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Abstract. Let f1, . . . , fp be polynomials in C[x1, . . . , xn] and let D =
Dn be the n-th Weyl algebra. The annihilating ideal of fs = fs1

1 · · · fsp
p

in D[s] = D[s1, . . . , sp] is a necessary step for the computation of the
Bernstein-Sato ideals of f1, . . . , fp.

We point out experimental differences among the efficiency of the
available methods to obtain this annihilating ideal and provide some
upper bounds for the complexity of its computation.

1 Introduction

Fix two integers n ≥ 1, p ≥ 1 and two sets of variables (x1, . . . , xn) and (s1, . . . , sp).
Let us consider f1, . . . , fp ∈ C[x] = C[x1, . . . , xn] and let D = Dn be the n-th
Weyl algebra. A polynomial b(s) ∈ C[s] = C[s1, . . . , sp] is said to be a Bernstein-
Sato polynomial associated to f if the following functional equation holds for a cer-
tain P (s) ∈ D[s]:

b(s)fs = P (s)fs+1,

where 1 = (1, . . . , 1). These polynomials form an ideal called the Bernstein-Sato
ideal Bf , or simply B to abbreviate. Analogous functional equations with respect
to vectors different to 1 yield other different Bernstein-Sato ideals (see for example
[Ba1]).

In [L1] it is proved that B is not zero. This fact is a generalization of the
classical proof of Bernstein ([Be1]) for the case p = 1, in which the generator of
B is called the Bernstein-Sato polynomial, bf(s). The analytical work was made
in [Bj1] for p = 1 and in [Sa1],[Sa2] for p > 1.

The roots of bf(s) encode important algebro-geometrical data (see [Mal1],
[H1] or [BS1] to mention only a few) and a complete understanding of all roots
for a general f is open. For the case p > 1 there is a lot of work to do yet: there
are conjectures on the primary decomposition of B, on the conditions over f for
B to be principal, to be zero-dimensional, etc.

In [O1] was presented the first algorithm to find the Bernstein-Sato polyno-
mial, and alternative methods have been proposed to obtain B in the general case
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in [OT1], [Ba1] and [BM1]. All these methods have a feature in common: their
first step is the computation of the annihilating ideal of fs in D[s], AnnD[s]f

s.
We recall here some experimental evidences in favor of the method of Briançon-
Maisonobe [BM1] with respect to the method of Oaku-Takayama [OT1].

Then we will give upper bounds of the complexity of computing AnnD[s]f
s,

the previous requirement for both algorithms. To obtain this bounds we use
—as far as possible— the techniques and results of [Gr1] on the complexity
of solving systems of linear equations over rings of differential operators (that
extend the classical polynomial case treated in [Se1]). In particular, we show
that the construction of Grigoriev can not be directly generalized to any non-
commutative algebra, including the algebra proposed by Briançon-Maisonobe.
We prove that the complexity of computing AnnD[s]f

s using the method of
[BM1] is that of the calculation of a Gröbner basis in the n-th Weyl algebra
with some extra p commutative variables (2n+p variables at most), while in the
case of the method [OT1] is the calculation of such a basis in a (n + p)-th Weyl
algebra with some extra 2p variables (so 2n + 4p variables in all).

We are very grateful to the referees for helping us to clarify our initial version.

2 Preliminaries

In this section we just remind briefly some details of the methods of Briançon-
Maisonobe and Oaku-Takayama, respectively.

2.1 Method of Briançon-Maisonobe

In this case the computations are made in the non-commutative algebra

R = Dn[s, t] = Dn[s1, . . . , sp, t1, . . . , tp],

an extension of the n-th Weyl algebra D in which the new variables s, t satisfy
the relations [si, tj ] = δijti. It is a a Poincaré-Birkhoff-Witt (PBW) algebra:

Definition 1. A PBW algebra R over a ring k is an associative algebra gener-
ated by finitely many elements x1, . . . , xn subject to the relations

Q = {xjxi = qjixixj + pji, 1 ≤ i < j ≤ n},

where each pji is a finite k-linear combination of standard terms xα = xα1
1 · · ·xαn

n

and each qji ∈ k with the two following conditions:

1. There is an admissible1 order ≺ on Nn such that exp(pji) ≺ exp(xjxi) for
every 1 ≤ i < j ≤ n.

2. The standard terms xα, with α ∈ Nn, form a k-basis of R as a vector space.

1 Here admissible means a total order among the elements of Nn with 0 as least
element.
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It is possible to compute Gröbner bases in PBW algebras. The book [BGV1]
is a good introduction to the subject of effective calculus in this fairly general
family.

