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bstract

A method has been developed for analyzing the non-isothermal glass-crystal transformation kinetics in materials for which the nucleation process
akes place early in the transformation and the nucleation frequency is zero thereafter, the condition of “site saturation”. Under this condition the
ohnson–Mehl–Avrami transformation rate equation can be rigorously applied at non-isothermal processes. Considering the assumptions of
xtended volume and random nucleation, a general expression of the fraction transformed as a function of time in isothermal crystallization
rocesses has been obtained. The application of the quoted expression to non-isothermal transformations has been carried out under the above-
entioned condition of “site saturation”. Thus, the alternative method developed, starting from Johnson–Mehl–Avrami equation, initially equals

wo values of the volume fraction transformed, corresponding to two constant heating rates in different times, to deduce the activation energy of
he transformation. Next, the kinetic exponent is obtained combining two transformed fractions, corresponding to two different values of the time
n a single-scan. The theoretical method developed has been applied to the crystallization kinetics of some semiconducting alloys, prepared in our

aboratory, corresponding to the Ge-Sb-Se and Sb-As-Se glassy systems, and which fulfil the condition of “site saturation”. The obtained values
or the kinetic parameters satisfactorily agree with the calculated results by the non-isothermal technique of multiple-scan. This fact confirms the
eliability and accuracy of the theoretical model developed.

2005 Elsevier B.V. All rights reserved.
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. Introduction

Knowledge of amorphous materials is one of the most active
elds of research in the physics of condensed matter today
1], although traditionally, solid state physics has meant crystal
hysics, and solidity and crystallinity have been considered as
ynonymous in texts on condensed matter. Therefore, the solid
tate research in recent years has played an important role in
he study of solids that are not crystals, solids for which the

rrangement of the atoms lacks the slightest vestige of long-
ange order. The great interest in these materials is largely due
o their ever increasing applications in modern technology. Their
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E-mail address: jose.vazquez@uca.es (J. Vázquez).

i
a
r
i
u
t
m

925-8388/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jallcom.2005.11.025
Thermal analysis

ossibilities in the immediate future are huge based on the char-
cteristic properties such as electronic-excitation phenomena,
hemical reactivity and inertia and superconductivity. Therefore,
he advances that have been made in the physics and chemistry
f the quoted materials, during the last 40 years, have been very
ppreciated within the research community. A strong theoret-
cal and practical interest in the application of isothermal and
on-isothermal experimental analysis techniques to the study
f phase transformations has arisen in the last decades. In the
sothermal regime [2,3] the glass samples are quickly heated up
nd held a temperature above glass transition temperature. In this
egime, the glasses crystallize a constant temperature. However,

n the non-isothermal regime [4–8] the glass samples are heated
p at a fixed heating rate. Generally, an isothermal experiment
akes longer time than a non-isothermal experiment, but isother-

al experimental data can be interpreted by the well-established
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ohnson–Mehl–Avrami (JMA) kinetic equation [9–12]. On the
ontrary, the non-isothermal experiments have as advantage, the
apidity that makes this type of experiments more attractive.
he use of non-isothermal techniques to study solid-state trans-

ormations and to determine the kinetic parameters of the rate
ontrolling processes has been increasingly widespread. There-
ore, the utilization of the non-isothermal regime has produced
large number of mathematical treatments for analyzing ther-
al process data, the most of the quoted treatments are based on

