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Energetic analysis of tube drawing processes with fixed plug
by upper bound method
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Abstract

In this work, an energetic analysis of thin-walled tube drawing processes in conical converging dies with inner plugs has been made. The method
used in the analysis is the upper bound method (UBM). The plastic deformation zone has been modelled by triangular rigid zones (TRZ), with the
assumption that the process occurs under plane strain and Coulomb friction conditions.
© 2006 Elsevier B.V. All rights reserved.
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. Introduction

Metal tubes are used in a great number of applications,
ncluding aerospace, defence, medical, transport and nuclear
ndustries, to name but a few. Tube manufacturing, especially
hin-walled ones, usually requires some cold finishing processes
n which a tube is drawn through a die so as to bring its diam-
ter, the thickness of its wall or both to standardised values of
rovision. Sometimes, in order to achieve a more accurate inner
iameter dimension, mandrels and plugs are located on the inside
1,2,5–7].

This study, focused on plug drawing (Fig. 1), is based on a
eries of previous works. First of all, the results obtained by the
pper bound method (UBM) were validated with the obtained
nes by the slab method (SM), with and without considering
riction, the finite element method (FEM) and some experimen-
al results found in the literature [3]. Afterwards, a comparative
nalysis of the necessary energy to carry out the process for
ifferent geometric configurations of the established triangular
igid zones (TRZ) model was made. From the results reached
n those analyses, the TRZ pattern that required the least energy

2. Upper bound method application

Thin-walled tubes drawing through conical convergent dies
with an inner, conical or cylindrical, plug fixed to the draw bench
is the process that it is going to be analysed by the upper bound
method. Tube inner diameter is considered constant along the
process (DIi ≈ DIf ≈ D), varying only the thickness from an ini-
tial value of hi, to a final one of hf.

The process variables are: the conical convergent die semian-
gle, α; the fixed conical plug semiangle, β, placed inside of the
die, and the tube cross-section area reduction, r. This last one
can approached the thickness change of the tube wall, if diame-
ters are sufficiently large, like it has been supposed in this case
where hi � DIi ≈ DIf ≈ D and hf < hi, then hf � DIi ≈ DIf ≈ D.

When in a thin-walled tube drawing process with fixed
plug there is no appreciable variation of its inner diameter
(hi ≈ hf � DIi ≈ DIf ≈ D), the material placed between the die
and the plug is under plane strain conditions [7]. In such situa-
tions, it is possible to use S, the yield stress under plane strain
instead of Y, the uniaxial yield stress.

At the die exit, metal is free to undergo transverse or circum-

o carry out the process was selected for subsequent studies.
dditionally, the robustness of that TRZ pattern versus above

nd below variations of the selected parameter to change the
onfiguration was proven.

ferential strains. Then it is under a state of uniaxial stresses rather
than under plane strain [5–7]. For that reason, some authors rec-
ommend that the plug was slightly larger than that necessary one
to obtain the precise dimensions of the tube [1].

The strength that finally limits the last pass is the uniaxial
y
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ield stress, Y, and no the yield stress under plane strain, S.
lthough, the plane strain conditions stay in the real deforma-

ion zone. It is supposed the breakage is reached as soon as the
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Fig. 1. Plug drawing.

uniaxial yield stress, Y, appears in the tube drawing. The condi-
tion expresses the limit of the tubes drawing:

σzf

S
= Y

S
= 0.866 (1)

On the other hand, the existing friction between the inter-
faces: die-tube outer surface and plug-tube inner surface have
been considered of Coulomb type. This kind of friction condi-
tion considers the shear stress, τ, is proportional to the existing
pressure, p, between the surfaces in contact according to the
expression τ = µp, where the proportionality coefficient, µ, is
called Coulomb friction coefficient. In this case, representing
the friction value at the interfaces above, the coefficients µ1 and
µ2, have been used respectively.

The deformation zone has been modelled by three TRZ as it
is shown in Fig. 2. According to the literature, the multiple TRZ
pattern provides quite low solutions of the UBM [1]. It has been
considered that the individual reductions obtained in each one
of those zones are identical. Its value can be calculated through
the following expression [4]:

r1 = r2 = r′ = 1 − √
1 − r (2)

With a tube made of rigid-perfectly plastic material, mod-
elling the plastic deformation zone by means of three TRZ (see
Fig. 2) and applying the UBM to the drawing process it is pos-
s
p

ẆT = σzfπDhfvf = 2πD(kOA�vi1 + kOB�v12 + kBC�v23

+ kCD�v3f + µ1pABv1 + µ2pOCv2 + µ1pBDv3)

(3)

where σzf is the stress at the die exit; D and hf, the
diameter and the final thickness of the tube respectively;
vf, the velocity at the tube exit; k, the shear yield
stress; kOA�vi1, kOB�v12, kBC�v23, kCD�v3f, the
mechanic effects along the OA, OB, BC and CD disconti-
nuities lines; µ1pABv1 and µ1pBDv3 the friction effect
between the material in the deformation zone and the die along
the AB and BD and µ2pOCv2 the friction effect between the
material in the deformation zone and the inner plug along the
OC. Pressures in the die and in the plug have been supposed
equal and of value p. This can be justified considering, when
the radial forces balance is made, that the contribution to the
friction of the die is small and that the main stress can be taken
as: σ1 = σz and σ2 = −p; being related in a closed pass without
diameter variation:

p

2k
= 1 − σz

2k
(4)

that represents the flow condition under plane strain; vij , the
relative speed between the i and j blocks (the three triangular
o
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ible to write the next expression for calculating the required
ower to carry out the process:

Fig. 2. Plastic deformation zone modelled by three TRZ.
nes and the rectangular at the entrance and at the exit of the
ube).