The following algorithm computes B, starting from

I := AnnR(fs) = 〈sj + fjtj , ∂i +
∑

j

∂fj

∂xi
tj , 1 ≤ i ≤ n, 1 ≤ j ≤ p〉.

Algorithm 1. You have to:

1. Obtain J = AnnDn[s]f
s = 〈G1 ∩ Dn[s]〉 where G1 is a Gröbner basis of I

with respect to any term ordering with variables tj greater than the others
(that is, an elimination ordering for the tj .)

2. B = 〈G2∩C[s]〉, where G2 is a Gröbner basis of J +(f1, . . . , fp) with respect
to any term ordering with xi, ∂j greater than the sl.

2.2 Method of Oaku-Takayama

All the computations are made in Weyl algebras. More precisely, starting from

I ′ = 〈tj − fj,

p∑

j=1

∂fj

∂xi
∂tj + ∂i, i = 1, . . . , n, j = 1, . . . , p〉

Algorithm 2. You have to:

1. Obtain J ′ = I ′
⋂

C[t1∂t1 , . . . , tn∂tn ]〈x, ∂x〉.
2. J = AnnDn[s](fs) = J ′′, where J ′′ denotes the ideal generated by the gen-

erators of J ′ after replacing each ti∂ti by −si − 1.
3. B = 〈G2∩C[s]〉, where G2 is a Gröbner basis of J +(f1, . . . , fp) with respect

to any term ordering with xi, ∂j greater than the sl.

The second step above2 is again the elimination of all the variables but
(s1, . . . , sp). The computation of

I ′ ∩ C[t1∂t1 , . . . , tn∂tn ]〈x, ∂x〉
uses 2n + 4p variables, as new variables uj , vj for 1 ≤ j ≤ p are introduced.
More precisely, the first calculation is an elimination of these new variables for
the ideal

〈tj − ujfj ,

p∑

j=1

∂fj

∂xi
uj∂tj + ∂i, 1 − ujvj , 1 ≤ i ≤ n, 1 ≤ j ≤ p, 〉,

and some more technical steps must be followed (see [OT1, Procedure 4.1.]).
2 Often the bottleneck to obtain the Bernstein-Sato ideal is this step. As far as we

know, the example for p = 2 with f1 = x2 + y3, f2 = x3 + y2 is intractable for the
available systems.
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3 Experimental Data

Here we give some examples for the cases p = 1, 2 and p > 2 for which it is
clear the superiority of Briançon-Maisonobe’s method. They have been tested3

using Singular::Plural 2.1 (see [GLS1]) in a PC Pentium IV, 1Gb RAM and
3.06GHz running under Windows XP.

Singular::Plural 2.1 is a system for non-commutative general purpose, so
the calculations in our algebras are not supposed to be optimal. We present the
following data only for the sake of comparing both methods in the same system.
In the case of [BM1] method we have used a pure lexicographical ordering, while
for [OT1] we have used typical elimination ordering. These are the orderings
with best results for each case.

The typical input for Singular::Plural 2.1 looks like this for [BM1] method:

ring r = 0,(t(1..3),s(1..3),x,y,z,Dx,Dy,Dz),lp;

matrix C[12][12]=0;

C[1,4]=t(1);C[2,5]=t(2);C[3,6]=t(3);C[7,10]=1;C[8,11]=1;C[9,12]=1;

system("PLURAL",1,C);

poly f1 = x*z+y ; poly f2 = x*y+z; poly f3 = y*z+x;

ideal i =s(1)+t(1)*f1,s(2)+t(2)*f2,s(3)+t(3)*f3, Dx +
t(1)*diff(f1,x)+t(2)*diff(f2,x)+t(3)*diff(f3,x), Dy +
t(1)*diff(f1,y)+t(2)*diff(f2,y)+t(3)*diff(f3,y), Dz +
t(1)*diff(f1,z)+t(2)*diff(f2,z)+t(3)*diff(f3,z);

ideal I = std(i);

And this one for [OT1] method:

ring r = 0,(u,v,x,y,z,t,Dx,Dy,Dz,Dt),(a(1,1),dp);

matrix C[10][10]=0;

C[3,7]=1;C[4,8]=1;C[5,9]=1;C[6,10]=1;

system("PLURAL",1,C);

...

