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ABSTRACT. The aim of this paper is to study the set L%< of all L2-summand vec-
tors of a real Banach space X. We provide a characterization of L?-summand
vectors in smooth real Banach spaces and a general decomposition theorem
which shows that every real Banach space can be decomposed as an L2?-sum
of a Hilbert space and a Banach space without nontrivial L2-summand vec-
tors. As a consequence, we generalize some results and we obtain intrinsic
characterizations of real Hilbert spaces.

1. BACKGROUND

We say that a Banach space X is smooth if every point x in X satisfies that
there exists a unique f in X* such that ||f]| = ||z|| and f(z) = ||z||*. If X is a
smooth Banach space and « is in X, then we will denote this f by Jx (z). The
mapping Jx : X — X* is usually called the duality mapping. Excellent books for
consulting the duality mapping are [7] and [§].

- A closed subspace M of a real Banach space X is said to be an L2-summand
subspace if there exists another closed subspace N of X verifying X = (M @ N),;

in other words, ||m +n|* = ||m|® + ||n||® for every m in M and every n in N.
The linear projection m5; of X onto M that fixes the elements of M and maps the
elements of NV to {0} is called the L*-summand projection of X onto M. Notice that
N is uniquely determined, and hence so is mp;. Good references for L?-summand
subspaces are [2] and [3].

-+ A vector e of a real Banach space X is an L?-summand vector if Re is an L2-
summand subspace. Furthermore, if e # 0, then there exists a functional e* in X™,
which is called the L®-summand functional of e, such that ||e*|| =1/ |le||, e* (e) = 1
and g, (z) = e* () e for every z in X.

- We want to recall two relevant results about L2-summand vectors:

(1) In [6], Carlson and Hicks proved that a real Banach space is a Hilbert space
if and only if all elements of its unit sphere are L2-summand vectors.

(2) In [5], Becerra Guerrero and Rodriguez Palacios proved that a real Banach
space is a Hilbert space if and only if the subset of its unit sphere whose
points are L2-summand vectors is not rare in the unit sphere.
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2. GEOMETRY OF L2-SUMMAND VECTORS

For a given point in the unit sphere of a real Banach space, we have twg wayg
of studying its geometrical properties: the first one is to find out its rotundity
properties (for instance, to be an extreme point); the second way is to find oyt its
smoothness properties (for example, to be a smooth point). The next Proposition
shows that every L2-summand vector of norm 1 is a locally uniformly rotund poin )
the unit ball, that means if (2.,,), oy is a sequence in Sx such that (|[(z, + ) /20),
converges to 1, then (z,),.y converges to e (where e is the L%-summand vecto?),
Speaking in rotundity terms, to be a locally uniformly rotund point is the strongest
thing that a vector of norm 1 can be. The paper (4] is an excellent reference for
these kinds of properties. We prefer to omit the proof, which can be considered a4
an exercise.

Proposition 2.1. Let X be a real Banach space. Let e be an L2-summand vector
in Sx. Then, e is a locally uniformly rotund point of Bx.

The point now would be to study the smoothness properties of L%-summand
vectors. Remember that a point z of the unit sphere of a real Banach space X
is said to be a strongly smooth point of the unit ball if the following condition
holds: if (frn),cy i @ sequence in Sx- such that (f, (€)),cy converges to 1, then
(fn)nen is convergent. Strongly smooth points can be characterized in terms of
differentiability of the norm; that is, these points are exactly the points at which
the norm is Fréchet differentiable. As before, speaking in smoothness terms, to be
a strongly smooth point is the strongest thing that a vector of norm 1 can be.

- According to [2, Lemma 1.4, page 8], the L2-summand functional associated to
an L2-summand vector is always an L2-summand vector of the dual, and therefore,
a locally uniformly rotund point. Keeping in mind the duality relations between
smoothness and rotundity, which can be consulted in 8], the following proposition
does not need any proof. 4

Proposition 2.2. Let X be a real Banach space. If e is an L2-summand vector of
norm 1, then e is a strongly smooth point of Bx.

Notice that the L2-summand functional associated to an L2-summand vecter is
a norm-attaining functional which attains its norm at a strongly smooth point, so
it is also a strongly w*-exposed point of the unit ball of the dual.

