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Summary

A TOPological Sub-structural MOlecular DEsign (TOPS-MODE) approach was used to predict the soil sorption coefficients
for a set of pesticide compounds. The obtained model accounted for more than 85% of the data variance and demonstrated the
importance of the dipole moment, the standard distance, the polarizability, and the hydrophobicity in describing the property
under study. In addition, we compared this new model to a previous one using different descriptors such as WHIM and molecular
connectivity indices. Finally, the TOPS-MODE was used to calculate the contribution of different fragments to the soil sorption
coefficient of the compounds studied. The present approximation proved to be a good method for studying the soil sorption
coefficient for pesticides, but it could also be extended to other series of chemicals.

Abbreviations: TOPS-MODE, topological sub-structural molecular design approach; WHIM, weighted holistic invariant molec-
ular descriptors; QSPR, Quantitative structure property relationships; QSAR, Quantitative structure activity relationships

Introduction

The sorption of commercial chemicals by soil and sediment
plays an important role in the transport and mobility of these
chemicals in the environment [1] and may significantly influ-
ence their chemical and biological transformation or degra-
dation in the aquatic environment as well. Thus, the measure-
ment or accurate estimation of soil sorption coefficients for
hazardous chemicals is of critical importance for evaluating
their fate and the resulting potential exposure to such chemi-
cals in the environment, and consequently, for facilitating the
whole process of environmental risk assessment.

Since the experimental determination of soil sorption co-
efficients is both difficult and expensive, several theoretical
methods to determine these coefficients have been developed
in which different regression equations between structure and
parameters including water solubility, octanol-water partition
coefficients, or bioconcentration factors have been used.

Despite the extensive experimental work that has been
carried out by numerous laboratories for over 40 years, the
measurement of soil sorption coefficients are only available
for fewer hundreds of chemicals [1–4], which leaves many
other chemicals with no reliable sorption coefficients.

Several years ago, more than 200 models for the Koc es-
timation of non-ionic organic chemicals was collected and
reviewed [5]; among these, nearly 80 related to pesticides.
Unfortunately, these models are mainly class-specific and
were usually obtained with a small number of chemicals.
Furthermore, validation and regression diagnostics were of-
ten lacking, making it difficult to determine the predictive
power and the range of application of a large number of the
Koc estimation models that have been published over the last
30 years.

One particularly useful method, the topological substruc-
tural molecular design (TOPS-MODE) approach, was devel-
oped in the context of in silico methods for modeling both
the physicochemical properties and the biological activity of
chemicals [6, 7].

The successful application of this theoretical approach to
the modeling of toxicological and ecotoxicological properties
[8–11] has inspired us to perform a more exhaustive study in
order to test and validate the applicability of TOPS-MODE
in assessing new chemical pesticides and their environmental
impact. The selection of a data set of pesticide pollutant com-
pounds is not casual; this property was previously studied by
Gramatica et al. using different families of descriptors [12].
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We will now show how TOPS-MODE is able to produce a
good QSPR model that permits easy structural interpretation
of the results in terms of group contributions to soil sorption
coefficients.

TOPS-MODE approach

In the present paper, the TOPS-MODE approach was used
to obtain molecular descriptors through which the QSAR
function was developed. Since the mathematical details of
the method have been previously reported [6, 7], we will
outline only the fundamental points.

