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Multiple comparison procedures for determining the 
optimal complexity of a model  

 

Abstract. We aim to determine which of a set of competing models is better 
statistically, that is, on average. A way to define “on average” is to consider 
the performance of these algorithms averaged over all the training sets that 
might be drawn from the underlying distribution. When comparing more than 
two means, an ANOVA F-test tells you whether the means are significantly 
different from each other, but it does not tell you which means differ from 
each other. A simple approach is to test each possible difference by a paired t-
test. However, the probability of making at least one type I error increases 
with the number of tests made. Much research has been done over the years to 
find ways around these problems. The resulting techniques are known as mul-
tiple comparison procedures. We briefly discuss these methods and comment 
its potential advantages.  Finally, we show how to apply a well known multi-
ple comparison procedure (Bonferroni method) to model selection by deter-
mining the optimal degree in polynomial fitting and the optimal number of 
hidden neurons in feedforward neural networks. 
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1   Introduction 

We consider the general problem of determining which of a set of competing 
models is better. Although there is active debate within the research community 
regarding the exact meaning of "best", statistical approaches are reasonable. Statisti-
cal approach to model selection tries to find which model is better on average. A way 
to define “on average” is to consider the performance of a given algorithm averaged 
over all the training sets that might be drawn from the underlying distribution. In a 
real situation, the underlying distribution is unknown, and we only have a finite size 
sample to work with. 

In the following sections, we first describe the design of a randomized data col-
lecting procedure required to control the different sources of variation. This design 
will allow us to generate several training sets following the underlying distribution, 
taking into account the different sources of variation that could exist [3]. After col-
lecting the data, our goal will be to make inferences about k population means. Al-
though the ANOVA test allows us to reject the null hypothesis that the groups’ 
means are all equal, they do not pinpoint where the significant differences lie. Multi-
ple t tests are not appropriate because the probability of a Type I error increases with 
the number of intergroup comparisons made [5]. Statistical methods to compare 
three or more means while controlling the probability of making at least one type I 
are called multiple comparisons procedures. We briefly discuss these methods, in-
cluding Fisher's LSD, Tukey's HSD, Bonferroni, Newman-Keuls, Duncan and 
Scheffé procedures and comment its potential advantages. 

We will show how it is possible to apply these techniques to model selection 
through two examples. First, this model selection strategy is applied to determining 
the optimal degree in polynomial fitting of a set points obtained by adding noise to a 
given polynomial. The results obtained shows that the optimal degree obtained is, in 
fact, the degree of the polynomial from which data are generated. Second, the same 
procedure is applied to the determination of the number of hidden neurons in feed-
forward networks. Obviosly, in this case, we can not validate the results. 

2   Design of the Experiment  

In order to compare different models, we must guarantee the independence of the 
results by controlling the sources of variation which affect to the behaviour of the 
models. Dietterich [4] has analysed the sources of variation which a good statistical 
test should control. These sources of variation are controlled as follows: 
• Variation resulting from the choice of the training and test data sets. On any 

particular randomly drawn test and training data sets, one model may outper-
form another. Given that we are studying how the models behave in average, we 
should repeat the estimation of the error over different training and test sets, and 
determine if any mean of errors is significantly smaller than the others. In order 



to compare different means, we recommend at least 30 measures to reduce the 
standard error for the comparisons. 

• Variation resulting from the size of the test and training data sets. The perform-
ance of two different models changes smoothly with changes in the size of the 
training set. If a large amount of data is available, then it is possible to set some 
of it aside to serve as a test set for evaluating the performance of the treatment. 
However, in most situations, the amount of data is limited and the use of all of it 
as input set is needed. Cross-Validation and Bootstrap procedures are the most 
common forms of resampling. However resampling means that each pair of 
training sets shares a high ratio of the samples. This problem of overlapping can 
be solved by using two-fold cross-validation, which involves the partition of the 
data set into two disjoints sets [8], training and test sets, of the same size. 