3 The CPU times must be considered as approximations: as it is explained in the
Singular::Plural 2.1 Manual, the command timer is not absolutely reliable due
to the shortcomings of the Windows operating system.
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1. Case p = 1: In the following examples f ∈ C[x, y] or f ∈ C[x, y, z]. They
have been chosen taking into account Arnold’s classification of singularities.
E means the memory was exhausted and the system reported an error.

Table 1. CPU times for the computation of Annfs

f Briançon-Maisonobe’s method Oaku-Takayama’s method

x3 + xy2 + z2 < 0.01s 0.39s

x4 + y3 + z2 < 0.01s 0.39s

yx3 + y3 + z2 0.06s 3.97s

x3 + y2 + z2 < 0.01s 0.02s

x5 + y2 + z2 < 0.01s 4.66s

x7 + y2 + z2 < 0.01s 298.56s

x4 + y5 + xy4 0.56s E (> 12h)

2. Case p = 2: In Table 2 the examples f1, f2 are in C[x, y] or C[x, y, z].

Table 2. CPU times for the computation of Annfs1
1 fs2

2

f1 f2 Briançon-Maisonobe’s method Oaku-Takayama’s method

x3 + y2 x2 + y3 0.72s 6363.97s

x5 + y3 x3 + y5 3.53s E (> 6h)

x7 + y5 x5 + y7 11.84s E (> 6h)

x3 + y2 xz + y < 0.01s 9.73s

x5 + y2 xz + y < 0.01s 1568.59 s

x11 + y5 xz + y 3s E (> 6h)

3. Case p > 2: In Table 3 we have some examples for more than two functions.

Table 3. CPU times for the computation of Annfs1
1 · · · fsp

p

f1 f2 f3 Briançon-Maisonobe’s method Oaku-Takayama’s method

x + y x − y x2 + y < 0.01s 29.46s

x + y x2 + y x + y2 2.64s E

x + y x2 + y x2 + y3 116.24s E

x + y x2 + y x3 + y2 1728.41s E

When the single functions f1, . . . , fp are “simple” enough (for example, lin-
ear) it is possible to obtain AnnD[s1,...,sp]f

s1
1 · · · fsp

p for p rather big (say 15
or 20). This ideal can be related to the annihilating ideal of f = f1 · · · fp.
This idea has been exploited with success in [GHU1] to compute annihilating
ideals for f , where f defines very hard examples of arrangements of hyper-
planes of theoretical interest. In Table 4 we compare the results of applying
this idea in Singular::Plural 2.1 with obtaining directly AnnD[s]f

s using
the powerful system Asir (see [N1]).
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Table 4. Some arrangements of hyperplanes

Briançon-Maisonobe’s method Asir computing
f = f1 · · · fp computing AnnD[s1,...,sp]f

s1
1 · · · fsp

p AnnD[s]f
s

xyz(x + y)(x − y)(x − 2y − z) 0.62s 0.93s

xyz(x− y)(x + y)(x − 2y) 0.05s 0.03s

xyz(x + y)(x− y)(x + y − z) 0.06s 3.54s

xyzu(x + y + z + u) 0.01s 6.99s

xyzuv(x + y + z + u + v) 0.02s 1691.31s

xyzuvw(x + y + z + u + v + w) 0.05s > 3 days

4 Complexity

In [Gr1] a bound for the degree of the solutions of a general system of linear
equations over the Weyl algebra is given, with a procedure somewhat similar to
the one of the commutative case of [Se1]. In this section we study how far the
work of Grigoriev is applicable to our PBW algebra R of 2.1. His construction
has two different steps: in the first, the given system is reduced to another system
in a diagonal form. In the second, it is shown how to normalize the new system
in order to eliminate, successively, the variables.