he JMA transformation rate equation [9–12]. In this work the
onditions of applicability of the JMA transformation rate equa-
ion to non-isothermal crystallization are established. According
o Henderson [13] the above-mentioned equation can only be
igorously applied to glass-crystal transformations under non-
sothermal regime if the nucleation process takes place early in
he transformation and the nucleation frequency is zero there-
fter, which can be referred to as “site saturation” [14]. In this
ense, the present work describes an alternative method, based
n the JMA equation, for deducing the kinetic parameters of the
lass-crystal transformation in materials which fulfil the condi-
ion of “site saturation” [14]. The quoted method initially equals
wo values of the volume fraction transformed, corresponding to
wo constant heating rates in different times, to deduce the acti-
ation energy of the transformation. Next, the kinetic exponent
s obtained combining two transformed fractions, corresponding
o two different values of the time in a single-scan. Moreover,
he present paper applies the alternative method developed to
he analysis of the crystallization kinetics of the semiconduct-
ng alloys: Ge0.13Sb0.23Se0.64 (S1), Ge0.08Sb0.15Se0.77 (S2) and
b0.12As0.40Se0.48 (S3), prepared in our laboratory, and which
ulfil the condition of “site saturation”, according to literature
15]. We have confirmed the quoted condition checking that the
inetic exponent, n, is maintained constant after the reheating
or the three alloys analyzed, as it is described in literature [15].
inally, the obtained values for the kinetic parameters by means
f the alternative method are compared with the corresponding
esults calculated by the non-isothermal technique of multiple-
can, finding that the error between them for the less accurate
arameter is less than 4.5%. This fact shows the reliability and
ccuracy of the alternative method developed.

. Theoretical background

.1. Deducing the volume fraction transformed

The theoretical basis for interpreting DTA or DSC results
s provided by the formal theory of transformation kinetics
10–13,16,17]. This formal theory supposes that the crystal
rowth rate, in general, is anisotropic, and therefore, the vol-
me of a region originating at time t = τ (τ being the nucleation
eriod) is then

∏∫ t ′ ′

τ = g

i τ

ui(t ) dt (1)

here the expression
∏

i

∫ t

τ
ui(t′) dt′ condenses the product of

he integrals corresponding to the values of the above quoted

w
c

n
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ubscript i and g is a geometric factor, which depends on the
imensionality and shape of the crystal growth, and therefore its
imension equation can be expressed as

g] = [L]3−i [L] is the length

Defining an extended volume of transformed material and
ssuming spatially random nucleation [5,18,19], the elemental
xtended volume, dVe, in terms of nucleation frequency per unit
olume, IV(τ), is expressed as

Ve = vτIV(τ)V dτ = gIV(τ)V

(∏
i

∫ t

τ

ui(t
′) dt′

)
dτ (2)

here V is the volume of the whole assembly.
The extended volume can be visualized as a series of volume

lements having the same limiting surface as the actual trans-
ormed volume, Vb, but all growing ‘through’ each other. Some
lements of the transformed volume are counted twice, others
hree times, and so on, in order to obtain the extended volume.
t is possible now to find a relation between Ve and Vb. Con-
ider any small random region, of which a fraction (1 − Vb/V)
emains untransformed at time t. During a further time dt, the
xtended volume will increase by dVe, and the true volume by
Vb. Of the new elements of volume which make up dVe, a
raction (1 − Vb/V) on average will lie in the previously untrans-
ormed material, and thus contribute to dVb, whilst the remainder
f dVe will be in the already transformed material. This result
learly follows only if dVe can be treated as a completely ran-
om volume element. Bearing in mind the hypothesis of random
ucleation it is possible to write the relation between Vb and Ve
n the form

Vb =
(

1 − Vb

V

)
dVe = (1 − x) dVe (3)

here x = Vb/V is the volume fraction transformed. Differentiat-
ng this expression and substituting the result into Eq. (3), one
btains

Ve = V
dx

1 − x
(4)

his equation is combined with Eq. (2) after the value for vτ

rom Eq. (1) has been included, resulting in

dx

1 − x
= gIV(τ)

[∏
i

∫ t

τ

ui(t
′) dt′

]
dτ. (5)

When the crystal growth rate is isotropic, ui = u, an assump-
ion which is agreement with the experimental evidence, since in

any transformations the reaction product grows approximately
s spherical nodules [20], Eq. (5) can be written as

dx

1 − x
= gIV(τ)

(∫ t

τ

u(t′) dt′
)m

dτ (6)
here m is an exponent related to the dimensionality of the
rystal growth and the mode of the transformation.

