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d Department of Architecture and Computers Technology, University of Granada, Spain

e Department of Signal Processing, University of Granada, Spain

Received 21 January 2005; accepted 17 November 2005
Available online 10 January 2006
Abstract

In this paper we show the possibility of using wavelets and wavelet packets to detect and characterize alarm signals
produced by termites. A set of synthetics have been modelled by mixing the real acquired transients with computer gen-
erated noise processes. Identification has been performed by means of analyzing the impulse responses of three sensors
undergoing natural excitations. De-noising exhibits good performance up to SNR = �30 dB, in the presence of white
gaussian noise. The test can be extended to similar vibratory or acoustic signals resulting from impulse responses.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In acoustic emission (AE) signal processing a
customary problem is to extract some physical
parameters of interest in situations which involve
join variations of time and frequency. This situation
can be found in almost every non-destructive AE
tests for characterization of defects in materials, or
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detection of spurious transients which reveals
machinery faults [1]. The problem of termite detec-
tion lies in this set of applications involving non-sta-
tionary signals [2].

When wood fibers are broken by termites they
produce acoustic signals which can be monitored
using ad hoc resonant acoustic-emission (AE) piezo-
electric sensors which include microphones and
accelerometers, targeting subterranean infestations
by means of spectral and temporal analysis. The
drawback is the relative high cost and their practical
limitations [2].
.
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1 American Society for Testing and Materials. F2174-02:
Standard Practice for Verifying Acoustic Emission Sensor
Response. E750-04: Standard Practice for Characterizing Acous-
tic Emission Instrumentation. F914-03: Standard Test Method
for Acoustic Emission for Insulated and Non-Insulated Aerial
Personnel Devices Without Supplemental Load Handling
Attachments.
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In fact, the usefulness of acoustic techniques for
detection depends on several biophysical factors.
The main one is the amount of distortion and atten-
uation as the sound travels through the soil
(�600 dB m�1, compared with 0.008 dB m�1 in the
air). Furthermore, soil and wood are far from being
ideal acoustic propagation media because of their
high anisotropy and frequency dependent attenua-
tion characteristics [3]. This is the reason whereby
signal processing techniques emerged as an
alternative.

Second order methods (i.e. correlation and spec-
tra in the time and frequency domains, respectively)
failure in low SNR conditions even with ad hoc pie-
zoelectric sensors. Higher order statistics, like the
bi-spectrum, have proven to be a useful tool for
characterization of termites in relative noisy envi-
ronments using low-cost sensors [4,5]. The compu-
tational cost could be pointed out as the main
drawback of the technique. This is the reason
whereby diagonal bi-spectrum have to be used.

Numerous wavelet-theory-based techniques have
evolved independently in numerous and different sig-
nal processing applications, like wavelets series
expansions, multiresolution analysis, sub-band cod-
ing, image compression, etc. The wavelet transform
is a well-suited technique to detect and analyze events
occurring to different scales [6]. This suggests the pos-
sibility of concentrating on transients and non-sta-
tionary movements, making possible the detection
of singularities and sharp transitions. And this in
turn, points to the idea of decomposing a signal into
frequency bands, conveying the possibility of extract-
ing sub-band information which could characterize
the physical phenomenon under study [7–9].

In this paper we show an application of wavelets
and wavelets packets’ de-noising possibilities for the
characterization and detection of termite emissions
in low SNR conditions. Signals have been buried
in gaussian white noise to deteriorate them to the
limit. Working with three different sensors we find
that the estimated signals’ spectra matches the spec-
tra of the acoustic emission whereby the species of
termites are biologically identified.