4.1 Diagonalization

We need three technicals lemma to reduce the system to a diagonal form. They
generalize analogous lemmas of Grigoriev’s paper (see [Gr1, Lemma 1]) and their
proofs are, more or less, straightforward. Here deg means the total degree of a
term, that is, the sum of the exponents of all its variables.

Lemma 1. Let A be a (m− 1)×m matrix with entries in a Poincaré-Birkhoff-
Witt algebra S with a basis of p elements. If deg(aij) ≤ d, there exists a nonzero-
vector f = (f1, . . . , fm) ∈ Sm such that Af = 0 and deg(f) ≤ 2p(m − 1)d = N .

If we work in a noetherian domain (eventually non-commutative), we can
always define the rank of a finite module as in [St1]. Given a square matrix in a
Poincaré-Birkhoff-Witt algebra we say that it is non-singular if it has maximal
rank, and in this case we can obtain a left quasi-inverse with the precedent
lemma:

Lemma 2. Given a m × m matrix B over a PBW algebra S as in Lemma 1,
non-singular, it has a left quasi-inverse matrix G over S, such that deg(G) ≤ N .

Lemma 3. Given a system of linear equations over a PBW algebra S, it is
defined by a m × s matrix A of rank r, with its elements deg(aij) ≤ d we can
always construct a matrix C, which defines an equivalent system, such that



168 J. Gago-Vargas, M.I. Hartillo-Hermoso, and J.M. Ucha-Enŕıquez

CA =
(

C1 0
C2 E

)
A =

⎛

⎜⎜⎜⎝

a1 0
. . .

0 ar

�

0 0

⎞

⎟⎟⎟⎠ (1)

where E is the identity matrix.

Due to this lemma, we can assume that our system is equivalent to a system
in diagonal form:

akVk +
∑

r+1≤l≤s

ak,lVl = bk, 1 ≤ k ≤ r, deg(ak), deg(ak,l), deg(bk) ≤ 2pmd.

4.2 Normalization

Once the system is in diagonal form, we need to normalize it. To do this, we con-
struct some syzygies, applying Lemma 1 to the submatrix of the first r columns
and the column l > r. There always exist h(l), h

(l)
1 , . . . , h

(l)
r such that:

akh
(l)
k + ak,lh

(l) = 0, 1 ≤ k ≤ r deg(h(l)), deg(h(l)
i ) ≤ 4p2m2d

The result that gives the normalization in the Weyl algebra is the following one:

Lemma 4 ([Gr1], Lemma 4). Given g1, . . . , gt ∈ Dn a family of elements,
there is a nonsingular linear transformation of 2n-dimensional space with basis
x1, . . . , xn, ∂1, . . . , ∂n under which:

xi → Γxi =
n∑

j=1

γ
(1,1)
i,j xj +

n∑

j=1

γ
(1,2)
i,j ∂j ;

∂i → Γ∂i =
n∑

j=1

γ
(2,1)
i,j xj +

n∑

j=1

γ
(2,2)
i,j ∂j

such that the following relations hold:

ΓxiΓ∂i = Γ∂iΓxi − 1; ΓxiΓxj = Γxj Γxi

Γ∂iΓ∂j = Γ∂j Γ∂i Γ∂iΓxj = Γxj Γ∂i i 	= j,

and if we denote by Γgi the transformed of gi with the indicated linear transfor-
mation, we have Γgi = ∂

deg(gi)
n + Γ̃gi .

Remark 1. The main fact in the proof of the last Lemma 4 is that the matrices
of the linear transformations defined by the relations in the Weyl algebra are a
transitive group.
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Let {g1, . . . , gt} be a set of elements in R = C[s, t, x1, . . . , xn, ∂1, . . . , ∂n]. Let
us see why we can not assure the existence of a linear transformation Γ that
produces

Γgi = vdeg(gi) + Γ̃gi ,

where v is a single variable.
A general linear transformation as the one postulated in Lemma 4 has the

form:

s → Γs = α1s + β1t +
∑n

j=1 γ
(s,1)
j xj +

∑n
j=1 γ

(s,2)
j ∂j

t → Γt = α2s + β2t +
∑n

j=1 γ
(t,1)
j xj +

∑n
j=1 γ

(t,2)
j ∂j

xi → Γxi = α
(1)
i s + β

(1)
i t +

∑n
j=1 γ

(1,1)
i,j xj +

∑n
j=1 γ

(1,2)
i,j ∂j

∂i → Γ∂i = α
(2)
i s + β

(2)
i t +

∑n
j=1 γ

(2,1)
i,j xj +

∑n
j=1 γ

(2,2)
i,j ∂j

and it has to verify the following relations:

