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Abstract. The time-domain fingerprint of termite alarm signals is en-
hanced by wavelets and wavelet packets, using multi-resolution analysis.
We take advantage of these emission patterns, characterized by four-
impulse bursts. Identification has been developed by means of analyzing
the impulse response of three sensors undergoing natural excitations. De-
noising exhibits good performance up to SNR=-30 dB, in the presence
of white Gaussian noise. The test can be extended to similar vibratory
or acoustic signals resulting from impulse responses.

1 Introduction

Ultra-sounds signals produced by insects can be detected using ultrasonic sen-
sors [1] which register only the vibratory signals which, in turn, constitute the
patterns of the emissions, filtering the audio band of the spectra. When wood
fibers are broken by termites (or similar insects) they produce acoustic signals
which can be monitored using ad hoc resonant AE piezoelectric sensors which
include microphones and accelerometers, targeting subterranean infestations by
means of spectral and temporal analysis. The drawbacks are the relative high
cost and their practical limitations due to subjectiveness [2].

In acoustic emission (AE) signal processing an usual problem is to extract
some physical parameters of interest in situations which involve join variations of
time and frequency. This situation can be found in almost every nondestructive
AE tests for characterization of defects in materials, or detection of spurious
transients which reveal machinery faults [3]. The problem of insect detection lies
in this set of applications involving non-stationary signals [2].

The prior-art second order methods (spectra and spectrogram) failure in low
SNR conditions even with ad hoc piezoelectric sensors. Bispectrum have proven
to be a useful tool for characterization of termites in relative noisy environments
using low-cost sensors [4],[5]. The computational cost could be pointed out as the
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506 C. Garćıa Puntonet et al.

main drawback of the technique. This is the reason whereby diagonal bispectrum
have to be used.

Numerous wavelet-theory-based techniques have evolved independently in
different signal processing applications, like wavelets series expansions, multires-
olution analysis, subband coding, etc. The wavelet transform is a well-suited
technique to detect and analyze events occurring to different scales [6]. The idea
of decomposing a signal into frequency bands conveys the possibility of extracting
subband information which could characterize the physical phenomenon under
study [7].

In this paper we show an application of wavelets’ de-noising possibilities for
the characterization and detection of termite alarm signals in low SNR condi-
tions. Waveforms have been buried in Gaussian white noise. Working with three
different vibratory sensors, we find that the estimated signals’ spectra matches
the spectra of the acoustic emission whereby termite alarms are recognized. The
paper is structured as follows: Section 2 summarizes the problem of acoustic de-
tection of termites; Section 3 remembers the theoretical background of wavelets
and wavelet packets. Experiments and conclusions are drawn in Section 4.

2 Acoustic Detection of Termites

2.1 Characteristics of the AE Signals

Acoustic Emission(AE) is defined as the class of phenomena whereby transient
elastic waves are generated by the rapid (and spontaneous) release of energy from
a localized source or sources within a material, or the transient elastic wave(s)
so generated (ASTM, F2174-02, E750-04, F914-03 1).

Figure 1 shows one impulse in a burst produced by termites and its power
spectrum. Significant drumming responses are produced over the range 200 Hz-
10 kHz. The carrier (main component) frequency of the drumming signal is
around 2600 Hz. The spectrum is not flat as a function of frequency as one would
expect for a pulse-like event. This is due to the frequency response of the sensor
(its selective characteristics) and also to the frequency-dependent attenuation
coefficient of the wood and the air.

2.2 Devices, Ranges of Measurement and HOS Techniques

Acoustic measurement devices have been used primarily for detection of termites
(feeding and excavating) in wood, but there is also the need of detecting termites
in trees and soil surrounding building perimeters. Soil and wood have a much
longer coefficient of sound attenuation than air and the coefficient increases with
1 American Society for Testing and Materials. F2174-02: Standard Practice for Ver-

ifying Acoustic Emission Sensor Response. E750-04: Standard Practice for Char-
acterizing Acoustic Emission Instrumentation. F914-03: Standard Test Method for
Acoustic Emission for Insulated and Non-Insulated Aerial Personnel Devices With-
out Supplemental Load Handling Attachments.
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Fig. 1. Normalized power spectrum of a single impulse in a burst

frequency. This attenuation reduces the detection range of acoustic emission to
2-5 cm in soil and 2-3 m in wood, as long as the sensor is in the same piece of
material [8]. The range of acoustic detection is much greater at frequencies <10
kHz, and low frequency accelerometers have been used to detect insect larvae
over 1-2 m in grain and 10-30 cm in soil [1].

