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Abstract. Estimating Prediction Risk is important for providing a way of
computing the expected error for predictions made by a model, but it is also an
important tool for model selection. This paper addresses an empirical
comparison of model selection techniques based on the Prediction Risk
estimation, with particular reference to the structure of nonlinear regularized
neural networks. To measure the performance of the different model selection
criteria a large-scale small-samples simulation is conducted for feedforward
neural networks.

1 Introduction

The choice of a suitable model is very important to balance the complexity of the
model with its fit to the data. This is especially critical when the number of data
samples available is not very large and/or is corrupted by noise. Model selection
algorithms attempt to solve this problem by selecting candidate functions from
different function sets with varying complexity, and specifying a fitness criterion,
which measures in some way the lack of fit. Then, the class of functions that will
likely optimize the fitness criterion is selected from that pool of candidates.

In regression models, when the fitness criterion is the sum of the squared
differences between future observations and models forecasts, it is called Prediction
Risk. While estimating Prediction Risk is important for providing a way of estimating
the expected error for predictions made by a model, it is also an important tool for
model selection [11].

Despite the huge amount of network theory and the importance of neural networks
in applied work, there is still little published work about the assessment on which
model selection method works best for nonlinear learning systems. The aim of this
paper is to present a comparative study of different model selection techniques based
on the Minimum Prediction Risk principle in regularized neural networks.
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Section 2 studies the Generalized Prediction Error for nonlinear systems
introduced by Moody [7] which is based upon the notion of the effective number of
parameters. Since it cannot be directly calculated, algebraic or resampling estimates
are reviewed taking into account regularization terms in order to control the
appearance of several local minima when training with nonlinear neural networks.

Results varying the number of hidden units, the training set size and the function
complexity are presented in the Simulation results section. Conclusions follow up.

2 Model Selection Techniques

The appearance of several local minima in nonlinear systems suggests the use of
regularization techniques, such as weight decay, in order to reduce the variability of
the fit, at the cost of bias, since the fitted curve will be smoother than the true curve
[9]. Regularization adds a penalty Ω to the error function ε to give:

Ω+= λεε̂ (1)

where the decay constant λ controls the extent to which the penalty term Ω influences
the form of the solution.

In particular, weight decay consists of the sum of the squares of the adaptive
parameters in the network where the sum runs over all weights and biases:
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It has been found empirically that a regularizer of this form can lead to significant
improvements in network generalization.[1]

Prediction Risk measures how well a model predicts the response value of a future
observation. It can be estimated either by using resampling methods  or algebraically,
by using the asymptotic properties of the model.

Algebraic estimates are based on the idea that the resubstitution error εRes is a
biased estimate of the Prediction Risk εPR, thus the following equality can be stated:

εPR = εRes + Penalty_Term (3)

where the penalty-term represents a term which grows with the number of free
parameters in the model. Thus, if the model is too simple it will give a large value for
the criterion because the residual training error is large, while a model which is too
complex will have a large value for the criterion because the complexity term is large.
The minimum value for the criterion represents a trade-off between bias and variance.

According to this statement different model selection criteria have appeared in the
statistics literature for linear models and unbiased nonlinear models, such as Mallow’s
CP estimate, the Generalized Cross-Validation (GCV) formula, Akaike’s Final
Prediction Error (FPE) and Akaike’s Information Criteria (AIC) [5], etc. For general
nonlinear learning systems which may be biased and may include weight decay or
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other regularizers Moody [7] was the first to introduce an estimate of Prediction Risk,
the Generalized Prediction Error (GPE), which for a data sample of size n can be
expressed as:

n
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GPE eff
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where 2σ̂  is an estimate of the noise variance on the data and the regularization
parameter λ controls the effective number of parameters peff(λ) of the solution. As
suggested in [6] it is not possible to define a single quantity which expresses the
effective number of weights in the model. peff(λ) usually differs from the true
number of model parameters p and depends upon the amount of model bias, model
nonlinearity, and our prior model preferences as determined by λ and the form of the

regularizer. See [6] for a detailed determination of peff(λ) and 2σ̂  .
The effective number of parameters can then be used in a generalization of the

AIC for the case of additive noise, denoted by Murata as NIC (Network Information
Criterion) [8]. The underlying idea of NIC is to estimate the deviance for a data set of
size n, compensating for the fact that the weights were chosen to fit the training set:

)(ˆ*2)log(* Re λε effs pnNIC += (5)

Alternatively, data resampling methods, such as k-fold Cross-validation (kCV) or
bootstrap estimation make maximally efficient use of available data, but they can be
very CPU time consuming for neural networks. A nonlinear refinement of CV is
called 10NCV [7].