(1) ΓsΓt = ΓtΓs + Γt; (2) ΓsΓxi = ΓxiΓs; (3) ΓsΓ∂i = Γ∂iΓs;
(4) ΓtΓxi = ΓxiΓt; (5) ΓtΓ∂i = Γ∂iΓt; (6) ΓxiΓ∂i = Γ∂iΓxi − 1;

(7) ΓxiΓxj = Γxj Γxi ; (8) Γ∂iΓ∂j = Γ∂j Γ∂i ; (9) ΓxiΓ∂j = Γ∂j Γxi

From relation (1), we obtain α2 = γ
(t,1)
j = γ

(t,2)
j = 0 for all j, so Γt = β2t. The

change must be nonsingular, so we have β2 	= 0, and again using relation (1) we
deduce that α1 = 1. Using relation (4), we obtain that α

(1)
i = 0 for all i, and

with relation (5) that α
(2)
i = 0 for all i.

By relation (2) (Γs commutes with Γxi) we have β
(1)
i = 0, and relation (3)

gives β
(2)
i = 0. So Γ must verify:

s → Γs = s + β1t +
∑n

j=1 γ
(s,1)
j xj +

∑n
j=1 γ

(s,2)
j ∂j

t → Γt = β2t

xi → Γxi =
∑n

j=1 γ
(1,1)
i,j xj +

∑n
j=1 γ

(1,2)
i,j ∂j

∂i → Γ∂i =
∑n

j=1 γ
(2,1)
i,j xj +

∑n
j=1 γ

(2,2)
i,j ∂j

.

Due to relations from (6) to (9) (between Γxi and Γ∂j ) we have that the subma-
trix (

γ
(1,1)
i,j γ

(1,2)
i,j

γ
(2,1)
i,j γ

(2,2)
i,j

)

verifies the relations of Lemma 4, and in addition, from the relations with Γs it
verifies

∑
γ

(s,1)
i γ

(1,2)
i,i =

∑
γ

(s,2)
i γ

(1,1)
i,i

∑
γ

(s,1)
i γ

(2,2)
i,i =

∑
γ

(s,2)
i γ

(2,1)
i,i .

Anyway if we take for example tx1, the requirements for Γ produce

Γtx1 = β2tΓx1 	= v2 + Γ̃tx1 .

Thus we can not repeat the second step of the process in our PBW algebra
in the same way that appears in [Gr1].
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Problem 1. Find a general bound for the solutions of a general linear system
over any PBW algebra or, at least, give such a bound for R.

We will not treat this general problem: with the aim of obtaining a bound
for the complexity of the annihilating ideal of fs, we will consider only the
particular case of one equation of the type that would produce the definition of
the ideal I in section 2.1 or I ′ in section 2.2. In both cases we are interested in
the complexity of computing their Gröbner bases (in different rings), and we do
it considering the equivalent problem of computing the syzygies of the generators
of our respective ideals.

Note 1. In the algorithm of [OT1] the calculations are computed in a Weyl al-
gebra of 2n + 4p variables in all, or more precisely in a commutative polynomial
ring with n + 3p, (x, u, v, t) commutative variables extended with n + p, (∂x, ∂t)
“differential” variables. Let us denote by A this algebra. The complexity of com-
puting the annihilating ideal of fs is bounded by the complexity of computing
a Gröbner basis in A.

