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Abstract. The goal of combining the outputs of multiple models is to form an 
improved meta-model with higher generalization capability than the best single 
model used in isolation. Most popular ensemble methods do specify neither the 
number of component models nor their complexity. However, these parameters 
strongly influence the generalization capability of the meta-model. In this paper 
we propose an ensemble method which generates a meta-model with optimal 
values for these parameters. The proposed method suggests using resampling 
techniques to generate multiple estimations of the generalization error and 
multiple comparison procedures to select the models that will be combined to 
form the meta-model. Experimental results show the performance of the model 
on regression and classification tasks using artificial and real databases. 

1   Introduction 

The aim of machine learning is to make a good model based on a set of examples. 
The goal is not to learn an exact representation of the training data itself, but rather to 
build a statistical model of the process which generates the data [1]. Classic methods 
for model building choose a model from a set of competing alternatives, assigning a 
single measure of generalization error to each candidate. The model which minimizes 
this value is selected and the rest is discarded.  

However, when several models show similar generalization errors, we should not 
conclude that the model having the best performance on the validation set will 
achieve the best performance on new test data, given that we are working with a 
noisy, finite learning dataset. Therefore, any chosen hypothesis will be only an 
estimate of the real target and, like any estimate, will be affected by a bias and a 
variance term. Furthermore, there is another disadvantage with such approach: all the 
effort involved in generating the remaining near-optimal models is wasted. These 
drawbacks can be overcome by combining these models. 

Model combination approach leads to significant improvements of new prediction 
with a little additional computational effort. It is possible to identify two main 
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approaches to combining models: multiexpert and multistage methods. Multiexpert 
methods work in parallel, while multistage methods use a serial approach where the 
next model is trained/consulted only for examples rejected by the previous models. 
Two main groups of meta-machine learning methods which work in parallel exist: 
mixture of experts [7] and ensemble methods. While mixture of experts approach 
divides the input space with a gating network and allocates the subspaces to different 
experts (models), the output of an ensemble is generated by the weighted outputs of 
each model. The performance of an ensemble can be better than the performance of 
the best single model used in isolation when the models are accurate enough and 
fairly independent in the errors they make [6], [9]. The meta-machine learning 
method proposed in this paper is based on the last approach. 

2   The Statistical Ensemble Method 

In general, an ensemble is built in two steps: a) Generation/selection of a number of 
component models. b) Combination of their predictions.  

The most prevailing approaches for generating component models are based on 
varying the topology, the algorithm, the set of initial parameters to be used in the 
iterative learning process (i.e. random weights for MLPs) or the data itself 
(subsampling the training examples, manipulating the input features or the output 
targets and injecting ramdomness) [3],[16]. However, most popular ensemble 
methods specify neither the number of component models nor their complexity, and, 
obviously, these parameters strongly influence the generalization capability of the 
ensemble. In this paper we propose a methodology to generate a meta-model with 
optimal values for these parameters.  

The steps of the proposed methodology may be outlined as follow: 

1. Obtain multiple generalization error measures for each model using resampling 
techniques. The use of a set of estimations instead of a single measure of 
generalization error for model selection was proposed in [14],[5]. 

2. Determine the set of models whose errors are not significantly different from the 
model with minimum estimated generalization error using statistical tests [18] 
for comparing groups of paired samples (multiple comparison procedures). 

3. Combine these near-optimal models using ensemble methods. 

2.1   Multiple Error Measures Using Resampling Techniques 

Resampling methods for estimating the generalization error generate multiple test-
and-train datasets, and estimate the generalization error as the average of the 
validation errors.  

The main approaches to resampling are the following: 

• Random hold-out: many randomly train-and-test sets are generated. The 
examples are selected without replacement. 

• K-fold cross-validation: examples are randomly divided into k mutually exclusive 
partitions of approximately equal size. Each model is trained and tested k times; 
each time tested on a fold and trained on the dataset minus the fold. 
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• Leave-one-out: it is a special case of k-fold cross validation, where k equals the 
sample size.  

• Bootstrapping: instead of repeatedly analyzing subsets of the data, you 
repeatedly analyze subsamples of the data. Each subsample is a random sample 
with replacement from the full dataset and constitutes a training set. Examples 
not found in the training set form the validation set. 