It has been shown that ICA success in separating termite emissions with small
energy levels in comparison to the background noise. This is explained away by
statistical independence basis of ICA, regardless of the energy associated to each
frequency component in the spectra [5]. The same authors have proven that the
diagonal bispectrum can be used as a tool for characterization purposes [4].
With the aim of reducing computational complexity wavelets transforms have
been used in this paper to de-noise corrupted impulse trains. In section 3 we
summarize the theoretical background of wavelet and wavelet packets.

3 Wavelet Packets (WP)

3.1 Wavelet Bases

The WP method is a generalization of wavelet decomposition that offers more
possibilities of reconstructing the signal from the decomposition tree. If L is the
number of levels in the tree, WP methods yields more than 22L−1

ways to encode
the signal. The wavelet decomposition tree is a part of the complete binary tree.

When performing a split we have to look at each node of the decomposition
tree and quantify the information to be gained as a result of a split. An entropy
based criterion is used herein to select the optimal decomposition of a given
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signal. We use an adaptative filtering algorithm, based on the work by Coifman
and Wickerhauser [9].

Any finite energy signal s(t) can be decomposed over a wavelet orthogonal
basis [6] 2 of L2(�) according to:

s(t) =
+∞∑

j=−∞

+∞∑

k=−∞
〈s, ψj,k〉ψj,k (1)

Each partial sum can be interpreted as the details variations at the scale a = 2j :

dj(t) =
+∞∑

k=−∞
〈s, ψj,k〉ψj,k s(t) =

+∞∑

j=−∞
dj(t) (2)

The approximation of the signal s(t) can be progressively improved by obtain-
ing more layers or levels, with the aim of recovering the signal selectively. For
example, if s(t) varies smoothly we can obtain an acceptable approximation by
means of removing fine scale details, which contain information regarding higher
frequencies or rapid variations of the signal. This is done by truncating the sum
in 1 at the scale a = 2J :

sJ (t) =
+∞∑

j=J

dj(t) (3)

3.2 Multiresolution and Tree Decomposition

We consider the resolution as the time step 2−j, for a scalej, as the inverse of
the scale 2j. The approximation of a function s at a resolution 2−j is defined as
an orthogonal projection on a space Vj ⊂ L2(�). Vj is called the scaling space
and contains all possible approximations at the resolution 2−j.

Let us consider a scaling function φ. Dilating and translating this function
we obtain an orthonormal basis of Vj :

{
φj,k(t) =

1√
2j

φ

(
t − 2jk

2j

)}

(j,k)∈Z2

. (4)

The approximation of a signal s at a resolution 2−j is the orthogonal projection
over the scaling subspace Vj , and is obtained with an expansion in the scaling
orthogonal basis {φj,k}k∈Z:

PVj
s =

+∞∑

k=−∞
〈s, φj,k〉φj,k (5)

The inner products
aj[k] = 〈s, φj,k〉φj,k (6)

represent a discrete approximation of the signal at level j (scale 2j). This ap-
proximation is low-pass filtering of s sampled at intervals 2−j.

2
{

ψj,k(t) = 1√
2j

ψ
(

t−2jk
2j

)}

(j,k)∈Z2
.



Recognition of Insect Emissions 509

A fast wavelet transform decomposes successively each approximation PVj−1s
into a coarser approximation PVj

s (local averages) plus the wavelet coefficients
carried by PWj s (local details). The smooth signal plus the details combine into
a multiresolution of the signal. Averages come from the scaling functions and
details come from the wavelets.

{φj,k}k∈Z and {ψj,k}k∈Z are orthonormal bases of Vj and Wj , respectively,
and the projections in these spaces are characterized by:

aj [k] = 〈s, φj,k〉 dj [k] = 〈s, ψj,k〉 (7)

A space Vj−1 is decomposed in a lower resolution space Vj plus a detail space
Wj , dividing the orthogonal basis of Vj−1 into two new orthogonal bases:

{φj(t − 2jk)}k∈Z and {ψj(t − 2jk)}k∈Z (8)

Wj is the orthogonal complement of Vj in Vj−1, and Vj ⊂ Vj−1, thus:

Vj−1 = Vj ⊕ Wj . (9)

The orthogonal projection of a signal s on Vj−1 is decomposed as the sum of
orthogonal projections on Vj and Wj .