The following (and last) result in this section is a natural characterization of
L2-summand vectors which is used later in Theorem 4.1.

Proposition 2.3. Let X be a real Banach space. Let e be in X. The following
assertions are equivalent:

(1) e is an L2-summand vector.

(2) span ({e,z}) is a Hilbert space for every z in X.

Proof. Taking into account that the L2-sum of two Hilbert spaces is always a Hilbert
space, it is obvious that if e is an L2-summand vector, then span ({e, z}) is a Hilbert
space for every z in X.

Let us show the converse. We can suppose that |le]| = 1. First, we will prove
that e is a smooth point of Bx. Let f and g in Sx- with f(e) =g(e) =1. Letz
be in X. Since Y = span ({e, z}) is a Hilbert space, we deduce that e is a smooth
point of By; therefore f|y = g|y. Since z is arbitrary, we deduce that f = g.

INow,
Let have that e is an (2-summand vector of Z; therefore there exists a 1-
we
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X = i in Sx- and f(e) = 1.

t X = (Re® M), where M = ker (f) with f in Sx . = 1

Sh(::; téh?)e in M( and R, 1~2espective1y. Since Z = span ({e,m}) is a Hilbert
a

'Spa{:e’-ensional subspace N of Z such that Z = (Re ® NZ)T On t2he other hand, v;rs
god1r . o I 2 = Se||*, because m €
Lnow that N = ker (f12); therefore [[m + defl* = ||ml” + [idell 5

a.l'ld 7 = (R6®N)2
a complete characterization of L2-summand vectors involving concepts

o %8 tions, the paper [1] can be consulted.

related tO isometric reflec
; 3. THE PARTICULAR CASE OF SMOOTH SPACES

In this section, we center our attention on smooth Banach spaces gettillgrestllts
bout the structure of the set of all L2-summand vectors. In the next section, we
u T .
:ezeralize these results removing the smoothness hypothesis.

Lemma 3.1. Let X be a real smooth Banach space. If e is an L2-summand vector,

i Re = ﬂ {ker (Jx (m)) : m € ker (Jx (e)}-
i : 1 §e) = m — de for m in
- The mapping ¥ : X — X, defined by ¥ (m + ' '
{Z:gx {e)) and 6 in IR, is a surjective linear isometry. Then, if m € ker (Jx (e)),

Jx (m) (€) = —Jx (m) (¥ (e)) = — (Ix (m) 0 ¥) (¢) = —Ix (m) (e).-
Thﬁzfogjeiejﬁ(ggr(a X (?n)) .m € ker (Jx ()} and write y = n + e with n €
ker (Jx (e)) and A € R. Then

0 = Jx (m) (y) = Jx () (n+ D) = |Inll*

Therefore, n = 0 and y = Ae.
Theorem 3.2. Let X be a real smooth Banach space. Let e be in X. The folloy;:ing
assertions are equivalent:

(1) e is an L2-summand vector. .

(2) Jx (z+e)=Jx(z)+Ix (e) for every & in X.

(3) Jx (e) (z) = Jx (z) (e) for every x in X.
Proof. Assume that (1) holds. In order to show (2), it suffices to prove that Jx (z) =
Jx (m) + 8Jx (e) for every x =m + §e € X (where me ker (Jx (e)) and § € R).
Pick n € ker (Jx (e)) and A € R. By Holder’s inequality,

a

(Jx (m) + 6x () (n+Ae)} € Wx (m) ()] +16Mx (e) ()]
< [lmfl il + lldell [iAell
< lml? + loel*y Il + el

I

[[3x (@)l lire + Aell -
Therefore, ||Jx (m) + 8Jx ()l < [Jx ()]l On the other hand, .
U (m) + 63 (€)) (m + 8¢) = ] + e]” = 12l

Therefore, Jx (z) = Jx (m) +8Jx (e).
Assume that (2) holds. Let z =m + e € X. Then

Ix (€) (2) = Jx (€) (m + 6e) =6 [lell”
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Assuming & # 0, we have that

Ix (z) () = Jx (m+de) () = Jx (m) () + 6Jx (e) (e) = & [le])?.