Briefly, this method codifies the molecular structure by
means of the edge adjacency matrix E (likewise called bond
adjacency matrix B). The E, or B, matrix is a square table of
order m (the number of chemical bonds in the molecule). The
elements of such a matrix (ei j ) are equal to 1 if bonds i and j
are adjacent (this presupposes the existence of an atom that
participates either in bond i or bond j); otherwise, they are
equal to 0. In order to codify information related to the het-
eroatom, the TOPS-MODE approach replaces B with B (wi j )
weighted matrices. The weights (wi j ) are chemically mean-
ingful numbers such as bond distances, bond dipoles, bond
polarizabilities, or even mathematical expressions involving
atomic weights such as hydrophobicity or van der Waals radii
[8–11]. These weights are introduced in the main diagonal
of matrix B (wi j ). Afterwards, the spectral moments of this
matrix may be used as molecular fingerprints in QSAR stud-
ies in order to codify the molecular structure. By definition,
the expression “spectral moments” must be understood as the
sum of the elements in the natural powers of B (wi j ). This
means that the spectral moment of order k (μk) is the sum of
the main diagonal elements (eii ) of matrix B (wi j )k. In the
present work the B (wi j ) matrix was weighted in the main
diagonal with the standard bond distance, standard dipole
moments, atomic polarizability, and atomic hydrophobicity,
as shown in Table 1.

Such a parameter μ1 equals the sums of atom molar re-
fractivity, bond dipoles, or bond distances in the molecule
according to each selected case. The calculation of μk
was carried out with the software package ModesLab 1.0
[13, 14].

Table 1. Definition of the different weighting bonds used in the current

work.

Weighting bonds Definitiona

Distance Standard bond distances

Dipole Bond parameters computed with relative

electronegativity

Polarizability Bond parameters computed with polarizability

Hydrophobicity Bond parameters computed with hydrophobicity

aSee ref. [17] for a more complete definition of bond parameters.

Computation of fragment contributions

Each of the μk spectral moments contains structural infor-
mation about the molecules that can be directly obtained by a
computational approach [13]. The first step in this approach is
to select the substructures whose contribution to the moments
is to be determined, in this case the selection of the fragments
was carry out taking into account the principal sub-structures
in the training set and according to the functional group and
previous knowledge of the substructures that should be im-
portant in this type of activity. Then all the fragments (sub
graphs) contained in the corresponding substructure are gen-
erated and the spectral moments for both the substructure
and all its fragments are calculated. The contribution of the
substructure of the spectral moments is thus obtained as the
difference between the spectral moments of the substructure
and all its fragments. Once the contributions of the various
pertinent structural fragments have been established, describ-
ing the property under study is simply a matter of substituting
these contributions into the quantitative model developed.

Data set and computational strategies

The experimental soil sorption coefficients log Koc of the
143 pesticides used as the training set were taken from the
paper of Gramatica et al. [12]. Moreover, the log Koc values
for other chemicals used by the same authors were used as
an external validation set. The names of the chemicals used
in each set, as well as their predicted and observed activities
are shown in Tables 2 and 3.

The TOPS-MODE computer software [13, 14] was em-
ployed to calculate the molecular descriptors. The standard
dipole moments, standard bond distances, atomic polarizabil-
ity, and atomic hydrophobicity were used as bond weights for
differentiating heteroatoms [6].

In general, 15 spectral moments were calculated for each
of the studied schemes, making a total number of 60 descrip-
tors, of them descriptors with constant or near constant values
were discarded.

For the remaining descriptors, a pairwise correlation anal-
ysis was performed for eliminating the collinearity among
them. The procedure consists of elimination of one of the de-
scriptors from each pair with the modulus of the correlation
coefficients higher than a predefined value Rmax. The proce-
dure must be carried out with care. Indeed, let Ri j = R(di ,
d j ) be the correlation coefficient between descriptors di and
d j . Then from Ri j > Rmax and R jk > Rmax does not follow
that Rik > Rmax. So in this case, if d j is eliminated, dk must
be retained.

In this work, we have used the following algorithm of the
pairwise correlation analysis.

1. Sort descriptors by variance and exclude all descriptors
with the variance lower than the predefined value. Let D
be the descriptor with the highest variance.
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Table 2. Observed, predicted, and residual Log Koc of pesticides used in the training series.

