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Abstract. An effective voice activity detection (VAD) algorithm is pro-
posed for improving speech recognition performance in noisy environ-
ments. The proposed speech/pause discrimination method is based on
a hard-decision clustering approach built over a set of subband log-
energies. Detecting the presence of speech frames (a new cluster) is
achieved using a basic sequential algorithm scheme (BSAS) according
to a given “distance” (in this case, geometrical distance) and a suitable
threshold. The accuracy of the CI-VAD algorithm lies in the use of a de-
cision function defined over a multiple-observation (MO) window of aver-
aged subband log-energies and the modeling of noise subspace into cluster
prototypes. In addition, time efficiency is also reached due to the clus-
tering approach which is fundamental in VAD real time applications, i.e.
speech recognition. An exhaustive analysis on the Spanish SpeechDat-
Car databases is conducted in order to assess the performance of the
proposed method and to compare it to existing standard VAD meth-
ods. The results show improvements in detection accuracy over standard
VADs and a representative set of recently reported VAD algorithms.

1 Introduction

The emerging wireless communication systems are demanding increasing levels
of performance of speech processing systems working in noise adverse environ-
ments. These systems often benefits from using voice activity detectors (VADs)
which are frequently used in such application scenarios for different purposes.
Speech/non-speech detection is an unsolved problem in speech processing and
affects numerous applications including robust speech recognition [IL2], discon-
tinuous transmission [3}4], real-time speech transmission on the Internet [5] or
combined noise reduction and echo cancellation schemes in the context of tele-
phony [6]. The speech/non-speech classification task is not as trivial as it ap-
pears, and most of the VAD algorithms fail when the level of background noise
increases. During the last decade, numerous researchers have developed different
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strategies for detecting speech on a noisy signal [7] and have evaluated the influ-
ence of the VAD effectiveness on the performance of speech processing systems
[8]. Most of them have focussed on the development of robust algorithms with
special attention on the derivation and study of noise robust features and decision
rules [9,[I0L1TL[7]. The different approaches include those based on energy thresh-
olds, pitch detection, spectrum analysis, zero-crossing rate, periodicity measure
or combinations of different features.

The speech/pause discrimination can be described as an unsupervised learn-
ing problem. Clustering is one solution to this case where data is divided into
groups which are related “in some sense”. Despite the simplicity of clustering
algorithms, there is an increasing interest in the use of clustering methods in
pattern recognition [I5], image processing [16] and information retrieval [17,[18].
Clustering has a rich history in other disciplines [I2] such as machine learning,
biology, psychiatry, psychology, archaeology, geology, geography, and market-
ing. Cluster analysis, also called data segmentation, has a variety of goals. All
related to grouping or segmenting a collection of objects into subsets or “clus-
ters” such that those within each cluster are more closely related to one another
than objects assigned to different clusters. Cluster analysis is also used to form
descriptive statistics to ascertain whether or not the data consist of a set of
distinct subgroups, each group representing objects with substantially different
properties.

The essay is organized as follows: in section 21 we describe a suitable signal
model to detect the presence of speech frames in noisy environments. In the
following section Bl we apply cluster analysis to form “descriptive statistics”
transforming the noise sample set into a soft-noise model with low dimensional
feature. A complete experimental framework is shown in section @l Finally we
state some conclusions and acknowledgements in the last part of the paper.

2 A Suitable Model for VAD

Let x(n) be a discrete time signal. Denote by y; a frame of signal containing the
elements: _
{el} = {2li+j-D)}; i=1..L W

where D is the window shift and L is the number of samples in each frame.
Consider the set of 2-m+ 1 frames {y;—m, ... Y1 .., Yi+m} centered on frame y;,
and denote by Y(s,j), j =1 —m,...l...,l+m its Discrete Fourier Transform
(DFT) resp.:

Nppr—1
Viws) =Y(s,5) = Y a(n+j-D)-exp(—j-n-ws). (2)
n=0
where w, = 273 ,0< s < Nppr —1 and Nppr is the number of points or

N
resolution used in the DFT (if Nppp > L then the DFT is padded with zeros).