Assume that (3) holds. Fix elements m € ker (Jx (¢))\ {0} and § € R. Letyg
check that

i + 8ell® = el + ffmi?
Let us consider the mapping
fi: R — R
v o f() =lm+ el
The function f is differentiable, and, for all v € R, the derivative of f at v is

£ = (o) .

fm + el
Assuming, without loss of generality, that |le|| = 1, we get
+7e m+ e v v
/ =) ( m ) e)=Jx (e ( > = = .
PO =3 7e) O = O imvnell) = Tmanell = 76

By integration, f ('y)2 =+ f(O)2 for all ¥ € R, and taking v = & we obtain
llm + e)|* = 16e]|* + |jm]. g

Notice that this last theorem indicates that, in the case of smoothness, the set
of all L2-summand vectors is a closed subspace. This raises the question if it is
possible to get that in general Banach spaces. The answer to this is affirmative.

4. L?*-SUMMAND VECTORS AND HILBERT SPACES

Let us begin this section doing some considerations about L*-summand sub:
spaces. Let X be a real Banach space. Let us consider a closed subspace Y of X
and a closed subspace M of Y. It can be easily checked that: '

(1) ¥ M is an L%-summand subspace of X, then M is an L2-summand subspa,cé
of Y.
(2) If M is an L%-summand subspace of Y and Y is an L®-summand subspace
of X, then M is an L®-summand subspace of X.
On the other hand, it is also easy to check that if M and N are L2-summand

subspaces of X, then M is contained in N if and only if ker () is contained in
ker (mar).

Theorem 4.1. Let X be a real Banach space. Let u be an L*-summand vector.
Then:

(1) If F is an L*-summand subspace, then span (F U {u}) is an L?-summand
subspace.

(2) If v is another L?-summand vector, then u + v is an L?-summand vector.

Proof. First of all, (2) is a consequence of (1) together with the fact that span ({u,v})
is a Hilbert space. So, let us do the proof of (1). Firstly, let us show that

span (F U {u}) N (ker (rr) Nker (g,)) = {0} .

Let z be in span (F U {u}) N (ker (mr) Nker (mg,)). We can write z = y + au with
y in F and a in R. Then, ou = z — y with z in ker (xp) and y in F’; therefore
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2 _ ||z|l2 + ny“Z. On the othe; hand, y2= z— a1; .wti}t;hr:f::eke: (=7r|:).,); therefore
ot = 2l + laul®. Then, floul® = 2||z]" + llou["; therefore, :
‘.y]Next, let us show that
span (F U {u}) + (ker (nF) Nker (Try)) = X o
We can assume that u is not in F, which means that ker (mF) is not contained in

ker (Ra). Since R (u— 7p (u) + F = span (F U {u})

i k that
it suffices to chec

(ker (mp) Nker (mpu)) + R (uw —7F (u)) = ker (7F). -

i - i t in ker (mrw ),
i ly thing we have to prove is that u —r (u) is no
To get this e Onky ( : g) is a 1-codimensional subspace of ker (mF). Suppose tglat
bec&us? k)eI (?rFl)m (er W)RuThen ull? = llu — 7r (@)I*+ limr (w)||* and [|7F (W)I” =
— g (u) is In ker (Tge)- , = I+ nd
ﬁyrp (I;) —ulf’ + lul|®; therefore u=7F (u) € F, which is a contradiction.
- Lastly, let us show that
(span (F U {u}) ® (ker (rp) Nker (mry))); = X-
i ker (TRu), respectively. We can
be in span (F U {u}) and ker (rp) N : :
Le“:tf;[id'rg +§\; wigh mE in F and A in R, and m = h+du with A in ker (7gy) 2nd
wr =
§ in R. Then .
Ilmi* + lql
2

llm + gl .
I(h+q) + dull

2
i+ ql* + oull”-

Rl + Yol + llgl?

Il

I

Therefore, |k + gll® = IAll* + llgl*. Finally
et = I+ +A+oul’

S L L

= R+l O )l
IRIE + 1+ 8)ul + lall®
h+ A+ &) ull® + gl
e+ Ml + gl
llpll? + llall*

I

I

0

and the proof is done.