In the above methods, the estimate of generalization error is taken as the average of 
the estimated accuracies (validation errors) from the different train/test sets. In the 
proposed methodology, this estimate will be used to determine the reference model, 
but all validation errors obtained from each train/test pair will be kept in order to be 
able to apply statistical tests to compare groups of related samples, instead of 
comparing a single estimate of the generalization error. The whole process may be 
described in more detail as follows: 

1. Take the whole data set and create m resampled data sets (m train/test pairs) 
using any of the approaches described above.  

2. For each resampled train/test set (m pairs), and for each model (k models), 
obtain a validation error. This allows us to obtain an array of m x k validation 
errors. 

3. Determine the class (Si) with minimum estimated generalization error, that is the 
class with minimum validation error mean.  

2.2   Multiple Model Selection Using Statistical Tests 

The second step in the methodology consists on the selection of a set of models to be 
combined. The best conditions for combining occur when the learned models 
are accurate enough, but fairly independent in the errors they make. The first 
condition will be guaranteed by determining those models not significantly different 
from the model with minimum estimated generalization error using statistical tests for 
comparing k groups of related samples. The second condition is much more difficult 
to ensure, and is approximated considering different architectures, learning 
paradigms, model complexities, etc.  

The proposed methodology determines a subset of models having similar error 
measures that the model with minimum estimated generalization error as follows:  

1. Apply a medium power test (i.e. Nemenyi) to obtain the models which are not 
significantly different from the model with minimum estimated generalization 
error. 

2. Apply an omnibus test for related samples (repeated measures ANOVA test, if 
the assumptions are met or Friedman test in different case). 

2.1. If the global null hypothesis is true (that is, all model classes of this set are 
not significantly different), finish the process. 

2.2. If the global null hypothesis is false, apply more powerful multiple 
comparison procedures (t or Wilcoxon paired tests with Bonferroni method 
for p-values adjustment) and obtain a subset with the model classes which 
are not significantly different from the model class with minimum estimated 
generalization error. 

Yáñez 
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Some remarks about the method should be done. When omnibus tests are 
significant, it indicates that at least two of the model classes are significantly 
different, but we don’t know which could be. At this point, multiple comparison 
procedures, which are usually less powerful, are applied.  

Nemenyi test is a medium power multiple comparison procedure. It may even 
accept model classes that should be rejected. It is a good procedure to generate an 
initial but not definitive set of non-significant model classes.  

Finally, the results may improve with a large number of resampled sets: resampling 
methods estimate better the generalization error and parametric tests [4], which are 
more powerful, may be applied on step 2. We suggest m ≥ 30.  

2.3   Model Combination Using Ensemble Methods 

Model combination starts with the determination of a model for each near-optimal 
class as determined in the previous step of the methodology. For each class, we 
should select the member fi(x,w*) whose parameter vector w* minimizes the empirical 
risk for the whole dataset. 

Once a set of component models has been generated, they must be combined. This 
combination consists of a weighted combination of models. For combining the 
outputs of component models, the most prevailing approaches are majority weighted 
voting for classification tasks and weighted averaging for regression tasks [6],[13].  

3   Experimental Results 

In this section we shall describe the experiments carried out with our methodology, 
the obtained results, and a comparative study with other strategies. A number of 
simulations have been conducted to evaluate the efficiency of SEM method using 
Radial Basis Function networks (RBF). In our experiments, we have used several 
databases from the UCI repository [2],  StatLib repository [12], Donoho-Johnstone 
benchmarks [15] and the ELENA Project [8] in order to test the performance of the 
method on regression and classification tasks using artificial and real databases.  

We have repeatedly extracted (100 times) from each database a small number of 
examples (sample size column in tables 2 to 5) for model estimation, while the 
remaining ones were used to get a precise estimation of the expected generalization 
error for each trained model. For the block function, gaussian noise has been added to 
the outputs and the generalization error is estimated with 10000 previously unseen 
examples. 

In order to compare the performance of different networks, we define the observed 
efficiency of model mi as the ratio of the lowest estimated generalization error to that of 
model mi. Thus, observed efficiencies range from 0 to 1. An observed efficiency equal 
to 1.0 would correspond to a model always having the lowest generalization error. 

