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Abstract

This paper describes how to deal with electronic instruments, commonly used in frequency calibrations, whose data
sheets do not include complete information regarding the sources of error (uncertainties), which affect the accuracy and
stability of the frequency under test. Considering a time interval counter as the measurement unit, and a GPS receiver
as the traceable standard, the purpose is twofold. First, contributions to the Type B uncertainty are calculated under
the assumption of uniformly distributed errors. An expression is used for frequencies under test whose values are close
to 1 Hz. Secondly, short-term instability is studied using non-classical statistics, which have been previously tested using
simulated data. Then, a white noise test is performed based on the calculation of the classical to non-classical variance
ratio, and supported by the direct measurement of the slopes in the graphs which depicts the variances (the Allan deviation
and the modified Allan deviation) vs. the measurement time.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Time interval counters and GPS receivers (as
transfer standard lab sources) are widely used in
traceable frequency calibrations. The transfer stan-
dard receives a signal, which has been previously
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generated by a caesium-oscillator-based system,
subsequently conferring high stability to the refer-
ence frequency delivered by the lab source. This cae-
sium-derived frequency is available to the user, who
is benefited, as not all laboratories can afford a cae-
sium [1–3]. These instruments differ in specifications
and details regarding the time base, the main gate
and the counting assembly. Furthermore, manu-
facturers tend to omit the conditions under these
specifications have been provided or measured.
The instruments often are supplied with data sheets
.
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lacking in details concerning the probability density
function of the errors. Moreover, information con-
cerning some types of uncertainty is missing in their
data sheets.

Frequency calibrations involve the calculation of
the frequency offset, and the characterisation of the
noise process which mostly affects the short-term
stability of the frequency source under test. Conse-
quently, assumptions have to be made in order to
perform a frequency calibration using these incom-
pletely characterised electronic instruments.

Considering a medium-cost time interval counter
as the measurement unit, and a GPS receiver as the
traceable standard, the paper shows how to cali-
brate a function generator which delivers a fre-
quency, whose value is close to 1 Hz. Based on
this experience, the purpose of the paper is twofold.
First, contributions to the Type B uncertainty (via
the sensitivity coefficients in the error propagation
expression) are calculated under the assumption of
dealing with errors which exhibit rectangular prob-
ability distributions. An expression is considered for
frequencies under test whose values are close to
1 Hz. The value for the measured frequency and
its associated uncertainty is then reported, consider-
ing uncertainties of Types A and B. It is shown that
Type A uncertainty degrades in one order of magni-
tude the Type B uncertainty, which is of 1 part in
107.

Secondly, short-term instability is studied in a
simulated scenario, using non-classical statistics
(Allan deviations estimates) which have been previ-
ously tested using noise processes, which in turn
have been modelled using a seed function based
on the five power spectral laws. A result regarding
the simultaneous action of two noise processes is
reported to show that it is possible to have a low-
variance noise masked by a higher variance one.
These pre-experimental calculations are thought to
assess the performance of the non-classical statistics
compared to the results found in: [4–8]. Then, going
back to the experimental case, a white noise test is
performed based on the calculation of the classical
to non-classical variance ratio [9], and supported
by the direct measurement of the slopes in the
graphs which depict the Allan deviation and the
modified Allan deviation vs. the measurement time.

The paper is organised as follows: Section 2
shows the details concerning the calculation of the
standard uncertainty associated to the frequency
measurement; the error propagation expressions
and types of uncertainty are revised; then a wide-
spread expression [9] for the calculation of frequen-
cies which are close to 1 Hz is adopted to calculate
the sensitivity coefficients which contribute to the
standard uncertainty. In Section 3, the five indepen-
dent noise processes which commonly affect oscilla-
tors are revised, along with the non-classical
deviations (Allan deviations) which allow their iden-
tification. The experience is described in Section 4,
and the conclusions are drawn in Section 5.

2. Uncertainty propagation using a reference

signal of 1 pps

2.1. Sensitivity coefficients

In calibration we usually deal with a measurand,
Z, which is the particular quantity subject to the
measurement and is considered as the output of
the measurement system. This quantity depends
upon a set of input random variables Xi according
to a functional relationship given by a function f,
representing the procedure of the measurement
and the method of evaluation [10,11]