21 i b 0
Theorem 4.2. Let X be a real Banach space. Then, Lx 5 a Hilbert subspace of

X.
Proof. The only thing we have to prove is that L% is .closed. Let (u,l)negsebefoa;
sequcnce in L2, which is convergent to some element v in X. We*can su;f)p( *),

- in N |unll = lull = 1. There exists a subnet (uh)oes O (Un)nen
every n in N, that llun ! . ‘2 e
which is w*-convergent to some element f in Bx-. 'Smce llz|l® = c,h : u:“ *
llz — ub, () ual]2 for every z in X and for every a 1n I, we de'duce t2a an;l
Hf(:r:)lmzl[2 + |z — f(z) uf|?® for every z in X. Therefore, Ru is an L*-summ d
subspace of X. Notice that f=u".
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At this point, we know that, in the category of all real Banach spaces, the set of
all L?-summand vectors is a Hilbert subspace. But, we can ask another question: is
it an L2-sumimand subspace? The answer is yes as we will show in the next theorem.

Theorem 4.3. Let X be a real Banach space. There exist two closed subspaces H
and E of X such that:

(1) H is a Hilbert space.

(2) If e is not in H, then e is not an L2-summand vector of X.

(3) Ife is in E\ {0}, then e is not an L2-summand vector of E.

(4) (H® E), = X.

Proof. We will take H = L%. Let us consider the set
L= {1\"1 € P(X): M C H and is an L2-summand subspace of X}

with the natural order given by the inclusion. Suppose that £ has a maximal
element M. Every h in H satisfies that span (M U {h}) is an element of £ and
contains M, so h is in M. Therefore, we deduce that M = H, and the only thing
we have to prove is that £ has a maximal element.

Let (M) ey be a chain of £. Let us consider

M= U My, and L = ﬂ ker (war, ).
a€cl a€el
If we show that X = (cl(M) & L),, then we will have proved that ct (M) € £, and
thus cl (A7) is an upper bound for the chain (M,),.;. In that case, Zorn's lemma
allows us to deduce the existence of maximal elements in £.

Taking limits, it is pretty easy to show that cl (M)N L = {0}. Let us show that
cl(M)+L=X. Let z € X with ||z|] = 1. For every a € I, there exist z, € M, and
zq € ker (may,) such that z = x4 + z4. Since ¢l (M) is a Hilbert space and (24) ,¢;
is a net in the unit ball of ¢l (M), we deduce that there exists a subnet (z8) ges
of (Ta)qey Which is w-convergent to some zo € cl (M). If we fix v € I, then for
every B2 v,z — 25 = 2 € ker (maq;) C ker (mayr, ). Therefore,  — xq € ker (mar, ),
and, since 7y is arbitrary, we deduce that x — zg € (){ker (wps,) ;@ € [} = L. Asa
consequence, z € cl (M) + L. Finally, taking limits again, it can be proved without
difficulty that X = (cl(M) & L),. a

As a corollary, we obtain a characterization of real Hilbert spaces, which does
not need any proof if we take into account the previous theorem.

Corollary 4.4. Let X be a real Banach space. Then:
(1) If E is a closed subspace of L%, then E is an L2-summand subspace of X
and ker (mg) = () {ker (7re) : € € E}.
(2) A necessary and sufficient condition for X to be a Hilbert space is that
N {ker (7gs) : u € L%} = {0}.
(3) L% can never be a l-codimensional subspace of X .

Finally, we provide two examples recalling the decomposition of a real Banach
space given by the set of its L2-summand vectors:

(1) For every real Hilbert space H, we can construct a real Banach space X such
that L% = H and ker (73 ) is an infinite-dimensional transitive Banach
space. Indeed, it is known that there exists a transitive real Banach space
Y that it is not a Hilbert space (a good reference for Banach spaces with

1.
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transitive norm is [5]). Then, L3 = {0}. As a consequence, X = (HaY),
is the required space. ‘

(2) The space ¢ does not contain any non-trivial L2-summand vecton: according
to Proposition 2.1, because its unit sphere is free of extreme p(?lnts.

(3) The space £}, with p € (1,00]\ {2} and n > 2, does not contain any non-
trivial L2-summand vector according to Theorem 3.2 when 1 < p < oo and
Proposition 2.1 when p € {1,00}. We refer to [2, Theorem 1.3, page 8] or
(3] for a wider perspective of these examples.
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