In both, kCV and kNCV, the dataset is randomly split into k mutually exclusive
folds or subsets of approximately equal size. The training process is repeated k times,
each time leaving out one of the k subsets to test, but kNCV uses as starting point
weights of a network trained on all available data rather than random initial weights
for retraining on the k subsets.

We consider that models which minimize GPE, NIC, kCV and kNCV are optimal
in the average loss sense. We can use these criteria to select a particular model from a
set of possible models.

3   Simulation Results

This paper focuses on feedforward neural networks with a single layer of units with
hyperbolic tangent activation functions. Architectures considered are limited to single
hidden layer networks because of their proven universal approximation capabilities
and to avoid further increasing complexity.

The networks were trained by ordinary least-squares using standard numerical
optimisation algorithms for H hidden units ranging from 1 to M. The training
algorithm was Levenberg-Marquardt. For a network with H hidden units, the weights
for the previously trained network were used to initialise H-1 of the hidden units,
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while the weights for the Hth hidden unit were generated from a pseudorandom
normal distribution. The decay constant λ was fixed to 0.002.

All simulations were performed 1000 times, each time generating a new different
data set of size N. Model selection results were averaged to reduce the influence of
model variability on network size selection by introducing the possibility of escaping
local minima.

We used artificially generated data from the following target functions:

y =  1.8*tanh(3.2*x + 0.8)- 2.5*tanh(2.1*x + 1.2)-  0.2*tanh(0.1*x – 0.5)+ξ (6)

y = -5*x5 – 1.8*x4  + 23.27*x3 + 8.79*x2 -15.33*x - 6 + ξ (7)

where x∈ [-2,2] and ξ is a Gaussian zero mean, i.i.d. sequence which is independent of
the input with variance σ=0.5.

Fig. 1. Low-noise and noise-free block functions from Donojo-Johnstone benchmarks

Alternatively, in order to study a case of higher nonlinearity we considered the
low-noise block function from the Donoho-Jonstone benchmarks (fig. 1).These
benchmarks have one input, high nonlinearity and random noise can be added to
produce an infinite number of data sets. Sarle [10] checked that the MLP easily
learned the block function at all noise levels with 11 hidden units and there was
overfitting with 12 or more hidden units when training with 2048 samples.

We assume that among the candidate models there exists model Mc that is closest
to the true model in terms of the expected Prediction Risk, E[PR](Mc). Suppose a
model selection criterion selects model Mk which has an expected Prediction Risk of
E[PR](Mk). Observed efficiency is defined as the ratio that compares the Prediction
Risk between the closest candidate model, Mc, and the model selected by some
criterion Mk.



454          E. Guerrero Vázquez et al.

)(

)(

k

c

MPR

MPR
efficiencyobserved = (8)

Tables from 1 to 9 show observed efficiency for different target functions when the
numbers of training examples are 25, 50 and 100.

First column shows the number of hidden units, ranging from 1 to 10 hidden units
for hyperbolic tangent target function (6) and for the 5th degree target function (7),
and models ranging from 1 to 20 for low-noise block target function. For each of the
1000 realizations the criteria select a model and the observed efficiency of this
selection is recorded, where higher observed efficiency denotes better performance.

Next columns show the counts for the different model selection criteria: NIC,
10NCV, 10CV, GPE and the Prediction Risk (PR) computed over a sample size of
2000. These results are one way to measure consistency, and we might therefore
expect the consistent model selection criteria to have the highest counts. Last two
rows show the mean observed efficiency and the rank  for each criterion. The criterion
with the highest averaged observed efficiency is given rank 1 (better) while the
criterion with the lowest observed efficiency is given rank 4 (lowest of the 4 criteria
considered).