Z ¼ f ðX 1;X 2; . . . ;X N Þ. ð1Þ

An estimate of the measurand, denoted by z, is ob-
tained from Eq. (1) using input estimates xi

z ¼ f ðx1; x2; . . . ; xN Þ. ð2Þ

The standard uncertainty associated with that esti-
mate u(z), depends on the particular uncertainties
of the input quantities u(xi). For uncorrelated input
quantities the square of the standard uncertainty of
the output estimate is given by

u2ðzÞ ¼
XN

i¼1

u2
i ðzÞ; ð3Þ

where the individual contributions in Eq. (3) are ob-
tained through the sensitivity coefficients ci via

uiðzÞ ¼ ciuðxiÞ; ci ¼
of
oX i

� �
xi

. ð4Þ
2.2. Types of uncertainty for the input estimates

The uncertainty of measurement associated with
the input estimates is evaluated according to differ-
ent methods of evaluation. The Type A evaluation
of standard uncertainty is the method which consid-
ers the statistical analysis of a series of observa-
tions. The standard uncertainty is the experimental
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standard deviation of the mean, which in turn
results from a regression analysis. By the contrary,
the Type B method is based on scientific knowledge
[10,11].

The standard uncertainty of one input estimate
u(xi), evaluated via the Type B method, comprises
all the information related to the variability of the
measurand Xi. This variability can fall into the fol-
lowing six categories:

• previous measurements;
• general knowledge of the behaviour and proper-

ties of relevant materials and instruments;
• manufacturer’s specifications;
• data provided in calibration certificates;
• uncertainties assigned to reference data in

handbooks.

As a consequence, insight and general knowledge
are the sources of information for a Type B evalua-
tion of standard uncertainty. The electronics instru-
ments involved in this experience are not provided
with detailed data sheets, with the uncertainties
associated to the quantities Xi. Only upper and
lower limits can be estimated for the values of the
quantities in the manufacturer’s specifications.
Thus, it has to be assumed a constant probability
density between these limits. A rectangular proba-
bility distribution is a reasonable description of
one’s inadequate knowledge about an input quan-
tity in absence of any other information apart from
its limits of variability.
1 A similar example was provided by Prof. Eva Ferre-Pikal
(University of Wyoming) and used by Vig in [8].
2.3. The measurand in traceable frequency

characterisation

In traceable frequency calibrations the expression
for the measurand fmeas is given by

fmeas ¼
1

1
fREF
� Dx

s

" #
fREF ;Dx;s

¼ fREF

1� fREF
Dx
s

" #
fREF ;Dx;s

;

ð5Þ

where fREF is the reference (1 pps), Dx represents the
incremental phase shift between the source under
test and the reference, and s is the averaging time
of the measurement system. Eq. (5) is evaluated in
the averaged phase shift during the calibration per-
iod. For a zero phase shift, or an infinity averaging
time, looking at Eq. (5), we have the ideal case
(fmeas = fREF).
Using Eqs. (3)–(5), the uncertainty of the fre-
quency is obtained from Eq. (6) via

u2ðfmeasÞ ¼ 1� fREF

Dx
s

� ��4

� ½u2ðfREFÞ þ u2ðDxÞ þ u2ðsÞ�. ð6Þ

Sensitivity coefficients in Eqs. (3) and (4) determine
the contributions of the Type B uncertainty, which
is associated to the instrument’s specifications.
3. Classical noise models

3.1. Characterising instabilities

It is a customary situation to deal with unperfect
signals which contain additive noise. The instanta-
neous output voltage of an oscillator can be
expressed as

vðtÞ ¼ ½V 0 þ eðtÞ� sin½2pm0t þ /ðtÞ�; ð7Þ

where V0 is the nominal peak voltage amplitude, e(t)
is the deviation from the nominal amplitude, m0 is
the name-plate frequency, and /(t) is the phase
deviation from the ideal phase 2pm0t. Changes in
the peak value of the signal is the amplitude instabil-
ity. Fluctuations in the zero crossings of the voltage
is the phase instability. The so-called frequency
instability is depicted by the fluctuations in the per-
iod of the voltage. The situation is depicted in
Fig. 1.1

The impacts of oscillator noise and the causes of
short-term instabilities have been described in many
research works and tutorials like [4,8,12]. The short-
term stability measures most frequently found on
oscillator specification sheets is the two-sample devi-
ation, also called Allan deviation, r2

yðsÞ (an estimate
will be denoted by s2

yðsÞ).
The Allan deviation and the modified Allan devi-

ation have proved their adequacy in characterising
frequency phase and instabilities. These easy-to-
compute variances converge for all noise processes
observed in precision frequency sources, have a
straightforward relationship to power law spectral
density of noise processes, and are faster and more
accurate in than the FFT [13].