For the important case of isothermal transformation with
ucleation frequency and growth rate independent of time, Eq.
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6) can be integrated to yield

(t) = 1 − exp

[
−gIVum

∫ t

0
(t − τ)m dτ

]

= 1 − exp(−g′IVumtn) (7)

here n = m + 1 for IV �= 0 and g′ is a new shape factor.
The last equation can be taken as a detailed specific case of

he JMA relationship

(t) = 1 − exp[−(Kt)n] (8)

ere K is defined as the effective overall reaction rate constant,
hich is usually assigned an Arrhenian temperature dependence:

= K0 exp

(−E

RT

)
(9)

here E is the effective activation energy, describing the overall
ransformation process and K0 the frequency factor. It should be
bserved that Kn is proportional to IVum. Hence assumption of
n Arrhenian temperature dependence for K is appropriate when
V and u vary in an Arrhenian manner with the temperature.

In general, the temperature dependence of the nucleation fre-
uency is far from Arrhenian, and the temperature dependence of
he crystal growth rate is also not Arrhenian when a broad range
f temperature is considered [19]. Over a sufficiently limited
ange of temperature (such as the range of transformation peaks
n DTA or DSC experiments), both IV and u may be described
n zeroth-order approximation by [21]

V ≈ IV0 exp

(−EN

RT

)
(10)

nd

≈ u0 exp

(−EG

RT

)
(11)

here EN and EG are the effective activation energies for nucle-
tion and growth, respectively.

Combining Eqs. (7)–(11) one obtains

n
0 exp

(−nE

RT

)
∝ IV0u

m
0 exp

[−(EN + mEG)

RT

]
(12)

nd the overall effective activation energy for the transformation
s expressed as

= EN + mEG

n
(13)

Eqs. (8) and (9) have served as the basis of nearly all treat-
ents of transformation in DTA or DSC experiments. It should

e noted, however, that Eq. (8) is strictly applied only to isother-
al experiments, where an integration of the general expression

f Eq. (6) is straightforward. In this case, the transformation rate,
x/dt, can be easily determined from Eq. (8) taking the derivative

ith respect to time and considering in the resulting expression

he explicit relation between x and t given by Eq. (8), to yield

dx

dt
= nK(1 − x)[− ln(1 − x)](n−1)/n. (14)

E

f
c
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his equation is sometimes referred to as the JMA transforma-
ion rate equation.

.2. An alternative method for deducing the kinetic
arameters in materials which fulfil the
ohnson–Mehl–Avrami transformation rate equation under
on-isothermal regime

It was suggested by Henderson [13] in a notable paper that
q. (14) as developed by Johnson, Mehl and Avrami is based on

he following important assumptions:

. isothermal transformation conditions;

. spatially random nucleation;

. growth rate of new phase dependent only on temperature and
not time.

In the past decades Eq. (14) has been applied without
ualification to the analysis of non-isothermal phase transfor-
ations [22–24]. However, according to literature [25], the

bove-mentioned equation can be rigorously applied under non-
sothermal conditions if it can be shown that the transformation
ate depends only on the state variables x and T. Under this
estriction, according to literature [13], an example of a system
hich allows the non-isothermal application of Eq. (14) is one

n which the nucleation process takes place early in the trans-
ormation and the nucleation frequency is zero thereafter, which
an be referred to as “site saturation” [14]. Under this assump-
ion it is possible to deduce the kinetic parameters, activation
nergy, E, kinetic exponent, n, and frequency factor, K0, of a
lass-crystal transformation from Eq. (8). In opposition to the
ethods which obtain the kinetic parameters from data based

n the maximum value of the thermogram [26,27], the method,
hich is developed in this work, allows to use a large number of
alues obtained from the complete experimental curve for each
f the different heating rates.