The log-energies for the I-th frame, F(k,!), in K subbands (k=0,1,..., K — 1),
are computed by means of:
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Sk-+1—1

E<kal) = log (N;(FT ; |Y(Sal)‘2 )

3)
sp=|NE"k| k=0,1,.., K —1,

where an equally spaced subband assignment is used and | -] denotes the “floor”
function. Hence, the signal log-energy is averaged over K subbands obtaining a
suitable representation of the input signal for VAD [19], the observation vector
at frame I, E(l) = (E(0,1),..., E(K — 1,1))T. The VAD decision rule is formu-
lated over a sliding window consisting of 2m+1 observation (feature) vectors
(log-energies) around the frame for which the decision is being made (1), as we
will show in the following sections. This strategy consisting on “long term in-
formation” provides very good results using several approaches for VAD such as
[13L[14] etc.

3 C-Means Clustering over the Feature Vectors

C-means clustering is a method for finding clusters and cluster centers in a set
of unlabeled data [20]. The number of cluster centers (prototypes) C' is a priori
known and the C-means iteratively moves the centers to minimize the total
within cluster variance. Given an initial set of centers the C-means algorithm
alternates two steps [21]:

— for each cluster we identify the subset of training points (its cluster) that is
closer to it than any other center;

— the means of each feature for the data points in each cluster are computed,
and this mean vector becomes the new center for that cluster.

3.1 Noise Modeling

In our algorithm, this procedure is applied to a set of initial pause frames (log-
energies) in order to characterize the noise space. Then we call this set of clusters
noise prototypes [1. Each observation vector (E from equation []) is uniquely la-
beled, by the integer ¢ € {1,..., N}, and uniquely assigned to a prespecified
number of prototypes C' < N, labeled by an integer ¢ € {1,...,C}. The dissim-
ilarity measure between observation vectors is the squared Euclidean distance:

K—1
d(Ei, Ey) = > (B(k,i) — E(k,5))* = ||E; — E|? (4)
k=0
and the loss function to be minimized is defined as:

C C
W) =3 Y S R -EIP=Y Y IR -EIE ()
c=1C(i)=c C(j)=c k=1C(i)=c

! The word cluster is assigned to different classes of labeled data, that is K is fixed to
2 (noise and speech frames).



652 J.M. Gorriz et al.

l

W |
é|!“m

l

Fig.1. a) 20 log Energies of noise frames, computed using Nppr = 256, averaged
over 50 subbands. b) Clustering approach to the latter set of log Energies using hard
decision C-means (C=4 prototypes).

where C(z) denotes the prototype associated to observation z and
E.= (E(1,¢),...,E(K,c))" (6)

is the mean vector associated with the c-th prototype. Thus, the loss function
is minimized by assigning the N observations to the C prototypes in such a
way that within each prototype the average dissimilarity of the observations
is minimized. Once convergence is reached, N K-dimensional pause frames are
efficiently modeled by C' K-dimensional noise prototype vectors denoted by E¢Pt,
c=0,...,C — 1. In figure [l we observed how the complex nature of noise can
be simplified (smoothed) using a clustering approach. The clustering approach
speeds the decision function in a significant way since the dimension of feature
vectors is reduced substantially (N — C).