• Internal randomess in the estimation of the model parameters. If the estimation 
of parameters is analytical and its determination is unique, this step can be omit-
ted because there is no internal randomness. However, in an iterative approach 
the results depend critically on the starting state. Most of the iterative procedures 
suffer from internal randomness ought to the initialisation of the parameter set 
to small random values. This parameter set depends on the model complexity, so 
is different in value and number for each model. Hence, to control this source of 
variation, several starting states are taken for each training data set. We focus 
our study in the model behaviour on average, so the extreme cases (the mini-
mum and the maximum error estimates) are excluded and the mean error of the 
remaining results is considered to be the actual error of the model. 

The complete strategy repeats 30 times a similar process; random splitting of data 
into a pair of equal sized portions and two-fold cross-validation for the estimation of 
the error for each model.  The whole process is summarized as follows:  

 
for v:=1 to 30  
  shuffle(Data)        // random split of Data 
  (S1,S2):=Partition(Data) 
  for k:=1 to M        // M=number of competing models 
    for fold:=1 to 2   // Two-Fold CrossValidation 
      for i:=1 to 10   // When internal randomness exist 
        W := ParameterEstimate(S1) 
        PError(i) := ErrorEstimate(W,S2) 
      end  
      Error(fold):=RobustMean(Perror) 
      Swap(S1,S2) 
    end 
    ModelError(k,v)=Mean(Error) 
   end 
end 



3   Testing for Differences among Means in Groups 

Given that we have obtained a set of error measures for each model that control 
all the possible sources of variation of the experiment, we should compare them. 
First we consider the problem of determining if the means of error measures can be 
statistically considered equal. We comment the assumptions thta should be verified 
in order to make any valid inference. Second, we consider a more difficult problem. 
Given that we know that error means are not equal, which of them is significantly 
smaller than the others? 

3.1   Are the Means Equal ? 

As a first step, we may consider the use of a t-test to assess whether two popula-
tions had the same means. But, if we are interested in testing whether the means of 
more than two populations are equal, we will use a procedure called the analysis of 
variance (ANOVA)[7]. 

Analysis of variance is a parametric technique that tests the null hypothesis that 
the population means are equal to each other. However, in order to make conclusions 
about population means, several assumptions should be taken into account: 
• All k population probability distributions should be normal. While this assump-

tion is not relevant with large sample sizes, it is important with small samples 
sizes (specially with unequal samples sizes). This assumption has been tested us-
ing the method of Kolmogorov-Smirnov and we have always found that the dis-
tribution of results follows a Gaussian curve. 

• The k population variances should be equal. This assumption is not meaningful 
when all the models have the same (or almost the same) number of error sub-
jects, but it is very important when this number differs. In our method the num-
ber of error measures is the same in all the models. 

• The samples from each population should be random and independent. This 
assumption depends strongly on the design of the experiment. As the sources of 
variation have been taken into account, we assume random and independent 
data samples. Strictly speaking, the independence of the samples is not verified 
in our design, given that different results have been obtained from splitting ran-
domly the available data which are finite sized. However, by considering pair-
wise comparisons, the violation of this assumption can be considered secondary. 

 
We should very careful, because when the assumptions for analyzing data col-

lected from a completely randomized design are violated, any inferences derived 
from the ANOVA are suspect. An alternative technique to use in this situation is the 
nonparametric Kruskal-Wallis test.  



3.2   Which Means Are Equal? 

When comparing more than two means, an ANOVA F-test tells you whether the 
means are significantly different from each other, but it does not tell you which 
means differ from each other. The first idea that comes to mind is to test each possi-
ble difference by a paired t-test. However, this approach increases the probability of 
making at least one type I error with the number of tests made. Statistical methods to 
compare three or more means while controlling the probability of making at least 
one type I are called multiple comparisons procedures. 

4   Multiple Comparison Procedures 

Multiple comparison procedures compare the average effects of three or more 
treatments to decide which treatments are better, which ones are worse, and by how 
much, while controlling the probability of making an incorrect decision. A wide 
range of multiple comparison procedures is commonly present in the literature[6]. 