The paper is structured as follows: Section 2
summarizes the problem of acoustic detection of
termites; Section 3 remembers the theoretical back-
ground of wavelets and wavelet packets, focus-
sing on the analytical tool employed. Section 4 is
intended for use as a tool for interpreting results
from a wavelet-based experiment. Finally, experi-
ments and conclusions are drawn in Section 5.
2. Acoustic detection of termites

2.1. Characteristics of the AE alarm signals

Acoustic emission (AE) is defined as the class of
phenomena whereby transient elastic waves are gen-
erated by the rapid (and spontaneous) release of
energy from a localized source or sources within a
material, or the transient elastic wave(s) so gener-
ated (ASTM, F2174-02, E750-04, F914-031). This
energy travels through the material as a stress or
strain wave and is typically detected using a piezo-
electric transducer, which converts the surface dis-
placement (vibrations) to an electrical signal.

Termites use a sophisticated system of vibratory
long distance alarm. When disturbed in their nests
and in their extended gallery systems, soldiers pro-
duce vibratory signals by drumming their heads
against the substratum [10]. The drumming signals
consist of pulse trains which propagate through the
substrate or air (mechanical vibrations), with pulse
repetition rates (beats) in the range of 10–25 Hz,
with burst rates around 500–1000 ms, depending
on the species [10,11]. Soldiers produce such vibra-
tory signals in response to disturbance (1–2 nm by
drumming themselves) by drumming their head
against the substratum. Workers can perceive these
vibrations, become alert and tend to escape. Alarms
signals are characterized by high intensity as com-
pared to normal activity signals (movement and
feeding), which have low amplitudes. Besides, as said
above, alarms have distinctive time patterns.

Fig. 1 shows one of the impulses within a typical
four-impulse burst and its associated power spec-
trum. Significant drumming responses are produced
over the range 200 Hz–10 kHz. It is in this interval
where the spectral identification of the specie (Retic-

ulitermes lucifugus) is performed. The carrier fre-
quency of the drumming signal is defined as the
main spectral component, which keeps with longer
attenuation time, and in this case is around
2600 Hz.

The spectrum is not flat as a function of fre-
quency as one would expect for a pulse-like event.



Fig. 1. A single pulse extracted from a four-pulse burst (top) and its associated power spectrum (bottom). Significant amplitudes are found
up to 10 kHz. In the interval 10–27 kHz the activity remains constant in a lower energy level.

2 In the case of the widely used system AED-2000, the timeout
period is called hit determination time and is 1 ms.
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This is due to the frequency response of the sensor
(its selective characteristics) and also to the fre-
quency-dependent attenuation coefficient of the
propagation media, wood and air.

2.2. AE types, devices, ranges of measurement

and HOS techniques

Two ideal basic types of acoustic emissions are
commonly distinguished according to their time
instances. Continuous acoustic emission is the most
difficult to characterize when several emissions coex-
ist in the same time-series, interfering each other
and, consequently making difficult the task of
extracting useful information. This is for example
the case a sensor output buried in noise. When the
measurand is the whole continuous sequence of
AE signals, it is best measured as RMS.

Burst-type emission is best characterized by
threshold crossing detection. The AE signal voltage
is compared with an internally generated reference
(threshold). Each time the signal crosses the thresh-
old level, the detecting device emits a pulse (count)
which is summed up by a processor. The total count
is provided in a time interval (measurement time).
When the instrument fails to detect a pulse within
a specified timeout, the detector circuit turns off
and stores the pulses in the measuring time as a
hit.2

The former AE types are found in real situations
in miscellaneous forms with noise background.
Spiky continuous noise characterizes turbulence in
fluid or gas flow systems and voltage fluctuations
in high tension lines. Characterization helps estab-
lish the quality of the energy flow.

Burst-type emission with continuous noise back-
ground can be observed in the following situations:
cavitation phenomena in fluid flow systems, dis-
charges in power transformers with core noise, sig-
nals from leakage in flat-bottom storage tanks and
machinery monitoring applications on bearings
and gears.

Acoustic measurement devices have been used
primarily for detection of termites in wood (feeding
and excavating), but there is also the need of detect-
ing termites in trees and soil surrounding building
perimeters. Soil and wood have a much longer coef-
ficient of sound attenuation than air, and the coeffi-
cient increases with frequency. This attenuation
reduces the detection range of acoustic emission to
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2–5 cm in soil and 2–3 m in wood, as long as the
sensor is in the same piece of material [12]. The
range of acoustic detection is much greater at
frequencies <10 kHz, and low-frequency acceler-
ometers have been used to detect insect larvae over
1–2 m in grain and 10–30 cm in soil [13].