Number Name Obs. (Log Koc) Pred. (Log Koc) Residual (Log Koc)

1 2-Chlorophenylurea 1.61 1.71 −0.10

2 2-Fluorophenylurea 1.32 1.42 −0.10

3 3,4-Dichlorophenylurea 2.53 2.13 0.40

4 3-Bromophenylurea 2.12 1.96 0.16

5 3-Chloro-4-methoxyphenylurea 2.00 1.89 0.11

6 3-Chlorophenylurea 2.01 1.71 0.30

7 3-Fluorophenylurea 1.77 1.42 0.35

8 3-Methyl-4-fluorophenylurea 1.75 1.60 0.15

9 3-Methyl-4-bromophenylurea 2.37 2.14 0.23

10 3-Methylphenylurea 1.56 1.47 0.09

11 3-Trifluoromethylphenylurea 1.98 1.92 0.06

12 4-Bromophenylurea 2.06 1.96 0.10

13 4-Fluorophenylurea 1.52 1.42 0.10

14 4-Phenoxyphenylurea 2.56 2.49 0.07

15 Acetochlor 2.32 2.89 −0.57

16 Alachlor 2.28 2.76 −0.48

17 Aldicarb 1.50 1.98 −0.48

18 Aldicarb sulfone 0.42 0.23 0.19

19 Aldrin 4.69 4.71 −0.02

20 Ametryn 2.59 2.42 0.17

21 Atrazine 2.24 2.06 0.18

22 Azinphos methyl 2.28 2.70 −0.42

23 Benfluralin 3.99 3.48 0.51

24 Benomyl 2.71 2.81 −0.10

25 Butachlor 2.86 3.38 −0.52

26 Butralin 3.98 3.14 0.84

27 Butylate 2.11 2.48 −0.37

28 Butyl-N-phenylcarbamate 2.26 2.20 0.06

29 Carbaryl 2.40 2.42 −0.02

30 Carbendazim (MBC) 2.35 1.98 0.37

31 Carbofuran 1.75 2.51 −0.76

32 Carbophenothion 4.66 4.27 0.39

33 Chlorbromuron 2.70 2.67 0.03

34 Chlordane 5.15 4.97 0.18

35 Chlorfenvinphos (cis) 2.47 3.26 −0.79

36 Chlorfenvinphos (trans) 2.47 3.26 −0.79

37 Chlorotoluron 2.02 2.26 −0.24

38 Chloroxuron 3.55 3.30 0.25

39 Chlorpropham 2.53 2.48 0.05

40 Chlorpyrifos 3.70 3.70 0.00

41 Chlorpyrifos methyl 3.52 3.19 0.33

42 Crotoxyphos (trans) 2.00 2.29 −0.29

43 Cyanazine 2.28 2.30 −0.02

44 Cycloate 2.54 2.47 0.07

45 Diallate (cis) 3.28 2.80 0.48

46 Diallate (trans) 3.28 2.80 0.48

47 Diazinon 2.75 2.97 −0.22

48 Dicrotophos (cis) 1.66 0.91 0.75

49 Dieldrin 4.55 4.94 −0.39

50 Dimethoate 1.20 1.73 −0.53

51 Dinitramine 3.63 3.09 0.54

(Continued on next page)
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Table 2. (Continued)

Number Name Obs. (Log Koc) Pred. (Log Koc) Residual (Log Koc)