The Fisher’s Least Significant Differences(LSD) procedure begins with a one-
way analysis of variance. Only when the overall F-ratio is statistically significant we 
carry out all possible t-tests. Some authors refer to this procedure as Fisher’s Pro-
tected LSD to emphasize the protection provided by the F-ratio. 

Tukey’s Honestly Significant Differences(HSD) follows the path of Student, de-
termining the distribution of the largest t statistic when many groups are compared 
and there are no underlying differences. It is a test designed specifically for pairwise 
comparisons when the sample sizes are equal. Tukey and Kramer independently 
propose a modification for unequal cell sizes. Two means are considered signifi-
cantly different by the Tukey-Kramer criterion if ( )υα≥ ;k;qt ij

, where ( )υα ;k;q is 

the α-level critical value of a studentized range distribution of k independent normal 
random variables with ν degrees of freedom. 

Bonferroni[2] is a well known and easy to apply follow-up analysis of the Anova 
F-test. This procedure adjusts the observed significance level based on the number of 
comparisons we are making. This technique compares the difference between two 
treatment means to a critical difference. This difference depends on the number of 
observations in each treatment, the significance level, the variability unexplained by 
the differences between the sample means, and the total number of treatments to be 
compared. If the difference between the sample means exceeds the critical difference, 
there is sufficient evidence to conclude that the population means differ. Bonferroni t 

test declare two means to be signicantly different if: );( νεttij ≥  where 
( )1kk

2

−
α

=ε for 

comparisons of k means.  
The Student-Newman-Keuls (SNK) procedure is an attempt at compromise be-

tween LSD and HSD. Like the Tukey HSD, is based on a studentized range distribu-
tion. This procedure is more powerful than the Tukey HSD and is better at control-
ling the experimentwise error rate. However it is now used less often, mainly for two 



reasons. First, it cannot be used to construct confidence intervals for differences 
between means. Second, there are patterns of population means that can lead to an 
inflated experimentwise error rate.   

Duncan’s method looks much like the SNK procedure and gives many more sig-
nificant differences. It is only very slightly more conservative than Fisher’s LSD, 
and, in practice, they almost always lead to the same conclusions. 

A technique slightly less conservative than Bonferroni is the Sidak test given by 

);t(t ij νε≥ where )1k(k

2

)1(1 −α−−=ε  for comparison of k  means. 

Scheffé proposes another method to control the maximum error rate under any 
complete or partial null hypothesis. Two means are declared significantly different if  

( ) ( )να ;1;F1 −−≥ kkt ij
, where ( )να ;1;F −k  is the α  level critical value of an F 

distribution with k-1 numerator degrees of freedom and ν denominator degrees of 
freedom. Scheffé test never declares a contrast significant if the overall F-test is 
nonsignificant.  

Scheffé method may be more powerful than the Bonferroni or Sidak methods if 
the number of comparisons is large relative to the number of means. The Tukey-
Cramer method is more powerful than the Bonferroni, Sidak or Scheffé methods for 
pairwise comparisons.  

As a conclusion, we can say that there is no “correct” procedure to use. The vari-
ous procedures trade off power for control of the experimentwise error rate in differ-
ent ways. Most researchers believe that the Duncan’s and Fisher’s LSD procedures 
result in too high an EER and should not be used. If you want to be sure that you 
have controlled the EER, then the Tukey HSD should be used at the expense of a 
lower power. In practice, it is advisable to avoid conducting multiple comparisons of 
a small number of treatment means when the corresponding ANOVA F test is non-
significant; otherwise, confusing and contradictory results may occur. Finally, we 
should remember that failure to reject the hypothesis that two or more means are 
equal should not lead to you to conclude that the population means are, in fact, 
equal. Failure to reject the null hypothesis implies only that the differences between 
population means, if any, is not large enough to be detected with the given sample 
size.  