It has been shown that the independent compo-
nent analysis (ICA) success in separating termite
emissions with small energy levels in comparison
to the background noise. This is explained away
by statistical independence basis of ICA, regardless
of the energy associated to each frequency compo-
nent in the spectra [5]. The same authors have pro-
ven that the diagonal bi-spectrum can be used as a
tool for characterization purposes [4]. With the
aim of reducing computational complexity wavelets
transforms have been used in this paper to de-noise
corrupted impulse trains.

3. The wavelet transform

3.1. Continuous wavelet transform (CWT)

A mother wavelet is a function w with finite
energy,3 and zero averageZ þ1

�1
wðtÞdt ¼ 0. ð1Þ

This function is normalized4, kwk = 1, and is cen-
tered in the neighborhood of t = 0.

w(t) can be expanded with a scale parameter a,
and translated by b, resulting the daughter functions
or wavelet atoms, which remain normalized

wa;bðtÞ ¼
1ffiffiffi
a
p w

t � b
a

� �
. ð2Þ

The CWT can be considered as a correlation be-
tween the signal under study s(t) and the wavelets
(daughters). For a real signal s(t), the definition of
CWT is

CWT sða; bÞ ¼ 1ffiffiffi
a
p

Z þ1

�1
sðtÞw� t � b

a

� �
dt; ð3Þ

where w*(t) is the complex conjugate of the mother
wavelet w(t), s(t) is the signal under study, and a and
b are the scale and the position respectively
ða 2 Rþ � 0; b 2 RÞ. The scale parameter is propor-
tional to the reciprocal of frequency.
3 f 2 L2ðRÞ, the space of the finite energy functions, verifyingRþ1
�1 jf ðtÞj

2 dt < þ1.
4 kfk ¼ ð

Rþ1
�1 jf ðtÞj

2 dtÞ1=2 ¼ 1.
The expression for the modulus of CWT is

jCWT sða; bÞj ¼ kðaÞa; ð4Þ
where a is the so-called Lipschitz exponent and k is
a constant. Looking at Eq. (4) one can discriminate
the signal from the noise by analyzing the local
maxima of jCWTs(a,b)j across the scales.

3.2. Wavelet bases

Any finite energy signal s(t) can be decomposed
over a wavelet orthogonal basis [6]5 of L2ðRÞ
according to

sðtÞ ¼
Xþ1

j¼�1

Xþ1
k¼�1
hs;wj;kiwj;k. ð5Þ

Each partial sum, indexed by k, in Eq. (5) can be
interpreted as the details variations at the scale
a = 2j

djðtÞ ¼
Xþ1

k¼�1
hs;wj;kiwj;k sðtÞ ¼

Xþ1
j¼�1

djðtÞ. ð6Þ

The approximation of the signal s(t) can be progres-
sively improved by obtaining more layers or levels,
with the aim of recovering the signal selectively.
For example, if s(t) varies smoothly we can obtain
an acceptable approximation by means of removing
fine scale details, which contain information regard-
ing higher frequencies or rapid variations of the sig-
nal. This is done by truncating the sum in (9) at the
scale a = 2J

sJ ðtÞ ¼
Xþ1
j¼J

djðtÞ. ð7Þ
3.3. Discrete time wavelet transform (DTWT)

In the DTWT the original signal passes through
two complementary filters and two signals are
obtained as a result of a downsampling process,
corresponding to the approximation and detail coef-
ficients. The lengths of the detail and approximation
coefficient vectors are slightly more than half the
length of the original signal, s(t). This is the result
of the digital filtering process (convolution) [7].
The approximations are the high-scale, low-fre-
quency components of the signal. The details are
the low-scale, high-frequency components.