Keeping in mind the value of the pressure given by the expres-
ion (4), the symmetry of the problem and the geometric and
inematic relationships that exist between the segments and the
elative velocities (Fig. 2), the Eq. (3) can be written by

σzf

2k

)
T

= OA�vi1 + OB�v12 + BC�v23 + CDv3f

hfvf + 2[µ1ABv1 + µ2OCv2 + µ1BDv3]

+ 2[µ1ABv1 + µ2OCv2 + µ1BDv3]

hfvf + 2[µ1ABv1 + µ2OCv2 + µ1BDv3]
(5)

hat it represents the adimensional total energy necessary to carry
ut the process.

. Energetic analysis

Classic analysis methods such as the homogeneous defor-
ation one or the slab one only provide a low estimate of the

ecessary energy to carry out a process. The first one only takes
nto account the necessary energy to carry out the homogeneous
eformation and, the second one, that one plus the required one
o overcoming the friction. UBM allows evaluating, also, the
erm due to the internal distortion that suffers the material when
t is being deformed. Therefore, the necessary total energy to
educe the thickness of the tube wall can be considered com-
osed by the energy to achieve the homogeneous deformation,
he corresponding one to the internal distortion, usually called
edundant energy, and the necessary one to overcoming the effect
f the friction. Each one of them comes given by the next expres-
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sions respectively:

(σzf

2k

)
H

= ln
1

1 − r
(6)

(σzf

2k

)
R

=
(σzf

2k

)
T

∣∣∣∣
µ1=µ2=0

−
(σzf

2k

)
H

= OA�vi1 + OB�v12 + BC�v23 + CDv3f

hfvf

− ln
1

1 − r
(7)

(σzf

2k

)
F

= OA�vi1 + OB�v12 + BC�v23 + CDv3f

hfvf + 2[µ1ABv1 + µ2OCv2 + µ1BDv3]

+ 2[µ1ABv1 + µ2OCv2 + µ1BDv3]

hfvf + 2[µ1ABv1 + µ2OCv2 + µ1BDv3]

− OA�vi1 + OB�v12 + BC�v23 + CDv3f

hfvf
(8)

Table 1
Variables values used in the calculation of the energy

α (◦) β (◦) r µ1 µ2

5 1–4 0.1–0.25 0–0.30 0–0.30
10 1–9 0.1–0.25 0–0.30 0–0.30
15 1–14 0.1–0.20 0–0.30 0–0.30
20 1–19 0.1 0–0.30 0–0.30

4. Applications and results

For the TRZ pattern fixed for ϕ = 30◦, the expressions (5)–(8)
have been calculated for the values collected in Table 1 since,
with the calculations carried out to determine the sensibility of
the mentioned TRZ pattern, it was possible to see that some vari-
ables combinations did not provide possible physically results.
For each one of the proven values groups they have been obtained
graphics as the collected ones in Fig. 3 for the case of α = 15◦,
r = 0.10 and values of µ1 and µ2 varying from 0.05 to 0.30.

The obtained results have allowed establishing for each
couple (α, r): an interval of β values that make possible the
drawing was carried out; the β value that makes minimum the
necessary energy to carry out the process, βopt, and the inter-
val of values around that βopt that make the energy used in

F
µ

ig. 3. Total energy (UBM T), homogeneous one (UBM H), redundant one (UBM R

1 = 0.05 and µ2 = 0.30; (c) µ1 = 0.30 and µ2 = 0.05; (d) µ1 = µ2 = 0.30.

) and friction one (UBM F) vs. β for α = 15◦, r = 0.10. (a) µ1 = µ2 = 0.05; (b)
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Table 2
Intervals of β values that make the process can be carried out, can be carried out
in an optimal way and βopt

α (◦) r β

Possible interval (◦) Optimal interval (◦) βopt (◦)

5

0.10 0–4 0–2 0
0.15 0–3 0–1 0
0.20 0–2 0–1 0
0.25 0–1 0–1 0

10 0.10 0–9 0–6 4
0.15 0–8 0–6 2
0.20 0–6 0–4 0
0.25 0–3 0–2 0

15 0.10 0–13 6–10 8
0.15 0–13 5–9 7
0.20 0–10 0–8 4

20 0.10 10–16 10–16 13

the tubes drawing continues being near to the required min-
imum one. Such intervals and angles have been collected in
Table 2.

5. Conclusions

The energetic analysis of thin-walled tube drawing pro-
cesses made by the UBM modelling the plastic deforma-
tion zone by three TRZ and considering plane strain and

Coulomb friction conditions has provided expressions to cal-
culate the adimensional overall energy involved in this kind
of process and its components: homogeneous deformation
one, redundant work and that required to overcome external
friction.

For each group of tested variables, values (α, r, µ1, µ2) were
been obtained: the interval of values that allows the process to be
carried out, the one that enables the process to be carried out in
optimal conditions and the value, βopt, that enables the process
to be carried out using minimum energy.
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