The estimates of these variances, for a given
calibration time s and for a m-data series of phase
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Fig. 1. Simulated types of instabilities in a 25 Hz sinusoidal output with additive noise. The noise process has a power spectral density
proportional to the inverse of the frequency (flicker phase modulation). Fluctuations in the zero crossings of the voltage point to the phase
instability. The so-called frequency instability is depicted by the fluctuations in the period of the voltage.
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differences between the device under test and the ref-
erence x, are given by Eqs. (8) and (9), [6,14]

r̂2
yðsÞ , s2

yðs;mÞ ¼
1

2ðm� 1Þ
Xm

j¼2

�yj � �yj�1

� �2

¼ 1

2s2ðm� 1Þ
Xm

j¼2

D2
sxðjsÞ

� 	2
; ð8Þ

^modr2
yðsÞ , mod s2

yðs;mÞ ¼
1

2s2
hD2

sxi2; ð9Þ

where the bar over x denotes the average in the time
interval s (averaging time), and D2

sx ¼ xiþ2 � 2xiþ1þ
xi, is the so called second difference of x [14]. The
fractional frequency deviation is the relative phase
difference in an interval s. It is defined by Eq. (10)

�y ¼ 1

s

Z t

t�s
yðsÞds ¼ xðtÞ � xðt � sÞ

s
¼ DsxðtÞ

s
. ð10Þ

Non-classical statistics estimators, defined in Eqs.
(8) and (9), give an average dispersion of the frac-
tional frequency deviation due to the noise processes
coupled to the oscillator. As a consequence time do-
main instability (two-sample variance) is related to
the power spectral density of the noise via [6]

s2
yðsÞ ¼

2

ðpm0sÞ2
Z fh

0

S/ðf Þ sin4ðpf sÞdf ; ð11Þ
where m0 is the carrier frequency, f is the Fourier fre-
quency (the variable), and fh is the band-width of
the measurement system. S/(f) is the spectral den-
sity of phase deviations, which is in turn related to
the spectral density of fractional frequency devia-
tions via [6]

S/ðf Þ ¼
m2

0

f 2
Syðf Þ. ð12Þ

The classical power-law noise model is a sum of the
five common spectral densities. The model can be
described by the one-sided phase spectral density
S/(f) via [15,14]

S/ðf Þ ¼
m2

0

f 2

X2

a¼�2

haf a ¼ m2
0

X4

b¼0

hbf b ð13Þ

for 0 6 f 6 fh. Where, again, fh is the high-frequency
cut-off of the measurement system (the band-
width); ha and hb are constants which represent,
respectively, the independent characteristic models
of oscillator frequency and phase noise [5,15,
14]. For integer values, the approximate expression
is

syðsÞ � sl=2; ð14Þ
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where l = �a � 1, for �3 6 a 6 1; and l � �2 for
a P 1. In the case of the modified Allan deviation
can be approximated via

mod syðsÞ � sl0 . ð15Þ
Hereinafter we use Eqs. (14) and (15) for characte-
rising noise.

3.2. Characterisation of the stability in the time

domain

Eqs. (14) and (15) are used to make the graphical
representation of sy(s) vs. s, and allow us to infer the
Table 1
The five noise processes characterized by the time and frequency doma

Noise process Sy(f) S/(f)

a b = a �
Random walk freq. mod. �2 �4
Flicker freq. mod. �1 �3
White freq. mod. 0 �2
Flicker phase mod. 1 �1
White phase mod. 2 0

The Allan deviation is denoted by s and the modified deviation by mo
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Fig. 2. Characterisation of the five noise proces
noise processes which causes frequency instability
by means of measuring the slope in a log–log graph
[6,16]. Table 1 shows the experimental criteria
adopted. In the second column of the modified
Allan variance two different criteria have been con-
sidered, according to [6,13], respectively. We have
used the notation in [6,13] for l/2 and l 0,
respectively.

In order to adopt an experimental criteria, the
five noise processes have been have been simulated.
The results, depicted in Fig. 2, follow the criteria
depicted in the second column of the modified Allan
variance, in Table 1. Each data sequence contains
in slopes
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J.J. González de la Rosa et al. / Measurement 39 (2006) 664–673 669
4096 points for a time resolution of s = 10�4 s.
Allan deviation graphs have been depicted for aver-
aging times of s = n · s0, with n 2 [1,500].

In many practical situations two or more noise
processes simultaneously affect clocks performance.
In these cases the upper enveloping curve deter-
mines the noise process coupled to the oscillator.
If the individual variance curves cross each other,
it is possible to see where the slope changes, for a
time-series which includes several types of noise
[7]. This situation is shown in Figs. 3 and 4.