From Eq. (8) it is possible to consider two equal values of
he volume fraction transformed, x(ti), corresponding to two
xotherms taken at two constant heating rates, βi, (i = 1, 2), and
earing in mind Eq. (9), one obtains

xp

[
E

R

(
1

T2
− 1

T1

)]
= t2

t1
(15)

here T1 and T2 are the temperatures corresponding to the equal
alues of the fraction transformed at the heating rates, βi, and

1, t2 the corresponding effective times (transformation times
inus incubation times).
Taking into account that Ti = T0i + βiti, where T0i is the tem-

erature at which the transformation at βi begins, introducing
nto Eq. (15) the explicit forms of t1 and t2 given by the last
xpression and taking logarithm of the resulting equation, the
esults is the following expression
= RT1T2

T1 − T2
ln

(T2 − T02)β1

(T1 − T01)β2
(16)

or the effective activation energy of a non-isothermal glass-
rystal transformation which fulfils the above-mentioned
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ssumptions. The last equation allows to calculate the kinetic
arameter, E, for a set of fractions transformed, x(t), and the
orresponding mean value, represents the overall effective acti-
ation energy of the transformation.

Once the E-expression has been obtained, the kinetic expo-
ent, n, can be deduced by using a single-scan x(ti), obtained at
ither heating rates, βi, above considered. Assuming that Eq. (8)
s valid for any t-value it is possible to write the volume fraction
ransformed for two values of time, namely

(t1) = 1 − exp[−(K1t1)n] (17)

nd

(t2) = 1 − exp[−(K2t2)n] (18)

Combinig the logarithmic forms of Eqs. (17) and (18), and
ntroducing into the resulting equation the Ki-expression, given
y Eq. (9), one obtains

ln[1 − x(t1)]

ln[1 − x(t2)]
=
[
t1

t2
exp

E(T1 − T2)

RT1T2

]n

(19)

Taking logarithm of Eq. (19) and bearing in mind that for the
ame β it is verified Tj = T0 + βtj (j = 1, 2) results in

=
{

ln
ln[1 − x(t1)]

ln[1 − x(t2)]

}[
E(T1 − T2)

RT1T2
+ ln

T1 − T0

T2 − T0

]−1

(20)

n expression for the kinetic exponent, which allows to obtain
he quoted exponent for the different values of the activation
nergy. The corresponding mean value may be considered as the
ost probable value of the kinetic exponent of the glass-crystal

ransformation.
Finally, after the parameters E and n have been determined,

he frequency factor, K0, related to the probability of effective
olecular collisions for the formation of the activated complex,

an be obtained from Eq. (17), yielding

0 = β{− ln[1 − x(t1)]}1/n

(T1 − T0) exp(−E/RT1)
. (21)

. Experimental details

In this section, the preparation of the glassy alloy (S1) is described as an
llustrative example of the alloys analyzed in the present work and obtained
n our laboratory. The semiconducting Ge0.13Sb0.23Se0.64 glass was made in
ulk form, from their components of 99.999% purity, which were pulverized
o less than 64 �m, mixed in adequate proportions, and introduced into quartz
mpoules. The ampoules were subjected to an alternating process of filling and
acuuming of inert gas, in order to ensure the absence of oxygen inside. This
nded with a final vacuuming process of up to 10−2 Pa, and sealing with an
xyacetylene burner. The ampoules were put into a furnace at 1223 K for 44 h,
urning at 1/3 rpm, in order to ensure the homogeneity of the molten material,
nd then quenched in water with ice to avoid the crystallization. The capsules
ontaining the samples were then put into a mixture of hydrofluoridic acid and
ydrogen peroxide in order to corrode the quartz and make it easier to extract the
lloy. The glassy state of the material was confirmed by a diffractometric X-ray
can, in a Siemens D500 diffractometer, showing an absence of the peaks which

re characteristic of crystalline phases. The homogeneity and composition of the
amples were verified through scanning electron microscopy (SEM) in a Jeol,
canning microscope JSM-820. The calorimetric measurements were carried
ut in a Perkin-Elmer DSC7 differential scanning calorimeter with an accuracy
f ±0.1 K. A constant 60 ml min−1 flow of nitrogen was maintained in order to

t
A
t
e

ig. 1. Typical DSC trace of Ge0.13Sb0.23Se0.64 glassy alloy at a heating rate of
2 K min−1. The hatched area shows AT, the area between Ti and T.

