification corresponds to a correction for the mean. This
makes U 2

n rotationally invariant, when it is adapted for testing goodness of fit on
the unit circunference of a circle. Again we refer to Csörgő and Faraway (1996)
for references and further discussion, and cite here only results that we need for
U 2

n and its asymptotic form, U 2∞:

– The distribution function of U 2∞, FU 2∞ , has the following expression, see Watson
(1961):

FU 2∞ (u) = 1 −
∞∑

k=1

(−1)k−1 2e−2k2π2u, u > 0.

Hence the density function of U 2∞, φ, is

φ (u) =
∞∑

k=1

(−1)k−1 4k2π2e−2k2π2u, u > 0. (13)

– The moment generating function of U 2∞, also given by Watson (1961) is

E
(

eθU 2∞
)

=
∞∑

k=1

(−1)k−1 2

1 − (
θ/2k2π2

) ,

from which we can obtain an expression for the j-th moment, m j of U 2∞:

m j = j !
2 j−1π2 j

∞∑

i=1

(−1)i−1

i2 j
. (14)
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– The first four moments of U 2
n obtained from the central moments given in

Stephens (1963) are

mn,1 = 1

12
,

mn,2 = 7

720
− 1

360n
,

mn,3 = 31

20160
− 41

30240n
+ 1

2520n2 ,

mn,4 = 127

403200
− 103

181440n
+ 127

302400n2 − 1

8400n3 .

Similarly as for the Cramér-von Mises statistic, we can determine a system of
orthogonal polynomials with respect to the density (13). Following similar argu-
ments as in section 3, we have the expression for the first four orthogonal polyno-
mials:

ψ1 (x) = x − 0.0833333333,

ψ2 (x) = x2 − 0.2619047619x + 0.01210317460,

ψ3 (x) = x3 − 0.5389952153x2 + 0.07390350877x − 0.002456092884,

ψ4 (x) = x4 − 0.9157528834x3 + 0.2531110208x2 − 0.02404995526x +
+0.0006365329436,

with respective norms

‖ψ1‖2
2 = 0.00277777777777,

‖ψ2‖2
2 = 0.00002991937516,

‖ψ3‖2
2 = 0.7139680969 · 10−6,

‖ψ4‖2
2 = 0.3003525491 · 10−7.

Letting En,k = E
[
ψk

(
U 2

n

)]
, from the expressions given for the polynomials and

for the moments of U 2
n , we obtain:

En,1 = 0,

En,2 = −0.0027777777777
1

n
,

En,3 = 0.0001413888256
1

n
+ 0.0003968253968

1

n2 ,

En,4 = −0.00002917077354
1

n
+ 0.00005657954363

1

n2 −

−0.0001190476190
1

n3 .

So if FU 2
n

is the distribution function of the Watson statistic, we get:

FU 2
n
(x) � FU 2∞ (x)+

4∑

k=1

αk (x) En,k, (15)
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Table 2 Approximations to the Watson distribution

n x FU 2
n
(x) Approx. (15) Approx. Csörgő and Faraway (1996)

6 0.2087 0.975 0.9745433154 0.9742627229
6 0.2450 0.99 0.9900560198 0.9894690391
8 0.2121 0.975 0.9748605892 0.9745985778
8 0.2513 0.99 0.9900534859 0.9897855525
9 0.2532 0.99 0.9900191083 0.9898242904

10 0.2548 0.99 0.9900143789 0.9898700734
10 0.1164 0.80 0.8001599380 0.8001907288

where

αk (x) =
∫ x
−∞ ψk (y) φ (y) dy

‖ψk‖2
2

. (16)

In Table 2 we compare our approximation with those given by Csörgő and
Faraway (1996) and the values considered as exact obtained from simulation. As
we can notice our heuristic approximation seems to produce results slightly closer
to the exact values than those given by Csörgő and Faraway (1996). Again, this is
remarkable since their approximation has a sound mathematical basis, rooted in
Götze (1979).
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