In Fig. 3, the individual variance curves cross. So
the enveloping curve characterizes the short-term
instability. By the contrary, in Fig. 4 the b = 0 noise
process has a variance greater than the b = �4
process.

4. Experimental results

4.1. Uncertainty calculations

A function generator, the device under test, is set
up (from the front panel) to deliver a 1.1 (Hz) TTL
signal. The experimental arrangement is depicted in
Fig. 5. The time interval counter and a GPS receiver
have been connected via GPIB to the computer.
Data points are captured every 1 (s).

Fig. 6 shows the time-series resulting from the
processing. Each measurement cycle corresponds
to 1 (s). The bottom graph corresponds to the
instantaneous phase-deviation series, which com-
prises m = 898 data. These data are the result of fil-
tering the spiky time-series of phase differences, and
are used to perform the calibration. They are sup-
posed to be corrupted by white noise, with a rectan-
gular probability density function.

Table 2 summarizes the results of the evaluation
of the Type B standard uncertainty. It is an ordered
arrangement of the quantities, estimates standard
uncertainties, sensitivity coefficients and uncertainty
contributions. It has been reported under the
assumption of a rectangular (uniform) probability
distribution of the magnitudes Xi (see the factorffiffiffi

3
p

in the particular uncertainties). The rightmost
column has been rounded according to the resolu-
tion of the electronic counter.
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The expression for the standard uncertainty is
obtained from Eq. (16)

u2ðzÞ ¼ 2�
XN

i¼1

u2
i ðzÞ þ

r2

m
; ð16Þ

where the double factor is associated to the phase
differences. Type A variance, r2

m , associated to the
time-series, results 2 · 10�11 (s2). Thus, Type A
uncertainty results 5 · 10�6 (s).

The expanded uncertainty of the measurement is
stated as the standard uncertainty multiplied by the
coverage factor k = 2, which for a normal distribu-
tion attributed to the measurand corresponds to a
coverage probability of approximately 0.95. Type
B uncertainty is 2 · 10�7. Including the contribution
of Type A, the reported result of the measurement is
fmeas = 1.097493 ± 0.000005 (Hz), for measurement
time of 898 (s).

4.2. Testing for white noise

The ratio of the classical variance to the Allan
variance provides a primary test for white
noise. This quantity (7.484 · 10�4) is less than 1þ
1=

ffiffiffiffi
m
p ’ 1:033; thus it is probably safe to assume

that the data set is dominated by white noise, and
the classical statistical approach can safely be used.
Failure of the test does not necessarily indicate the
presence of non-white noise [9]. Fig. 7 shows the
log–log curves of the Allan deviation and the mod-
ified Allan deviation vs. the calibration period, s.

Measures of the slopes over the log–log graphs in
Fig. 7 offer the results �1 and �1.5 for log(s) vs.
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Table 2
Sources of the Type B uncertainty assuming white noise

(TIC) HM8122 magnitude description Value (ns) Std. uncertainty (ns) Contribution (ns)
u(xi) ui(z) = ci · u(xi)

X1 (±1 ext. clock) (GPS receiver) 100 100ffiffi
3
p 70

X2 (time base error) (GPS clock’s accuracy) 100 100ffiffi
3
p 70

X3 (jitter) 5 5ffiffi
3
p 4

X4 (systematic error) <4 4ffiffi
3
p 3

X5 (resolution) 100 50ffiffi
3
p 4

GPS receiver HM8125
X6 (accuracy) 100 100ffiffi

3
p 70

X7 (jitter) 5 5ffiffi
3
p 4

Averaging time (measurement system)
X8 6 6 0.5
u2(x8) = u2(x6) + u2(x7)
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log(s), and log(mod s) vs. log(s), respectively; which
indicate that a white phase modulation process
is coupled to the frequency source under test (see
Table 1).
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5. Conclusion

This paper shows how to deal with frequency cal-
ibrations using incompletely characterised instru-
ments. The calibration of a function generator has
been taken as an example. The different uncertain-
ties have been calculated under the hypothesis of a
rectangular distribution of errors. The reported
standard uncertainty is dominated by the Type A
uncertainty. The Type B uncertainty of the fre-
quency is one order of magnitude less than the Type
A uncertainty.

Short-term instability estimators has been tested
using simulated noise processes. A result regarding
the simultaneous action of two noise processes has
been reported, showing a low-variance noise masked
by a higher variance one. Then, once the non-classi-
cal estimators have been assessed, a white noise test
has been applied based on the calculation of the clas-
sical to non-classical variance ratio, and supported
by the direct measurement of the slopes on the
graphs which depict the Allan deviation and the
modified Allan deviation vs. the measurement time.
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