52 Dipropetryn 3.07 2.83 0.24

53 Disulfoton 3.22 3.03 0.19

54 Diuron 2.40 2.50 −0.10

55 Endosulfan 4.13 3.97 0.16

56 EPTC 2.38 2.07 0.31

57 Ethion 4.06 3.92 0.14

58 Ethoprophos 1.80 1.87 −0.07

59 Ethyl-N-phenylcarbamate 1.82 1.85 −0.03

60 Fenamiphos 2.51 2.86 −0.35

61 Fenitrothion 2.63 2.44 0.19

62 Fensulfothion 2.52 3.07 −0.55

63 Fenuron 1.40 1.65 −0.25

64 Fluchloralin 3.55 3.49 0.06

65 Fluometuron 2.00 2.30 −0.30

66 Fonofos 3.44 3.09 0.35

67 Imazalil 3.73 3.37 0.36

68 Ipazine 2.91 2.50 0.41

69 Isazophos 2.01 2.73 −0.72

70 Lindane 3.00 3.16 −0.16

71 Linuron 2.70 2.42 0.28

72 Malathion 3.07 3.03 0.04

73 Metalaxyl 1.57 − −
74 Methiocarb 2.32 2.71 −0.39

75 Methomyl 1.30 1.31 −0.01

76 Methoxychlor 4.90 4.68 0.22

77 Methyl-N-(3,4-dichlorophenyl)carbamate 2.74 2.44 0.30

78 Methyl-N-(3-chlorophenyl)carbamate 2.15 2.03 0.12

79 Methyl-N-phenylcarbamate 1.73 1.59 0.14

80 Metobromuron 2.10 2.26 −0.16

81 Metolachlor 2.46 2.92 −0.46

82 Metoxuron 1.72 2.27 −0.55

83 Metribuzin 1.71 1.91 −0.20

84 Mevinphos (cis) 0.85 0.85 0.00

85 Mevinphos (trans) 0.85 0.85 0.00

86 Molinate 1.92 2.10 −0.18

87 Monolinuron 2.10 2.01 0.09

88 Monuron 1.95 2.08 −0.13

89 N-(3,4-Dichlorophenyl)-N′-methylurea 2.46 2.32 0.14

90 N-(3,5-DiMe-4-Br-phenyl)-N′,N′-dimethylurea 2.53 2.67 −0.14

91 N-(3,5-Dimethylphenyl)-N′,N′-dimethylurea 1.73 2.05 −0.32

92 N-(3-Chloro-4-methoxyphenyl)-N′methylurea 1.84 2.08 −0.24

93 N-(3-Chloro-4-methylphenyl)-N′-methylurea 2.10 2.07 0.03

94 N-(3-Chlorophenyl)-N′,N′-dimethylurea 1.79 2.09 −0.30

95 N-(3-Chlorophenyl)-N′-methylurea 1.93 1.90 0.03

96 N-(3-Fluorophenyl)-N′,N′-dimethylurea 1.73 1.79 −0.06

97 N-(3-Methoxyphenyl)-N′,N′-dimethylurea 1.72 1.84 −0.12

98 N-(4-Fluorophenyl)-N′,N′-dimethylurea 1.43 1.79 −0.36

99 N-(4-Methoxyphenyl)-N′,N′-dimethylurea 1.40 1.83 −0.43

100 N-(4-Methylphenyl)-N′,N′-dimethylurea 1.51 1.84 −0.33

101 Nitralin 2.92 3.24 −0.32

102 N-Phenyl-N′-cycloheptylurea 2.37 2.67 −0.30

(Continued on next page)
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Table 2. (Continued)

Number Name Obs. (Log Koc) Pred. (Log Koc) Residual (Log Koc)