PVj−1 = PVj
+ PWj

. (10)

The recursive splitting of these vector spaces is represented in the binary tree.
This fast wavelet transform is computed with a cascade of filters h and g, followed
by a factor 2 subsampling, according with the scheme of figure 2.

Functions that verify additivity-type property are suitable for efficient search-
ing of the tree structures and node splitting. The criteria based on the entropy
match these conditions, providing a degree of randomness in an information-
theory frame. In this work we used the entropy criteria based on the p-norm:

E(s) =
N∑

i

‖si‖p; (11)

with p≤1, and where s = [s1, s2, . . . , sN ] in the signal of length N . The results
are accompanied by entropy calculations based on Shannon’s criterion:

E(s) = −
N∑

i

s2
i log(s2

i ); (12)

with the convention 0 × log(0) = 0.
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Fig. 2. Cascade of filters and subsampling
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Fig. 3. Limit situation of the de-noising procedure using wavelets (SNR=-30 dB). From
top to bottom: a buried 4-impulse burst, estimated signal at level 4, estimated signal
at level 5.

Once the mathematica foundations have been established, we described the
experienced in 4.

4 Experiments and Conclusions

Two accelerometers (KB12V, seismic accelerometer; KD42V, industrial accelerom-
eter, MMF) and a standard microphone have been used to collect data (alarm
signals from termites) in different places (basements and subterranean wood
structures and roots) using the sound card of a portable computer and a sam-
pling frequency of 96000 (Hz), which fixes the time resolution. These sensors
have different sensibilities and impulse responses. This is the reason whereby we
normalize spectra. In fact we are only interested in the frequency pattern of the
emissions.

The de-noising procedure was developed using a sym8 wavelet, which belongs
to the family Symlets (order 8), which are compactly supported wavelets with
least asymmetry and highest number of vanishing moments for a given support
width. We also choose a soft heuristic thresholding.

We used 15 records (from reticulitermes lucifugus), each of them comprises a
4-impulse burst buried in white gaussian noise. De-noising performs successfully
up to an SNR=-30 dB. Figure 3 shows a de-noising result in one of the registers.
Figure 4 shows a comparison between the spectrum of the estimated signal at
level 4 and the spectrum of the signal to be de-noised, taking a register as an
example.
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Significant components in the spectrum of the recovered signal are found to
be proper of termite emissions.

The same 15 registers were processed using wavelet packets. Approximation
coefficients have been thresholded in order to obtain a more accurate estimation
of the starting points for each impulse. Stein’s Unbiased Estimate of Risk (SURE)
has been assumed as a principle for selecting a threshold to be used for de-noising.
A more thorough discussion of choosing the optimal decomposition can be found
in [6]. Figure 5 shows one of the 15 de-noised signals using wavelets packets.
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Fig. 4. Spectra of the estimated signal and the buried burst

This result can be see the result of reconstructing progressively each aj by
the filter banks.

To show the importance of the pre-processing high-pass filter, we have in-
cluded figure 6. We can seen, for the same SNR conditions that the impulses
in the burst have not been clearly enhanced, despite the fact that they can be
distinguished.

Future effort should be put in the task of simulating with new noise processes.
Results obtained with non-Gaussian noise, and with non-symmetrical noise, will
be specially welcomed in order to establish the real limits of this application.
The objective is to reduce the computational complexity of the algorithms with
the goal of implementing the code in a DSP processor. This work has established
the basis of the equipment which constitutes the objective of a Spanish project
for the transference of technology.



512 C. Garćıa Puntonet et al.

20 40 60 80 100 120 140
-2

-1

0

1

De-noising a filtered burst with WP

20 40 60 80 100 120 140

-2

0

2

20 40 60 80 100 120 140

-1

0

1

Time (ms)

original signal

buried burst

de-noised signal at level 5

Fig. 5. Limit situation of the de-noising procedure using WP (SNR = -28.5545 dB).
From top to bottom: original signal, a buried 4-impulse burst, estimated signal at
level 5.
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