A tree-structure arrangement of filters allows the
sub-band decomposition of the signal. In each stage
5 fwj;kðtÞ ¼ 1ffiffiffi
2j
p wðt�2jk

2j Þgðj;kÞ2Z2 .
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of the filtering process the same two digital filters
are used: a high pass ha(Æ), the discrete mother,
and its mirror filter (low pass) ga(Æ). All these filters
have the same relative bandwidth (ratio between fre-
quency bandwidth and center frequency). The
results of the decomposition can be expressed as

DTWT sðj; nÞ ¼
XN�1

k¼0

hjð2jþ1n� kÞsðkÞ; ð8Þ

where N is the number of samples in the signal, j is
the decomposition level, n is the time shifting. The
same arguments are valid for the process of
reconstruction.

3.4. Wavelet packets (WP)

3.4.1. A brief presentation

The WP method is a generalization of wavelet
decomposition that offers more possibilities of
reconstructing the signal from the decomposition
tree. If L is the number of levels in the tree, WP
methods yields more than 22L�1

ways to encode the
signal. The wavelet decomposition tree is a part of
the complete binary tree.

When performing a split we have to look at each
node of the decomposition tree and quantify the
information to be gained as a result of a split. An
entropy based criterion is used herein to select the
optimal decomposition of a given signal. We use
an adaptative filtering algorithm, based on the work
by Coifman and Wickerhauser [14].

We start from the functions wn and we built a
family of analyzing functions

wn;j;kðtÞ ¼
1ffiffiffiffi
2j
p wn

t � 2jk

2j

� �� �
ðj;kÞ2Z2

; ð9Þ

where n 2 N is the frequency, k is the time-localiza-
tion parameter and j is the scale. The idea of wavelet
packets is that for fixed values of k and j, wn,j,k ana-
lyzes the fluctuations of the signal under study
around the position 2jk, for the scale 2j, and for var-
ious frequencies depending on the admissible values
of n. For each scale 2j, the possible values of the
parameter n are 0,1, . . . , 2j�1. The set of functions
wj,n is the wavelet packet. Some theoretical back-
ground is introduced to understand multiresolution
analysis.
3.4.2. Bases’ splitting: Multiresolution

We consider the resolution as the time step 2�j,
for a scale j, as the inverse of the scale 2j. The
approximation of a function s(t) at a resolution 2�j
is defined as an orthogonal projection over a space
Vj � L2ðRÞ. Vj is called the scaling space and con-
tains all possible approximations at the resolution
2�j. The orthogonal projection of s, P Vj s, over the
space, is a function sj � Vj that minimizes the differ-
ence given by the approximation error, ks � sjk. For
a zero resolution we loose all the details of s, and
when the resolution goes to 1, sj = s

lim
j!þ1

ksjk ¼ 0; lim
j!�1

ks� sjk ¼ 0. ð10Þ

As a consequence, as the resolution increases, the
error tends to 0. This tendency depends on the reg-
ularity of the signal s(t) [6].

Let us consider a scaling function /. Dilating and
translating this function we obtain an orthonormal
basis of Vj

/j;kðtÞ ¼
1ffiffiffiffi
2j
p /

t � 2jk

2j

� �� �
ðj;kÞ2Z2

. ð11Þ

The approximation of a signal s at a resolution 2�j is
the orthogonal projection over the scaling subspace
Vj, and is obtained with an expansion in the scaling
orthogonal basis f/j;kgk2Z

P Vj s ¼
Xþ1

k¼�1
hs;/j;ki/j;k. ð12Þ

The inner products

aj½k� ¼ hs;/j;ki/j;k ð13Þ

represent a discrete approximation of the signal al
level j (scale 2j). This approximation represents the
low-pass filtering of s, sampled at intervals 2�j.