rovide a constant thermal blanket within the DSC cell, thus eliminating thermal
radients and ensuring the validity of the applied calibration standard from
ample to sample. The calorimeter was calibrated, for each heating rate, using the
ell-known melting temperatures and melting enthalpies of high purity zinc and

ndium supplied with the instrument. The analyzed samples, were crimped into
luminium pans, and their masses were kept about 20 mg. An empty aluminium
an was used as reference. The crystallization experiments were carried out
hrough continuous heating at rates, β, of 2, 4, 8, 16, 32 and 64 K min−1. The
lass transition temperature was considered as a temperature corresponding to
he inflection point of the lambda-like trace on the DSC scan, as shown in Fig. 1.
he crystallized fraction, x, at any temperature, T, is given by x = AT/A, where A

s the total area limited by the exotherm, between the temperature Ti where the
rystallization is just beginning, and the temperature Tf where the crystallization
s completed and AT is the area between the initial temperature and a generic
emperature T, see Fig. 1.

. Results

Following with the alloy taken as an example, the typical
SC trace of chalcogenide Ge0.13Sb0.23Se0.64 glass obtained at
heating rate of 32 K min−1 and plotted in Fig. 1, shows three

haracteristic phenomena, which are resolved in the tempera-
ure region studied. The first one (T = 493 K) correspond to the
lass transition temperature, Tg, the second (T = 601 K) to the
xtrapolated onset crystallization temperature, Tc, and the third
T = 619 K) to the peak temperature of crystallization, Tp, of
he above-mentioned chalcogenide glass. The quoted DSC trace
hows the typical behaviour of a glass-crystal transformation.
he thermograms for the different heating rates, β, quoted in
ection 3, show values of the quantities Tg, Tc and Tp which

ncrease with increasing β, a property which has been widely
uoted in literature [27,28].

.1. Glass-crystal transformation

The analysis of the crystallization kinetics is related to the
nowledge of the reaction rate constant as a function of the

emperature. This temperature dependence can be considered of
rrhenius type when a sufficiently limited range of tempera-

ure is used (such as the range of transformation peaks in DSC
xperiments). In order for this condition to hold, according to lit-
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Table 1
Characteristic temperatures and enthalpies of the crystallization processes of the
studied alloys

Parameter Experimental value

S1 S2 S3

Tg (K) 474.0–499.2 414.4–433.1 459.2–490.9
Ti (K) 558.7–599.7 508.5–521.8 553.7–598.8
Tp (K) 581.1–631.3 529.0–572.8 579.2–641.4
�

�

e
a

(

o
h
t
a

v
g
q
t
s
�

i

t
o
i
e
b

F
h

p
d

e
i
f
�

t
g
i
e
a
t
i
t
a
t
i
i

T
E

x

0
0
0
0
0
0
0
0

T (K) 42.0–56.7 34.5–79.8 51.1–73.0
H (mcal mg−1) 6.2–7.7 5.3–6.4 4.1–5.1

rature [19], one of the following two sets of hypotheses should
pply:

(i) The crystal growth rate, u, has an Arrhenian temperature
dependence; and over the temperature range where the ther-
moanalytical measurements are carried out, the nucleation
rate is negligible (i.e., the condition of “site saturation”)
[14].

ii) Both the crystal growth and the nucleation, which have
Arrhenian temperature dependences, occur simultaneously
[6].

In the present work the first set of conditions is assumed in
rder to apply the JMA equation under regime of continuous
eating. From this point of view, the crystallization kinetics of
he alloys quoted in Section 1 has been analyzed by using the
lternative method described in Section 2.2.