103 N-Phenyl-N′-cyclohexylurea 2.07 2.51 −0.44

104 N-Phenyl-N′-cyclopentylurea 1.93 2.32 −0.39

105 N-Phenyl-N′-cyclopropylurea 1.74 2.00 −0.26

106 N-Phenyl-N-methylurea 1.29 1.51 −0.22

107 Oryzalin 3.40 3.24 0.16

108 Oxadiazon 3.51 3.66 −0.15

109 Oxamyl 1.00 1.62 −0.62

110 p,p-DDE 4.82 4.37 0.45

111 p,p-DDT 5.31 5.14 0.17

112 Parathion 3.20 2.75 0.45

113 Parathion methyl 3.00 2.25 0.75

114 Pebulate 2.80 2.23 0.57

115 Pentyl-N-phenylcarbamate 2.61 2.37 0.24

116 Phenylurea 1.50 1.27 0.23

117 Phorate 2.70 2.91 −0.21

118 Phosalone 3.71 3.72 −0.01

119 Profenofos 3.03 3.27 −0.24

120 Profluralin 4.01 3.69 0.32

121 Prometon 2.60 2.10 0.50

122 Prometryn 2.85 2.62 0.23

123 Propachlor 2.42 2.32 0.10

124 Propazine 2.40 2.26 0.14

125 Propham 1.83 2.04 −0.21

126 Propiconazole 3.39 3.77 −0.38

127 Propoxur 1.67 2.19 −0.52

128 Propyl-N-phenylcarbamate 2.06 2.03 0.03

129 Secbumeton 2.78 2.08 0.70

130 Siduron 2.31 2.72 −0.41

131 Simazine 2.10 1.86 0.24

132 Tebuthiuron 1.83 1.63 0.20

133 Terbufos 2.82 3.37 −0.55

134 Terbutryn 2.85 2.61 0.24

135 Thiabendazole 3.24 − −
136 Thiobencarb 3.27 3.07 0.20

137 Triadimefon 2.71 2.94 −0.23

138 Triallate 3.35 3.21 0.14

139 Trichlorfon 1.90 1.69 0.21

140 Tricyclazole 3.09 2.61 0.48

141 Trietazine 2.76 2.31 0.45

142 Trifluralin 3.93 3.44 0.49

143 Vernolate 2.33 2.24 0.09

2. Calculate correlation coefficient between D and all other
descriptors.

3. Exclude descriptor having the modulus of the correlation
coefficient with D higher than Rmax.

4. Let D be the next descriptor with the highest variance. Go
to step (2). If there are no descriptors left, stop.

In this connection, a total of 24 molecular descriptors were
taking into account for development of the QSPR models. The

statistical processing for obtaining the QSPR model was car-
ried out by using forward stepwise regression methods [15],
in which the independent variables are individually added or
deleted from the model at each step of the regression, de-
pending on the Fisher ratio values selected, until the “best”
model was obtained.

Thus, by examining the regression coefficient, standard
deviation, and the F of Fisher, as well as the proportion
between the cases and variables in the equation and the
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Table 3. Observed, predicted, and residual Log Koc of compounds used in

external prediction series.

Obs. Pred. Residual

Number Name (Log Koc) (Log Koc) (Log Koc)

1 Aldicarb sulfoxide 0.56 1.38 −0.82

2 Anilazine 3.00 3.03 −0.03

3 Asulam 2.48 1.96 0.52

4 Chlorbufam 2.21 2.53 −0.32

5 Cyromazine 2.30 1.30 0.26

6 Demeton-S-methyl 1.49 1.47 0.02

7 Dichlorvos 1.67 1.06 0.61

8 EPN 3.12 3.43 −0.31

9 Fenobucarb 1.71 2.31 −0.60

10 Iprobenfos 2.40 2.51 −0.11

11 Leptophos 4.50 4.52 −0.02

12 Methidathion 1.53 1.99 −0.46

13 Neburon 4.00 3.09 0.91

14 Piperophos 3.44 3.66 −0.22

15 Pirimicarb 1.90 2.19 −0.29

16 Pirimiphos methyl 3.00 2.81 0.19

17 Sulprofos 4.08 3.98 0.10

18 Terbuthylazine 2.32 2.25 0.07

19 Thiodicarb 2.54 2.78 −0.24

20 Xylicarb 1.71 1.92 −0.21

“leave-one-out” cross validation method, we were able to
evaluate the quality of the model. In addition, a calculation
of the regression coefficient and standard deviation of the
external prediction set was taken into account for validating
the obtained model. Compounds in the external prediction
set were not used to develop the prediction function.

Results and discussion

Quantitative structure property relationships

The model selection was subjected to the principle of par-
simony such that a function was chosen that had as high a
statistical significance but as few parameters (bk) as possible.
The six-dimensional models are thus characterized by the best
compromise between predictive power and model complex-
ity. That is to say that the addition of another variable does
not increase the predictive power such that the consequent
increase in complexity is counterbalanced.