Recall that the complexity in the Weyl algebra is given by the following
theorem:

Theorem 3 (Th. 6,[Gr1]). Given a solvable system in the Weyl algebra Dn:

∑

1≤l≤s

uk,lVl = wk, 1 ≤ k ≤ m

with deg(uk,l), deg(wk) ≤ d. There exists a solution with deg(Vl) < (md)2
O(n)

As we said before in the Briançon-Maisonobe ring R we can not construct a
similar algorithm to bound the degree of a solution for a system in general. But
in our very special case, our problem is equivalent to computing the solutions of
the equation:

(s1 + f1t1)V1 + . . . + (sp + fptp)Vp+

(∂1 +
∑

j

∂fj

∂x1
tj)Vp+1 + . . . + (∂n +

∑

j

∂fj

∂xn
tj)Vp+n = 0

To simplify notation we write the precedent equation as
∑

l

QlVl = 0 (2)

Theorem 4. Given f = (f1, . . . , fp), the complexity of the computation of the
annhilating ideal of fs in the Briançon-Maisonobe algebra R = Dn[s1, . . . , sp, t1,
. . . , tp] is bounded by the complexity of the computation of the syzygies of the
elements ∂i +

∑
j

∂fj

∂xi
tj in the Weyl algebra Dn[t1, . . . , tp].
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Proof. We follow the notations of [Gr1] in this proof. We first compute h
(l)
1 , h(l)

for 2 ≤ l ≤ n + p such that:

(s1 + f1t1)h
(2)
1 + (s2 + f2t2)h(2) = 0

...
(s1 + f1t1)h

(p)
1 + (sp + fptp)h(p) = 0

(s1 + f1t1)h
(p+1)
1 + (∂1 +

∑
j

∂fj

∂x1
tj)h(p+1) = 0

...
(s1 + f1t1)h

(p+n)
1 + (∂n +

∑
j

∂fj

∂xn
tj)h(p+n) = 0.

The aim of these h(l) is to reduce any solution V = (V1, . . . , Vp+n) of equation
(2) to another one without s1 from which you can recover V . The process will
be repeated for s2, . . . , sp.

It is easy to see that

[si + fiti, sj + fjtj ] = 0

[si + fiti, ∂j +
∑

l

∂fl

∂xj
tl] = si(

∑

l

∂fl

∂xj
tl) + fiti∂j − ∂jfiti − (

∑

l

∂fl

∂xj
tl)si =

= tisi
∂fi

∂xj
+ ti

∂fi

∂xj
+
∑

l �=i

tlsi
∂fl

∂xj
+ tifi∂j − tifi∂j − ti

∂fi

∂xj
−
∑

l

∂fl

∂xj
tlsi = 0.

Let us define h(l) = s1 + f1t1 for all l ≥ 2. We make the division of the Vl of
equation (2), l ≥ 2 by h(l) with respect to a lexicographical ordering with s1

greater than any other variable. We obtain a remainder V̄l such that degs1
(V̄l) <

degs1
(h(l)) = 1, so it has no s1. So Vl = h(l) ¯̄Vl + V̄l, and adding the relation

Q1h
(l)
1 + Qlh

(l) = 0 multiplied by − ¯̄Vl to equation (2), we obtain:

Q1V̄1 + Q2V̄2 + · · · + Qn+pV̄n+p = 0

with Qi, V̄i without s1 for i ≥ 2, so V̄1 = 0, where V̄1 = V1 − h
(2)
1

¯̄V2 − · · · −
h

(n+p)
1

¯̄Vn+p, and we have the new equation:

Q2V̄2 + · · · + Qn+pV̄n+p = 0

in a Briançon-Maisonobe algebra C[s2, . . . , sp, t1, . . . , tp, x, ∂].
Repeating the process for Q2, . . . , Qp, we reduce our problem to solving:

(∂1 +
∑

j

∂fj

∂x1
tj)Vp+1 + . . . + (∂n +

∑

j

∂fj

∂xn
tj)Vp+n = 0

in the Weyl algebra Dn[t1, . . . , tp].
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As a consequence of 4, the bound for the complexity of computing the anni-
hilating ideal of fs in R is bounded by the complexity of computing a Gröbner
basis in a Weyl algebra with 3p variables less that the one required by the
method of [OT1]. Although the complexity of computing these objects in any
case is known to be double exponential (with respect to the number of variables
and the total degree of the generators of the ideal) by Theorem 3, it is clear that
the reduction of 3p variables of [BM1] is a significant advantage in practice as
it is shown in the examples (see section 3). The theoretical superiority of the
method of [BM1] is an open problem.

Problem 2. Is the bound proposed in this work is reached a la Mayr-Meyer
([MM1])? (that is to say, find an example of annihilating ideal with this worst
complexity).
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