5   Simulation Results 

In this section we provide two examples of model order selection by using the 
Bonferroni multiple comparison procedure. Given a model selection problem, we 
proceed as follows: 

1. Select an error criterion 
2. Generate 30 values of error for each model as specified in section 2 
3. Select the desired overall confidence level : α=0.1 
4. Use ANOVA F-test to determine whether the means error are significantly 

different from each other.  



5. For each model, determine the set of models not significantly different by 
Bonferroni method.  

6. If the groups are not overlapped, select the model with the least error, and 
select the most simple model in its group. Otherwise, select the model with 
the least error. 

5.1   Determining the Degree of  Polynomial Fitting 

Let us consider the problem of finding the degree N of a polynomial P(x) that bet-
ter fits a set of data in a least squared sense. The experimental polynomial is 
P(x)=0.4x3-0.5x2-0.25x  x ∈ [-1 3]. Figure 1 shows the experimental curve and a set 
of 160 data points generated by adding gaussian noise which will be used in the 
experiment. 80 data points will be used to determine the coefficients, and 80 will be 
used to calculate the RMS error. The only aspect of the polynomials which remains 
to be specified is the degree(M), and so we use a set of polynomials with degree 
ranging from 1 to 10. As we explained above, 30 RMS errors for each polynomial 
have been generated. We used ANOVA F-test to determine whether the means 
RMSE are significantly different form each other and Bonferroni method to deter-
mine whether the observed differences in the sample means imply that differences 
exist among the accuracy of the competing polynomials. The overall confidence level 
is fixed to 0.1  
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Figure 1: Experimental curve and data points 

 
Table 1 shows the results obtained in this case. This table shows the polynomial 

degree, its RMSE error and the set of polynomial degree not significantly different. 
Two polynomial are not significantly different if the difference between its means is 
less than the critical value computed as 0.02256. In this case, there are three groups. 
Polynomial from degree 3 to 10 form a not significantly different RMSE group and a 
polynomial of degree 3 is selected (Occam’s Razor criterion [1]).  
 

Table 1: Simulation results (160 data points) 
 

Polynomial 
degree 

RMSE 
Polynomial degrees  

not significantly different 
  3                     0.04261     3  4  5  6  7  8  9  10 



  4                     0.04340     3  4  5  6  7  8  9  10 
  5                     0.04406     3  4  5  6  7  8  9  10 
  6                     0.04519   3  4  5  6  7  8  9  10 
  7                     0.04543     3  4  5  6  7  8  9  10 
  8                     0.04655    3  4  5  6  7  8  9  10 
  9                     0.04777    3  4  5  6  7  8  9  10 
  10                   0.04903    3  4  5  6  7  8  9  10 
  2                     0.18750    2 
  1                     0.50280     1 

 
Table 2 shows the results when the size of data point is 40. Two polynomial are not 
significantly different if the difference between its means is less than the critical 
value computed as 2.75873. In this case the groups are overlapped. Because variation 
among RMSE means are not significant, polynomial degree with the least RMSE 
means is selected. The model with degree 3 is selected. 

 
Table 2: Simulation results (40 data points) 

 
Polynomial 

degree 
RMSE 

Polynomial degrees  
not significantly different 

  3                   0.06426      3  4  5  6  7  2  8  1  9 
  4                   0.07468      3  4  5  6  7  2  8  1  9 
  5                   0.10979      3  4  5  6  7  2  8  1  9 
  6                   0.11570   3  4  5  6  7  2  8  1  9 
  7                   0.15173      3  4  5  6  7  2  8  1  9 
  2                   0.28682    3  4  5  6  7  2  8  1  9 
  8                   0.45635     3  4  5  6  7  2  8  1  9 
  1                   0.78130    3  4  5  6  7  2  8  1  9  