A fast wavelet transform decomposes succes-
sively each approximation P Vj s into a coarser
approximation P Vjþ1

s (local averages, approxima-
tion) plus the wavelet coefficients carried by P Wjþ1

s
(local details). The smooth signal plus the details
combine into a multiresolution of the signal at the
finer level j + 1. Averages come from the scaling
functions and details come from the wavelets.
f/j;kgk2Z and fwj;kgk2Z are orthonormal bases of

Vj and Wj, respectively, and the projections on these
spaces are characterized by

aj½k� ¼ hs;/j;ki; dj½k� ¼ hs;wj;ki. ð14Þ

So, if w(t) and /(t) are the wavelet and the scale
functions, respectively, the wavelet decomposition
of a given signal s(t) at a given level J can be ex-
pressed by

sðtÞ ¼
Xþ1

k¼�1
aJ ½k�/J ;kðtÞ þ

XJ

j¼1

Xþ1
k¼�1

dj½k�wj;kðtÞ; ð15Þ
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where {aJ[k], k 2 Z} represents the coarser resolu-
tion signal at the level J, and {dj[k], j = 1, . . . ,J;
k 2 Z}, are the wavelet coefficients containing the
information about the highest frequencies of the
signal.

Thus, the multiresolution decomposition is in
essence a frequency analysis of the signal with good
temporal information. The signal is decomposed in
frequency bands (sub-bands), making a dyadic
decomposition of the frequency range. Hence, in
each resolution level a new signal is built which con-
tains a frequency band of the original signal which
characterizes its local features. Thus, for level j,
wavelet coefficients are distributed along 2j points.

The former lines convey the idea of decomposi-
tion of a vectorial space in the direct sum of two
new subspaces. A space Vj�1 is decomposed in a
lower resolution space Vj plus a detail space Wj,
dividing the orthogonal basis of Vj�1 into two new
orthogonal bases

f/jðt � 2jkÞgk2Z; fwjðt � 2jkÞgk2Z. ð16Þ

Wj is the orthogonal complement of Vj in Vj�1, and
Vj � Vj�1, thus

Vj�1 ¼ Vj �Wj. ð17Þ
The orthogonal projection of a signal s(t) on Vj�1 is
decomposed as the sum of orthogonal projections
on Vj and Wj.

P Vj�1
¼ P Vj þ P Wj . ð18Þ

The recursive splitting of these vector spaces is rep-
resented in the binary tree. This fast wavelet trans-
form is computed with a cascade of filters �h and �g,
followed by a factor 2 subsampling, according with
the scheme of Fig. 2.

For example, if we consider a signal defined in
the time interval 0 6 t < 1, and sampled at 1/256,
the original data are considered to be the coefficients
in the expansion of the original continuous signal in
terms of the basis functions /j,k with j = 8 and
k = 0, . . . , 255. In wavelet packets transforms these
data are decomposed in two blocks of data, each
half size of the original data, by convolving with fil-
ters h and g, respectively. Further decomposition
will split each 128-sized block into two 64-sized
Fig. 2. Cascade of filters and subsampling.
blocks, and so on. In each level the block obtained
from convolving with the low-pass filter h is on
the left.

In order to choose the most appropriate decom-
position of the signal a contrast function is required.
Functions that verify additivity-type property are
suitable for efficient searching of the tree structures
and node splitting. The criteria based on the entropy
match these conditions, providing a degree of ran-
domness in an information-theory frame. In this
work we used the entropy criteria based on the
p-norm

EðsÞ ¼
XN

i

ksikp ð19Þ

with p 6 1, and where s = [s1, s2, . . . , sN] in the signal
of length N.

The results are accompanied by entropy calcula-
tions based on Shannon’s criterion

EðsÞ ¼ �
XN

i

s2
i logðs2

i Þ ð20Þ

with the convention 0 · log(0) = 0.

3.5. Estimation of signals in additive noise

The estimation of signal s is performed by an
operator that attenuates the noise and preserves
the signal. In wavelets and wavelet packets thres-
holding estimators are used to suppress additive
noise and recover signal which have been degraded
by low-pass filtering [6].