With the aim of analyzing the above-mentioned kinetics, the
ariation intervals of the quantities described by the thermo-
rams of the alloys considered for the different heating rates,
uoted in Section 3, are given in Table 1, where Ti and Tp are
he temperatures at which crystallization begins and that corre-
ponding to the maximum crystallization rate, respectively, and
T is the width of the peak. The crystallization enthalpy, �H,

s also determined for each heating rate and each alloy.
The area under the DSC curve is directly proportional to

he total amount of material transformed. The ratio between the

rdinates and the total area of the peak gives the correspond-
ng transformation rates, which allow to plot the curves of the
xothermal peaks represented in Fig. 2 for the S1 alloy. It may
e observed that the (dx/dt)|p values increase in the same pro-

a
t
K
s

able 2
xperimental data and E-values for the analyzed alloys, obtained using the theoretica

S1 S2

T1 (K) T2 (K) E (cal mol−1) T1 (K) T2 (

.0 564.5 571.6 508.0 514

.2 581.5 590.2 47590 529.1 536

.3 584.1 592.9 48009 532.1 539

.4 586.3 595.2 48135 534.5 542

.5 588.5 597.6 47389 536.7 544

.6 590.5 599.6 48171 539.0 546

.7 592.6 601.9 47387 541.2 549

.8 595.1 604.5 47506 543.7 551
ig. 2. Crystallization rate vs. temperature of the exothermal peaks, at different
eating rates.

ortion as the heating rate, a property which has been widely
iscussed in literature [27,28].

With the aim of correctly applying the preceding theory, the
xperimental temperatures T1 and T2, corresponding to the heat-
ng rates, β, 4 and 8 K min−1, respectively, have been taken
or equal transformed fractions, x, in the interval 0.2–0.8, with
x = 0.1, as it is observed in Table 2. Also the initial tempera-

ures of the transformation, T0i (i = 1, 2), for each βi quoted, are
iven in Table 2. It is interesting to denote that the JMA equation
s more correctly fulfilled in the above quoted interval. From the
xperimental data quoted and using Eq. (16) the values of the
ctivation energy, E, of the transformation are obtained for each
ransformed fraction and for each alloy, values which appear
n Table 2. Next, according to the theoretical section, we have
aken two experimental values of the fraction transformed, x1
nd x2, and the corresponding temperatures T1 and T2, respec-
ively, for a value of the heating rate, β = 8 K min−1, besides the
nitial temperature, T0, of the transformation for each alloy, as
t can be observed in Table 3. From the quoted values and the
ctivation energies shown in Table 2, using Eqs. (20) and (21),

he values of the kinetic exponent, n, and of the frequency factor,

0, are obtained and given in Table 3 for the analyzed alloys. It
hould be noted that with the aim of maintaining the simplicity,

l method developed

S3

K) E (cal mol−1) T1 (K) T2 (K) E (cal mol−1)

.0 562.6 577.6

.6 47279 580.4 594.0 39295

.8 46627 583.6 597.2 39063

.3 46632 586.4 600.0 39001

.6 46547 589.2 602.8 39028

.9 47289 592.2 605.7 39597

.2 47159 595.3 608.9 39281

.8 47112 599.4 613.1 39116
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Table 3
Kinetic parameters n and K0 for the studied alloys, obtained using Eqs. (20) and (21), the corresponding experimental data and the E-values given in Table 2

S1 S2 S3

Experimental data n K0 (×10−14 s−1) Experimental data n K0 (×10−16 s−1) Experimental data n K0 (×10−11 s−1)

β = 8 K min−1 1.88 9.09 β = 8 K min−1 1.47 2.24 β = 8 K min−1 1.94 6.85
T0 = 571.6 K 1.87 12.90 T0 = 514.0 K 1.48 1.23 T0 = 577.6 K 1.94 5.64
T1 = 592.2 K 1.87 14.35 T1 = 539.6 K 1.48 1.24 T1 = 596.9 K 1.95 5.38
T2 = 597.8 K 1.89 7.70 T2 = 546.5 K 1.48 1.14 T2 = 603.0 K 1.95 5.50
x1 = 0.2363 1.87 14.79 x1 = 0.2325 1.46 2.25 x1 = 0.2316 1.93 8.80
x2 = 0.5776 1.89 7.69 x2 = 0.5701 1.47 2.00 x2 = 0.5748 1.94 6.77