The best QSPR model that we were able to obtain with
the TOPS-MODE descriptors is given below, together with
the statistical parameters of the regression:

log(Koc) = 0.173 + 1.48 · 10−7μ
Dip
10 − 3.97 · 10−11 · μ

Dip
15

+0.002 · μDist
4 + 0.30 · μH

1 − 0.002 · μH
5

+8.88 · 10−6 · μP
7 (1)

N = 143 S = 0.370 R2 = 0.838

F = 117.24 p < 10−5 q2 = 0.812

where N is the number of compounds included in the model,
R2 is the square of the correlation coefficient, S is the standard
deviation of the regression, F is the Fisher ratio, q2 is the
determination coefficient of the cross-validation, and p is the
significance of the variables in the model.

The variables included in the model are designated as
follows: the sub-index represents the order of the spectral
moment while the super-index indicates the type of bond
weight used, i.e., Dip for dipole moment, Dist for standard
distance, H for hydrophobicity, and P for polarizability.

The good correlation between the selected variables and
the soil sorption coefficient is shown in Figure 1.

It should be noted that two outliers have been removed
from the complete data set. While it is inappropriate to remove
compounds from a data set simply to improve the correlation,
an analysis of outliers omitted from a QSAR or QSPR can
provide important information. In this context, an examina-
tion of the two omitted outliers is in order.

Analysis of the residuals for Equation (1) identified
Metalaxyl and Thiabendazole as significant outliers. This lat-
ter compound (number 135 in our list) is a special case that
combines two different heterocyclic moieties through a con-
jugated bond. Hence the dual character of Thiabendazole as
both a thiazole and a benzoimidazole keep this compound
from being classified among the diazoles. In addition, the in-
teraction of the fused phenyl ring with the conjugated bond
of both heterocyclic identities should be taken into account.

Removal of these compounds and subsequent reanalysis
of the dataset produced the following QSPR:

log(Koc) = 0.165 + 1.52 · 10−7μ
Dip
10 − 4.08 · 10−11 · μ

Dip
15

+ 0.002 · μDist
4 + 0.29 · μH

1 − 0.002 · μH
5

+ 8.52 · 10−6 · μP
7 (2)

N = 141 S = 0.340 R2 = 0.859 F = 135.54

p < 10−5 q2 = 0.831

The structural significance of this model will become more
evident later, when we analyze the contribution of the differ-
ent structural fragments to the soil sorption coefficient. From
the statistical point of view, however, it is obvious that this is
a robust model.

As mentioned above, one of our objectives was to compare
the reliability of the TOPS-MODE approach in describing
the property under study with that of other descriptors and
methods. We thus carried out a comparison of our approach
with that of Gramatica et al. [12], in which the model was
developed using the same data set and the same number of
variables that had been included in the TOPS-MODE QSPR
model. The results are given in Table 4.
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Figure 1. The linear relation between observed and predicted soil sorption coefficients for Equation (1).

As can be seen from the table, there are no remarkable
differences in the explanation of the experimental variance
given by the various models. While the TOPS-MODE QSPR
model explains more than 85% of the soil sorption coefficient,
Gramatica et al.’s model is able to explain just over 84% of
such variance.

However, the TOPS-MODE model is slightly superior to
the other model not only in the statistical parameters of the
regression, but also, and more importantly, in its stability
upon the inclusion or exclusion of compounds, as measured
by the correlation coefficient and standard deviation of the
cross-validation. Because of the structural variability of the
compounds in the data set, the statistics from the leave-one-
out cross-validation can be considered a good measurement
of the predictive ability of the models. As can be seen in Table
4, the value of the determination coefficient of the leave-one-
out cross-validation for the model obtained with the spectral
moments (q2 = 0.831) is slightly higher.

Table 4. Statistical parameters of the lineal regression models obtained for

the two kinds of descriptors.