Considering the N-point noisy signal, x, as a mix-
ture of the signal, s, plus the additive noise, n (of
variance r2), x = s + n, a diagonal estimator of s

from x can be expressed as

ŝ ¼ Dx ¼
XN�1

m¼0

dm xB½m�ð Þgm; ð21Þ

where D is a diagonal operator in an orthonormal
basis B = {gm}06m6N; and dm are thresholding func-
tions [6,15].

Choosing the threshold T ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln N
p

, the esti-
mator of the signal, ŝ, is at least as regular as s,
because the wavelets coefficients have a smaller
amplitude. This is true for soft thresholding estima-
tors. Hard estimators leave unchanged the coeffi-
cients above the threshold T, and consequently
their coefficients can be larger due to the presence
of noise.
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Some traces of the noise remain nearby the singu-
larities if hard thresholding is chosen. The removing
action takes place where the signal s is regular. The
soft thresholding estimation reduces the noise effect
in the discontinuities at the price of reducing by T

the amplitude of the coefficients. As a rule of thumb,
once hard thresholding is performed, the parameter
T for soft thresholding is obtained reducing by two
the optimal hard threshold.

4. Pre-experimental practical examples

Before analyzing the specific experience of ter-
mite emissions, some practical examples help under-
stand how to design wavelets-based experiences and
how to interpret the concepts of scale and multires-
olution. Scale is easily understood using the simplest
mother, the Haar wavelet. Haar wavelet is discon-
tinuous, resembles a step function, and represents
the same wavelet as Daubechies db1. Fig. 3 repre-
sents de CWT of 5 cycles of a sinusoidal wave with
a resolution of 1000 points/cycle. The Haar wavelet
supports is up to 1 unit of time. This time support
can bee seen in the middle graph. If we consider
scale 1000 we have to consider that for every 1000
Fig. 3. From top to bottom: 5 cycles of a sinusoidal wave with a reso
frequency based approximation (up to 1 unit of time), the CWT diagram
area).
points of our signal we have to match them with
an unity of time in the wavelet. Fig. 3 is very simple
to interpret because the same number of points
describe the period of the sine wave and the period
of the wavelet. CWT results are absolute values so
we have to obtain 10 complete vertical stripes corre-
sponding to the 5 periods of the sinusoidal wave.

The CWT of the hyperbolic chirp in Fig. 4 shows
that as the scale increases (lower frequencies) the
cone of maxima values opens to the top. The vertex
of the cone is located in the center of the diagram,
corresponding to the highest instantaneous fre-
quency. Fig. 5 shows the WP analysis of a linear
chirp and the WP coefficients from the decomposi-
tion tree. Among these coefficients there are many
choices to form an orthogonal decomposition of
our signals. For example, we can choose the coeffi-
cients that are all in the same level.

Irregular structures in a signal often convey the
idea of hidden essential information in the charac-
terization process. For example, discontinuities in
the intensity of an image are associate to edges.
Interesting information can be also extracted from
sharp transitions in radar and electrocardiograms
[6]. These singularities can be detected following
lution of 1000 points per cycle, the wavelet Haar and its center-
corresponding to scale 1000 (white zones correspond to maxima



Fig. 4. Simulation of a hyperbolic chirp and its cone of maxima values. Time extends from �0.5 to 0.5 with a resolution of 0.001 units,
which could be seconds. The signal is modelled by f(t) = sin(1.5 · t�1).

Fig. 5. Simulation of a linear chirp and its wavelet packet analysis up to level 3 using sym8. From bottom to top and from left to right the
depth position is: (0,0), (1,0), (1,1), (2,0), . . . , (2,3), (3,0), . . . , (3,7).
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Fig. 6. A prototype signal (top) exhibiting singularities, which originate large values of amplitude coefficients in their cones of influence
(bottom graph). The wavelet Gaussian Derivative Wavelet gaus8 has been employed.
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the maxima of the CWT. The prototype hand-made
function (inspired by [6]) of Fig. 6 includes several
singularities. This last example, in Fig. 6, shows that
wavelet coefficients provide explicit information on
the location and type of signal singularities.