1.89 8.50 1.47 1.92 1.94 5.90

Table 4
Mean values of the kinetic parameters for three glassy alloys

Alloy 〈E〉 (cal mol−1) 〈n〉 〈K0〉 (s−1)

S1 47741 1.88 1.07 × 1015

S 6

S 1

w
b
o
x
r
w

m
p
s
a
O
t
a

x

a
s
g
a
a
t
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2 46949 1.47 1.72 × 101

3 39197 1.94 6.41 × 101

e have only used two fixed values of the fraction transformed,
elonging to the heating rate of 8 K min−1, to obtain the values
f the kinetic parameters n and K0. However, any other pair of
-values in the interval 0.2–0.8 gives a good result and the cor-
esponding data for the heating rate of 4 K min−1 may be used
ith the same degree of accuracy.
Bearing in mind that the calorimetric analysis is an indirect

ethod which makes it possible to obtain mean values for the
arameters that control the kinetics of a reaction, the corre-
ponding mean values of the kinetic parameters: E, n and K0
re calculated and given in Table 4 for the three alloys analyzed.
nce the quoted mean values have been obtained, the JMA equa-

ion can be written for each alloy. Combining Eqs. (8) and (9)
nd taking into account that T = T0 + βt, it results in

= 1 − exp

{
−[K0(T − T0)β−1]

n
exp

(−nE

RT

)}
(22)

nd considering the mean values given in Table 4, the expres-
ions of the theoretical fraction transformed are obtained and
iven in Table 5 for each alloy and for the heating rates of 16
nd 32 K min−1. It should be noted that the quoted heating rates

re different to those used to obtain the kinetic parameters by
he alternative method, thus allowing to test the reliability of
he described procedure. As an illustrative example, the theo-
etical and experimental curves x versus T for the S1 alloy and

a

n

able 5
heoretical expressions of the volume fraction transformed for the studied alloys

lloy β (K min−1) JMA

1 16 x = 1
32 x = 1

2 16 x = 1
32 x = 1

3 16 x = 1
32 x = 1
ig. 3. Crystallized fraction, x, vs. temperature, T, for the heating rates of 16 and
2 K min−1 in the case of S1 alloy. Continuous line experimental curve, broken
ine theoretical curve.

or the above quoted heating rates are represented in Fig. 3. It
s observed a very satisfactory agreement between both curves,
hich confirms the validity of the theoretical method described.
On the other hand, the multiple-scan technique, which allows

to be quickly evaluated, has been used to analyze the crystal-
ization kinetics of the three semiconducting alloys considered.
n the quoted technique, according to literature [29], the follow-
ng equations

n

(
T 2

p

β

)
= E

RTp
− ln

RK0

E
(23)
nd

=
(

dx

dt

)
|pRT 2

p (0.37βE)−1 (24)

equation

− exp{−[1.07 × 1015 × 3.75 (T − 576.5)]1.88 exp[−(1.88 × 47741) (2T)−1]}
− exp{−[1.07 × 1015 × 1.875 (T − 584.4)]1.88 exp[−(1.88 × 47741) (2T)−1]}
− exp{−[1.72 × 1016 × 3.75 (T − 519.7)]1.47 exp[−(1.47 × 46949) (2T)−1]}
− exp{−[1.72 × 1016 × 1.875 (T − 520.9)]1.47 exp[−(1.47 × 46949) (2T)−1]}
− exp{−[6.41×1011 × 3.75 (T − 579.1)]1.94 exp[−(1.94 × 39197) (2T)−1]}
− exp{−[6.41 × 1011 × 1.875 (T − 590.1)]1.94 exp[−(1.94 × 39197) (2T)−1]}
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Table 6
Kinetic parameters obtained for the crystallization of the S1 alloy using the multiple-scan technique

β (K min−1) Tp (K) (dx/dt)|p (×103 s−1) n 〈n〉 E (cal mol−1) K0 (s−1)