Number of

Descriptors variables N S R2 F q2

González MP et al.a 6 143 0.37 0.838 117.4 0.812

Gramatica et al.b 6 143 0.38 0.824 106.3 0.805

González MP et al.a 6 141 0.34 0.859 135.5 0.831

Gramatica et al.b 6 141 0.35 0.843 119.9 0.824

aModels according to the TOPS-MODE approach.
bModels reported by Gramatica et al. according to the reference [12].

Thus, although the TOPS-MODE approach presents bet-
ter descriptive features than the model reported by Gramatica
et al. from statistical point of view, there are no significant
differences between the models in their prediction of the
soil sorption coefficients with the leave-one-out methodol-
ogy. This can be seen from the fact that the level of signifi-
cance of an examination of this data set was p = 0.242; if
the means were significantly different, the value would have
been below 0.05.

A superficial analysis of this comparison would lead to
the conclusion that both QSAR models are equivalent from
a statistical standpoint. A more profound analysis, however,
gives the TOPS-MODE model a definite edge over that re-
ported by the Italian group in terms of quality. Thus, when
the model was tested on an external validation set of 20 com-
pounds belonging to the model applicability domain mainly
on the basis of their leverages, the result was R2

EXT = 0.777.
Although this suggests that the effective prediction power of
our model is less than that obtained with internal validation,
it is still higher than the result obtained with Grammatica
et al.’s model, which resulted in an R2

EXT = 0.607. The sta-
tistical fit should therefore not be confused with the ability of
a model to make predictions, as this result makes clear that
the model with WHIM descriptors possesses a more limited
prediction capability than the TOPS-MODE model. This val-
idation process is of great importance in demonstrating the
usefulness of the QSAR model for predictive purposes since
such a model is of no value if it presents a good fit, but is
unable to make predictions.
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Furthermore, the TOPS-MODE showed how it is possible
to produce a good QSPR model that permits easy structural
interpretation of the results in terms of group contributions
to soil sorption coefficients.

Fragment contributions

One of the most important advantages that the TOPS-MODE
brings to the study of QSPR and QSAR involves the structural
interpretability of the models. This interpretability comes
from the fact that the spectral moments can be expressed
as linear combinations of structural fragments. In this way,
we can determine which fragments make a positive or a neg-
ative contribution to the property under study, as interpreted
in terms of physicochemical or biological processes.

For example, both Figure 2 and Table 5 shows that the
increase of the aliphatic ring size of the fragment series F35

to F38 leads to an increased contribution to the property in
question.

Figure 2. Structures of selected fragments whose contributions to soil sorption coefficients were calculated in this study.

In accordance with equation 2, higher hydrophobicity of
the fragment increases its contribution to the soil sorption
coefficient. This behavior has already been noted by several
authors who correlated this property to the partition coeffi-
cient n-octanol/water (log Kow), as shown in Table 6.

The increase of the aliphatic contribution to fragments
F32, F34, and F45 by virtue of longer aliphatic chains leads
to a straightforward increase in the soil sorption coefficient.
Gramatica et al. thus propose that the bulk of the substituents
plays a central role in the increase of the soil sorption coeffi-
cient and emphasize the strong dependence of the soil sorp-
tion of non-ionic pesticides on the size of the compounds.
According to their regression coefficient, then, an increase in
molecular size leads to an increase in sorption.

However, as can be seen from fragments F33 and F34,
which have a slightly higher sorption, Gramatica et al.’s as-
sertions do not necessarily hold true. Thus, while certain
shifts of the ramification of these fragments affect their size,
they exhibit no steady changes in their hydrophobicity. On
the basis of the above results, then, we hypothesize that



117

Table 5. Contribution of some selected fragments to the soil sorption

coefficients.