Table 1. Simulation results for a data sample size of N=25 and target function (6)

Models NIC 10NCV 10CV GPE PR
1 1 10 7 2 4
2 431 646 653 567 790
3 158 180 155 156 137
4 87 63 85 83 28
5 60 23 24 43 13
6 39 11 8 27 7
7 39 11 10 19 5
8 25 8 12 15 6
9 29 9 11 19 3
10 131 39 35 69 7
Efficiency 0.8080 0.9030 0.9090 0.8480 1.0
Rank 4 2 1 3

Table 2. Simulation results for N=50 and target function (6)

Models NIC 10NCV 10CV GPE PR
1 0 0 0 0 0
2 529 713 741 631 851
3 164 161 132 149 120
4 86 54 48 65 11
5 55 29 24 45 6
6 47 13 13 31 3
7 22 3 7 13 2
8 15 4 8 10 1
9 22 8 10 17 1
10 60 15 17 39 5
Efficiency 0.8891 0.9521 0.9520 0.9125 1.0
Rank 4 1 2 3



Empirical Performance Assessment of Nonlinear Model Selection Techniques          455

Table 3. Simulation results for N=100 for target function (6)

Models NIC 10NCV 10CV GPE PR
1 0 0 0 0 0
2 607 702 692 668 873
3 146 165 168 136 106
4 74 66 64 66 12
5 72 33 28 58 4
6 33 14 12 26 2
7 23 2 7 15 0
8 12 5 8 7 0
9 5 1 9 5 0
10 28 12 12 19 3
Efficiency 0.9438 0.9743 0.9716 0.9529 1.0
Rank 4 1 2 3

Table 4. Simulation results for N=25 and target function (7)

Models NIC 10NCV 10CV GPE PR
1 0 56 60 1 44
2 1 96 77 7 29
3 18 191 149 62 89
4 41 222 185 148 233
5 60 142 151 144 240
6 63 92 125 125 159
7 86 71 85 112 75
8 108 51 67 98 51
9 178 35 55 127 37
10 445 44 46 176 43
Efficiency 0.6820 0.7782 0.7573 0.7370 1.0
Rank 4 1 2 3

Table 5. Simulation results for N=50 and target function (7)

Mod NIC 10NCV 10CV GPE PR
1 0 0 0 0 1
2 0 4 2 1 3
3 13 75 32 18 16
4 101 264 219 165 239
5 138 248 278 221 351
6 119 161 185 158 199
7 111 103 113 118 103
8 133 53 78 102 46
9 147 53 57 105 20
10 238 39 36 112 22
Efficiency 0.7866 0.8783 0.8558 0.8272 1.0
Rank 4 1 2 3

Tables 1, 2 and 3 show that for experimental function (6) all methods select models
with 2 and 3 hidden units, 10NCV and 10CV perform almost the same, but both are
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superior to GPE and NIC. In all the experiments NIC averaged observed efficiency
has the last position on the ranking.

Table 6. Simulation results for N=100 and target function (7). NCV, CV and GPE favor
models from 4 to 8 hidden units while NIC favors more overfitted models

Models NIC 10NCV 10CV GPE PR
1 0 0 0 0 0
2 0 0 0 0 0
3 1 7 1 1 1
4 152 251 113 184 203
5 207 268 329 270 408
6 191 193 223 199 213
7 126 117 132 117 105
8 109 81 96 91 41
9 113 52 56 76 17
10 101 31 50 62 12
Efficiency 0.9114 0.9491 0.9190 0.9250 1.0
Rank 4 1 3 2

Table 7. Simulation results for N=25 and low-noise block target function, when the sample size
is very small model selection tasks are more difficult, in this case NIC shows a very high
variance on the observed efficiency

Models NIC 10NCV 10CV GPE PR
1 0 76 69 0 20
2 2 177 146 2 114
3 0 236 235 4 204
4 12 145 158 31 165
5 26 112 96 44 150
6 73 82 83 120 87
7 79 54 45 126 75
8 103 44 43 146 49
9 96 17 38 121 40
10 61 12 12 99 28
11 88 8 10 50 18
12 75 1 9 59 4
13 48 3 6 17 8
14 33 2 5 19 6
15 31 5 4 20 2
16 26 6 6 17 3
17 26 1 7 15 2
18 27 2 6 14 3
19 37 6 5 16 6
20 157 11 17 80 16
Efficiency 0.7251 0.8046 0.8233 0.7319 1.0
Rank 4 2 1 3