2 581.1 1.81 2.08
4 588.0 3.42 2.01
8 597.5 6.45 1.96 1.96 47863 1.81 × 1015

16 607.7 12.99 2.04
3 1.82
6 1.83
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Table 7
Kinetic parameters calculated by the alternative method described in Section 2.2
and by the multiple-scan technique

Alloy Method E (cal mol−1) n ln K0

S1 Object of this work 47741 1.88 34.60
Multiple-scan 47863 1.96 35.13

S2 Object of this work 46949 1.47 37.38
Multiple-scan 47000 1.45 37.77

S3 Object of this work 39197 1.94 27.19

5

t
g
a
m
a
a
c
s
s

2 618.3 22.44
4 631.3 43.28

llow to obtain the kinetic parameters, by using the experimental
ata: maximum transformation rate, (dx/dt)|p, and correspond-
ng temperature, Tp, to each heating rate. Thus, the activation
nergy and the frequency factor are obtained from the slope and
ntercept of Eq. (23), respectively, and the kinetic exponent from
q. (24). As an example of the application of the multiple-scan

echnique we put forward the case of S1 alloy. In this sense, the
xperimental values of the quantities Tp and (dx/dt)|p for the dif-
erent heating rates, together with the calculated values for the
inetic parameters are given in Table 6. The plots of ln(T 2

p /β)
ersus 1/Tp for each heating rate, and the straight regression
ine carried out for the S1 alloy are shown in Fig. 4. The kinetic
arameters of the alloys S2 and S3 have been obtained of similar
orm by means of the multiple-scan technique.

With the aim of correctly analyzing the reliability of the theo-
etical method described, when calculating kinetic parameters in
on-isothermal crystallization processes under the condition of
site saturation” [14,26], the above-mentioned parameters E, n
nd ln K0, calculated by means of the quoted theoretical method,
re compared with its values obtained through the multiple-
can technique, Table 7, finding that the error between them
or the less accurate parameter is less than 4.5%. This result
s in agreement with literature [24], where it is shown that for
n − 1)/n = 0.6 in the range of 0.2 < x < 0.7 it results in an error
f 7% in the calculated slope, E/R, an error acceptable in most

rystallization reactions. The quoted fact also confirms that the
heoretical method developed is adequate to describe the crystal-
ization kinetics of the glassy alloys, which fulfil the condition
f “site saturation”.

ig. 4. Plots of ln(T 2
p /β) vs. 1/Tp and straight regression line of the

e0.13Sb0.23Se0.64 alloy (β in K s−1).

t
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Multiple-scan 37545 1.90 27.15

. Conclusions

The alternative method described enables us to study the crys-
allization kinetics in materials involving nucleation and crystal
rowth processes, which occur in separate stages. This method
ssumes the concept of extended volume in the transformed
aterial and the condition of random nucleation. Using these

ssumptions a general expression for the transformed fraction as
function of time in bulk crystallization has been obtained. In the
ase of isothermal crystallization, the above-mentioned expres-
ion has been transformed in an equation which can be taken as a
pecific case of the JMA transformation equation. The applica-
ion of this equation to non-isothermal transformations implies
hat the nucleation process takes place early in the transforma-
ion and the nucleation frequency is zero thereafter, condition of
site saturation”. Under this restriction, the alternative method
eveloped obtains the kinetic parameters of crystallization in a
lassy system heated under non-isothermal regime. From JMA
quation the kinetic parameters are deduced by means of two
cans of DSC data recorded at two heating rates. The quoted
ethod initially obtains the activation energy by equalling two

alues of the volume fraction transformed, corresponding to two
onstant heating rates. Next, the kinetic exponent is deduced
ombining two transformed fractions, corresponding to two
ifferent values of the time in a single-scan. The alternative
ethod has been applied to the crystallization kinetics of

ome glassy alloys, prepared in our laboratory, which fulfil the
ondition of “site saturation”. The quoted alloys have been also
nalyzed by means of the multiple-scan technique, finding that
he error between the values of the kinetic parameters obtained

y both methods is less than 4.5%. This good agreement shows
he reliability of the alternative method developed for the
alculation of the kinetic parameters in materials involving
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