Fragment Contribution Fragment Contribution Fragment Contribution

F1 0.38 F17 0.32 F33 0.66

F2 0.59 F18 0.26 F34 0.65

F3 0.68 F19 1.03 F35 0.52

F4 0.49 F20 0.37 F36 0.83

F5 0.89 F21 0.55 F37 1.02

F6 1.06 F22 0.55 F38 1.19

F7 0.47 F23 0.64 F39 0.32

F8 0.58 F24 0.74 F40 0.59

F9 0.78 F25 0.93 F41 0.87

F10 0.87 F26 0.69 F42 0.54

F11 0.17 F27 0.52 F43 1.19

F12 −0.25 F28 0.72 F44 2.05

F13 0.03 F29 0.80 F45 0.82

F14 −0.16 F30 0.82 F46 0.60

F15 0.00 F31 1.00 F47 0.20

F16 0.10 F32 0.49 F48 0.51

Table 6. Other published models with Log Kow as a molecular descriptor.

Authors Chemicals N Model descriptors R2

Sabljic et al. Carbamates 43 Log Kow 56.8

Gerstl et al. Carbamates 39 Log Kow 86.3

Sabljic et al. Organophosph 41 Log Kow 72.6

Sabljic et al. Phenylureas 52 Log Kow 61.6

Gerstl et al. Triazines 16 Log Kow 89.5

Sabljic et al. Het. pesticides 216 Log Kow 68.1

hydrophobicity, not molecular size, determines the level of
sorption.

Nevertheless, although the relation log Koc vs log Kow has
been used to explain this phenomenon, specific interactions
with soils and sediments (hydrogen bonding, dipole inter-
actions, charge transfer, etc.) which are feasible for chem-
icals such as alkyl ureas, amines, alcohols, organic acids,
amides, and dinitroanilines cannot be adequately described
by log Kow alone since this global molecular descriptor ac-
counts primarily for nonspecific interactions resulting from
dispersive forces.

Thus, in order to improve the quality of estimates for these
chemicals classes, other molecular descriptors which reflect
more specific interactions must be used in substitutions to log
Kow. These descriptors include spectral moments, WHIM,
and molecular connectivity indices.

As compared with fragment F37, F19 exhibited a smaller
contribution of the benzene ring to hydrophobicity; however,
this fragment showed a higher sorption due to its interaction
with the positive fraction of colloids and the dominant organic
material of the soil.

Other examples of the predominance of electronic inter-
actions of the compounds in this series were observed in
fragments F13, F14, and F16 in which the level of the contri-

bution was F16 > F13 > F14. This arrangement reflects the
ability of these amines to form hydrogen bonds. For example,
fragment F16, which corresponds to amine, has a conjugated
double bond; hence it stimulates and strengthens this type
of interaction. It therefore exerts a negative influence on the
contribution of F14 in sorption. This leads to the conclusion
that the ability of pesticides to form hydrogen bonds with
groundwater prevents their soil sorption.

Finally, when the number of halogens is increased in one
of the fragments of the families (F23, F30, F31) or (F24, F43,
F44), a remarkable increase in the soil sorption coefficient is
observed. The interest in this phenomenon has been keen for
some time due to environmental pollution considerations. We
recently demonstrated how increasing the halogen atoms in a
chemical structure generally increase the herbicidal property
of a compound [16]. But if this brings with it a higher soil
sorption coefficient, with the consequent increase in difficulty
of their elimination from and biodegradation in the soil, this
property not desirable for new herbicides.

The issue is thus more complex than would seem at first
glance. Precisely for this reason, a combination of models is
necessary for solving these problems in the future.

Concluding remarks

A topological approach (TOPS-MODE) was used to predict
the sorption coefficient in soils of pesticides. The theoretical
pattern revealed that the dipole moment, standard distance,
atom polarizability, and hydrophobicity are important factors
in predicting the soil sorption coefficient of this set of com-
pounds. This model explains more than 85% of the variance
in the experimental activity with good predictive power. This
last feature is significantly better than that obtained for other
methodologies using the same dataset. Finally, taking into
consideration the calculation speed and easy interpretation
of the descriptors used, as well as the good results obtained
in this particular study, it may be worth extending this pre-
diction methodology for the sorption coefficient in soils to
other families of active compounds.
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