Tables 4, 5 and 6 show that for experimental function (7) observed efficiency
increases as the sample size grows. 10NCV is the most underfitting method for a
sample size of 25, while NIC and GPE favor overfitted models.
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In contrast to the previous results, we next considered a problem that has a much
higher nonlinearity, the low-noise block function. Tables 7, 8 and 9 show that NIC
outperforms 10NCV and 10CV when the sample size is 100 while with N=50 all
methods perform almost the same. The averaged observed efficiency always grows as
the simple size increases.

Table 8. Simulation results for N=50 and low-noise block target function. All criteria show a
similar averaged observed efficiency, but 10NCV and 10CV tend to more underfitted models
than NIC and GPE

Models NIC 10NCV 10CV GPE PR
1 0 3 2 0 0
2 0 28 18 0 9
3 0 71 89 0 22
4 0 173 138 0 65
5 8 188 187 8 120
6 8 111 97 12 112
7 30 81 71 44 96
8 44 66 85 60 102
9 75 83 70 106 91
10 96 41 64 125 72
11 135 36 52 126 98
12 97 33 47 116 56
13 99 30 14 100 30
14 88 19 10 69 34
15 60 3 13 52 18
16 49 5 4 44 20
17 33 6 5 24 11
18 35 6 10 23 11
19 30 9 7 24 10
20 113 8 17 67 23
Efficiency 0.8269 0.8208 0.8358 0.8322 1.0
Rank 2 1 4 3

From all the experimental results we can conclude that the performance differences
are not great between 10NCV and 10CV, but 10NCV seems to perform better in
almost all the sample sizes. 10CV is more computationally demanding than 10NCV.
This fact leads us to prefer 10NCV rather than 10CV.

In general, there is not best model selection method. Depending on the particular
problem one technique can outperforms another. When N is large, all methods give
reasonable efficiency results but crossvalidation-based criteria seem to be slightly
better. However, when it comes to the case where N=50 and 100 and high
nonlinearity is present, NIC and GPE outperform 10NCV and 10CV. The algebraic
estimate of Prediction Risk is also more attractive from the computational
perspective. However, it is important to note that the theory of NIC relies on a single
well-defined minimum to the fitting function, and it can be unreliable when there are
several local minima [8]. Among the different cases presented in this paper GPE
shows a more reliable behavior with not great differences between the best technique
and GPE.
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Table 9. Simulation results for N=100 and low-noise block target function. GPE and NIC show
a higher averaged observed efficiency, and favor models from 11 to 16 hidden units, while
10CV and 10NCV models ranging between 9 and 14 hidden units

Models NIC 10NCV 10CV GPE PR
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 12 17 0 1
5 0 30 42 0 5
6 0 75 55 2 8
7 6 60 42 4 33
8 14 66 36 14 25
9 23 90 68 27 45
1 42 92 91 58 96
11 114 112 120 140 97
12 118 72 87 138 99
13 114 84 78 105 97
14 127 79 87 137 135
15 103 66 75 106 102
16 98 44 49 93 77
17 65 30 27 56 68
18 62 16 47 52 27
19 41 29 20 25 27
20 73 43 59 43 58
Efficiency 0.9326 0.8484 0.8581 0.9319 1.0
Rank 1 3 4 2

Conclusions

The performance of different model selection techniques based on the Prediction Risk
estimation in nonlinear regularized neural networks has been studied. We determined
relative performance by comparing GPE, NIC, 10NCV and 10CV against each other
under different simulated conditions. Which is the best among these competing
techniques for model selection is not clear. They can behave quite differently in small
sample sizes and directly depend on the nonlinearity of the task.

The similar performance between 10CV and 10NCV lead us to prefer 10NCV
since the computational cost is lower. NIC favors overfitted models when low
nonlinearity is present while 10NCV favors underfitted models, even in high
nonlinearity cases. Although the observed efficiency of GPE is not always the best, it
gives reliable results for all the cases and, as well as 10NCV, it provides good
estimates of the prediction risk at a lower computational cost.
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