The rest of the paper presents queue results
obtained by means of the tools and examples
described here.
5. Experiments and conclusions

Two accelerometers (KB12V, seismic accelerom-
eter; KD42V, industrial accelerometer, MMF) and
a standard microphone (Ariston CME6) have been
used to collect data (alarm signals from termites)
in different places (basements, subterranean wood
structures and roots) using the sound card of a por-
table computer and a sampling frequency of 96,000
(Hz). Table 1 summarizes the main features of the
vibration transducers employed. These sensors have
Table 1
Main characteristics of the transducers

Transducer Type

KD42V (MMF) Piezo-accelerometer
KB12V (MMF) Piezo-accelerometer
CME6 (Ariston) Directional micro.
different sensibilities and impulse responses. This is
the reason whereby we normalize spectra.

The de-noising procedure was developed using a
sym8, belonging to the family Symlets (order 8),
which are compactly supported wavelets with least
asymmetry and highest number of vanishing
moments for a given support width. We also choose
a soft heuristic thresholding.

The numerical value of the signal-to-noise ratio is
obtained by

SNRdB ¼ 10log10

Efksk2g
Efknk2g

 !
; ð22Þ

where s(t) an n(t) and the signal of interest before
corrupting and the noise, respectively. In Eq. (22),
signals have been considered zero mean.

We used 20 registers (from Reticulitermes gras-

sei), each of them comprises a four-impulse burst
buried in white gaussian noise. De-noising performs
successfully up to an SNR = �30 dB. Fig. 7 shows a
Sensitivity Bandwidth

10.03 mV/m/s2 100 Hz–100 kHz
517.1 mV/m/s2 100 Hz–100 Hz
62 ± 3 dB 100 Hz–8 kHz



Fig. 7. Limit situation of the de-noising procedure using wavelets (SNR = �30 dB). From top to bottom: a buried four-impulse burst,
estimated signal at level 4, estimated signal at level 5. Time resolution: 1/96,000 (s).
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de-noising result in one of the registers. Fig. 8 shows
a comparison between the spectrum of the estimated
Fig. 8. Spectra of the estimated sign
signal at level 4 and the spectrum of the signal to be
de-noised, taking a register as an example. Signifi-
al (left) and the buried burst.
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cant components in the spectrum of the recovered
signal are found to be proper of termite emissions.
Fig. 9. Limit situation of the de-noising procedure using WP (SNR = �
burst, estimated signal at level 5. Time resolution: 1/96,000 (s).

Fig. 10. Example of spectrogram comparison: corrupt
The same 20 registers were processed using wave-
let packets. Approximation coefficients have been
30 dB). From top to bottom: original signal, a buried four-impulse

ed four-impulse burst (above) vs. cleaned signal.
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truncated by thresholding in order to obtain a more
precise estimation of the starting points for each
impulse. Stein’s Unbiased Estimate of Risk (SURE)
has been assumed as a principle for selecting a thresh-
old to be used for de-noising. A more thorough dis-
cussion of choosing the optimal decomposition can
be found in [6]. Fig. 9 shows one of the 20 de-noised
signals using wavelets packets. It can be seen that the
result of reconstructing progressively each aj by the
filter banks improves the estimation of the time of
occurrence of the impulses and the burst.

In order to use a speech-enhancement compari-
son tool we have performed a spectrogram compar-
ison [16] between a corrupted burst and the cleaned
output (SR = �30 dB). One of the comparisons is
depicted in Fig. 10, which represents the most prob-
able result in the spectrogram comparison stage. We
can see 3 temporal regions with high coefficients.
The region corresponding to the third impulse could
not be enhanced. In other registers’ comparisons the
most probable situation is the lack of one impulse in
the four-impulse burst. We adopted the criteria of
identifying the de-noise process as success if at least
three impulses are detected.

On the other hand, it can be observed that the
contents of noise are decreased in the enhanced ver-
sion. Although the noise remains high in a strong-
energy region, it is masked by the de-noised signal.
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