10 
  9                   0.97943     3  4  5  6  7  2  8  1  9  

10 
  10                 3.32416      1  9  10 

5.2   Determining the Number of Hidden Neurons in Multiplayer Perceptrons 

Let us now consider the problem of determining the number of hidden units in a 
feed-forward neural network in a classification task. Let us define a data set where 
each input vector has been labelled as belonging to one of two classes C1  and C2. 
Figure 2 shows the input patterns. The sample size is N1=280 data of the class C1 
and N2=140 of the class C2. In the simulation study, we consider multi-layer percep-
trons having two layers of weights with full connectivity between adjacent layers. 
One linear output unit, M hidden units and no direct input-output connections. The 
only aspect of the architecture that remains to be specified is the number M of hidden 
units, and so we train a set of networks (models) having a range of values of M. 
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Figure 2. Sample Data Distribution 

 
Table 3 shows the simulation results in this case. Two models are in the same 

group if  the difference between its means is less than the critical value, 0.02212. 
Thus, from the group of models with less error mean (10 hidden units) the model 
with 4 hidden units is selected by Occam’s Razor criterion. If the number of models 
to be compared is increased, results show that four hidden units is a good selection, 
that is, there is not a statistically significant difference among the error means of 
neural network architecture with four or more hidden units.  

 
Table 3. Simulation Results (280 data points) 

 
Hid-

den Units 
Error 
Mean 

Models not  
significantly different 

  7           0.13790      7  5  8  6  10  9  4 
  5           0.13995      7  5  8  6  10  9  4 
  8           0.13995      7  5  8  6  10  9  4 
  6           0.14033   7  5  8  6  10  9  4 
  10         0.14214      7  5  8  6  10  9  4 
  9           0.14319      7  5  8  6  10  9  4 
  4           0.14900     7  5  8  6  10  9  4 
  3           0.18848     3 
  2           0.31433     2 
  1           0.35938      1 

 
Table 4 shows the results when the number of data points is 60. In this case two 

models are in the same group if the difference between its means is less than 
0.08818. We can see that the groups are overlapped. This may be due to two main 
reasons: either we haven´t enough data points or the training has been stopped too 
soon. Because variation among misclassification error means is not significant, the 
model with the least error, 5 hidden units, is selected. 

 
Table 4: Simulation results (60 data points) 

 
Hid-

den Units 
Error 
Mean 

Models not significantly 
 different 

  5           0.04044      5  3  4  6  7  9  10  8  2  1 



  3           0.04222      5  3  4  6  7  9  10  8  2  1 
  4           0.04222      5  3  4  6  7  9  10  8  2  1 
  6           0.04622   5  3  4  6  7  9  10  8  2  1 
  7           0.04778      5  3  4  6  7  9  10  8  2  1 
  9           0.04822      5  3  4  6  7  9  10  8  2  1 
  10         0.05044     5  3  4  6  7  9  10  8  2  1 
  8           0.05111    5  3  4  6  7  9  10  8  2  1 
  2           0.06622     5  3  4  6  7  9  10  8  2  1 
  1           0.08244      5  3  4  6  7  9  10  8  2  1 

6   Conclusions 

We have proposed a model selection strategy based on multiple comparison pro-
cedures. The procedure for selecting sample data has been designed in order to avoid 
the different sources of variation, thus the independence and ramdonness of the sam-
ple data is guaranteed. ANOVA test can be applied to compare the population means 
and to determine if significant differences exist among the competing models. How-
ever, the proper application of the ANOVA procedure requires certain assumptions 
to be satisfied. When the number of tests increases, the probability of making a Type 
I error increases with the number of comparisons. Statistical methods to deal with 
this phenomenon are called multiple comparisons procedures, in the sense that they 
can compare three or more means while controlling the probability of making at 
least one type 1 error. When this strategies are adequately applied to the error rates 
obtained of a well designed experiment, the needed assumptions are verified, and it 
is possible to determine the optimal complexity of a given model, or even more, to 
determine which of a family of models fits better to a given problem. This result has 
been shown to be useful in the determination of the optimal degree in a polynomial 
fitting and in the determination of the optimal number of hidden units in feedfor-
ward networks. Future work will address more specific comparison procedures and 
its application to other neuronal models, like radial basis function networks. 
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