3.2 Soft Decision Function for VAD

In order to classify the second labeled data (log energies of speech frames) we use
a BSAS using a MO window centered at frame [, as shown in section 2l For this
purpose let consider the same dissimilarity measure, a threshold of dissimilarity
~ and the maximum clusters allowed K = 2.
Let E(l) be the decision feature vector that is based on the MO window as
follows:
E(l) = max{E(i)}, i=l—-m,....,[+m (7)

This selection of the feature vector describing the actual frame is useful as it
detects the presence of voice beforehand (pause-speech transition) and holds
the detection flag, smoothing the VAD decision (as a hangover based algorithm
[IIL[10] in speech-pause transition).
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Fig. 2. Step of the algorithm. The frame selected is classified as speech frame (VAD=1)
as is shown in the decision function a) Noise log-energy subbands. b) C-means centers
prototypes. ¢) comparison between noise prototypes and the log-energy of the current
frame. d) decision function and threshold versus frames.

Finally, the presence of a new cluster (speech frame detection) is satisfied if:
IB()— <Ee>|* >y (®)

where < E, > is the averaged noise prototype and v is the decision thresh-
old. The set of noise prototypes are updated in pause frames (not satisfying
equation{)) in a competitive manner (only the closer noise prototype is moved
towards the current feature vector):

B = argnin (B~ BQ)I?) = EX—a B+ (1-a)-EQ) ()

where « is a normalized constant with value close to one for a soft decision
function (i.e. we selected in simulation o = 0.99).

In figure 2 we show an step detail in the algorithm. We display the noise
log energy model (top-left), the clustering C-means approach, the log-energy
of current frame (frame=3) included in the noise prototypes (C' = 4) and the
decision rule versus time.

4 Experimental Framework

Several experiments are commonly conducted to evaluate the performance of
VAD algorithms. The analysis is normally focused on the determination of mis-
classification errors at different SNR levels [11], and the influence of the VAD
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Fig. 3. ROC curves of proposed CI-VAD in high noisy conditions for m = 10, K = 10
and C' = 8 and comparison to standard and recently reported VADs

decision on speech processing systems [8[1]. The experimental framework and
the objective performance tests conducted to evaluate the proposed algorithm
are described in this section.

The ROC curves are used in this section for the evaluation of the proposed
VAD. These plots describe completely the VAD error rate and show the trade-
off between the speech and non-speech error probabilities as the threshold -~y
varies. The Spanish SpeechDat- Car database [22] was used in the analysis. This
database contains recordings in a car environment from close-talking and hands-
free microphones. Utterances from the close-talking device with an average SNR
of about 25dB were labeled as speech or non-speech for reference while the
VAD was evaluated on the hands-free microphone. Thus, the speech and non-
speech hit rates (HR1, HR0) were determined as a function of the decision
threshold ~ for each of the VAD tested. Figure Bl shows the ROC curves in the
most unfavorable conditions (high-speed, good road) with a 5 dB average SNR.
It was shown that increasing the number of observation vectors m improves
the performance of the proposed CI-VAD. The best results are obtained for
m = 10 while increasing the number of observations over this value reports no
additional improvements. The proposed VAD outperforms the Sohn’s VAD [7],
which assumes a single observation likelihood ratio test (LRT) in the decision
rule together with an HMM-based hangover mechanism, as well as standardized
VADs such as G.729 and AMR [4[3]. Tt also improve recently reported methods
[7,[10L@,[1T]. Thus, the proposed VAD works with improved speech/non-speech
hit rates when compared to the most relevant algorithms to date.

5 Conclusions

A new VAD for improving speech detection robustness in noisy environments
is proposed. The proposed CI-VAD is based on noise modeling using C-means
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clustering and benefits from long term information for the formulation of a soft
decision rule. The proposed Cl-VAD outperformed Sohn’s VAD, that defines
the LRT on a single observation, and other methods including the standardized
G.729, AMR and AFE VADs, in addition to recently reported VADs. The VAD
performs an advanced detection of beginnings and delayed detection of word
endings which, in part, avoids having to include additional hangover schemes or
noise reduction blocks. Obviously it also will improve the recognition rate when it
is considered as part of a complete speech recognition system. The experimental
work on this part is on the way. In addition a soft decision based clustering
approach for modeling noise prototypes and decision function is currently on
progress.
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