We have a considered an initial set of RBF models with complexities ranging from 
1 to n (n = 20 or 30, depending on the database) where n is defined as the number of 
kernels. The width of the basis functions has been set to  

nxx ji 2)max( −=σ  
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All statistical tests have been applied using a level of significance α = 5%.  
For SEM, we suggest three methods which require some restrictions on the weights 

(the weights must be greater than zero and sum to one) and fix the weights at the end 
of training. First, an unweighted average is computed (Basic Ensemble Method-
BEM)[13]. Second, the weights are inversely proportional to estimated generalization 
error [11]. Finally, the weights are proportional to the number of times that each 
model has been selected as the model with minimum validation error [17]. A 
comparative of these methods is shown in [17]. In this paper, the simplest method 
(BEM) is applied.  

Table 2 shows observed efficiency values for three regression tasks and for 
different sample sizes: Block function (25 y 50 data) , Abalone data set (50 and 100 
data) and California housing (250 and 500 data). Statistical measures (mean, median 
and standard deviation) of the observed efficiency for the different methodologies are 
shown, as well as methodologies are ranked from the highest mean of the observed 
efficiency to the lowest mean (from 1 to 4 respectively).  We have considered four 
different model building strategies: a) an ensemble using all the models, b) SEM 
using only Nemenyi test, c) SEM using Bonferoni test, and d) the model with the 
lowest estimated error. 

Table 3 shows the number of component networks per meta-model on average for 
the different regression tasks considered. 

Table 2. Observed efficiency for three regression tasks 

Database Sample 
 size 

Statistical 
measures 

All  
models 

SEM using
Nemenyi 

SEM using 
Bonferroni 

Model 
selection 

Mean 0.4019 0.8657 0.8308 0.7793 
Median 0.2156 1.0000 0.9044 0.7670 
Stand. dev. 0.4053 0.2554 0.2214 0.1436 

25 

Rank 3 1 2 4 
Mean 0.7855 0.8955 0.8915 0.7260 
Median 0.9629 0.9728 0.9555 0.7104 
Stand. dev. 0.3110 0.2032 0.1869 0.1606 

Block 
function 

50 

Rank 3 1 2 4 
Mean 0.9220 0.9789 0.9584 0.8638 
Median 0.9290 0.9968 0.9746 0.8661 
Stand. dev. 0.0702 0.0318 0.0486 0.1036 

50 

Rank 3 1 2 4 
Mean 0.9797 0.9826 0.9727 0.9305 
Median 0.9882 0.9882 0.9828 0.9503 
Stand. dev. 0.0234 0.0192 0.0315 0.0703 

Abalone 

100 

Rank 2 1 3 4 
Mean 0.9815 0.9893 0.9804 0.9063 
Median 0.9881 0.9978 0.9958 0.9111 
Stand. dev. 0.0198 0.0167 0.0280 0.0582 

California 
housing 

250 

Rank 2 1 3 4 
Mean 0.9881 0.9970 0.9876 0.9152 
Median 0.9887 1.0000 0.9939 0.9176 
Stand. dev. 0.0086 0.0070 0.0213 0.0430 

 500 

Rank 2 1 3 4 
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Table 3. Average of the number of component networks per meta-model 

Database Sample 
size 

All 
models 

SEM 
using 

Nemenyi 

SEM 
using 

Bonferroni 

Model 
Selection 

25 30 7,37 4,08 1 Block 
function 50 30 13,87 8,67 1 

50 20 11,27 6,47 1 
Abalone 

100 20 12,51 6,72 1 

250 20 15,12 8,07 1 

500 20 17,35 11,26 1 
California 
housing 

250 30 29,05 23,69 1 

Table 4 shows results for 3 different classification tasks: Clouds data set with 50 
and 250 experimental data, Gauss 2D with 50 and 100 experimental data and 
Phoneme data set with 100 and 250. Table 5 shows the number of component 
networks per meta-model on average. 

Table 4. Observed efficiencies for three binary classification tasks 

Database 
Sample  

size 
Statistical 
measures 

All 
models 

SEM using 
Nemenyi 

SEM using 
Bonferroni 

Model 
selection 

Mean 0.9193 0.9587 0.9125 0.7475 

Median 1.0000 0.9778 0.9330 0.7416 

Stand. dev. 0.1384 0.0506 0.0871 0.1008 
50 

Rank 2 1 3 4 

Mean 0.9156 0.9827 0.9955 0.9479 

Median 0.9182 0.9857 1.0000 0.9481 

Stand. dev. 0.0340 0.0168 0.0103 0.0393 

Clouds 

250 

Rank 3 2 1 4 

Mean 0.7390 0.9624 0.9782 0.9395 

Median 0.7786 0.9772 1.0000 0.9618 

Stand. dev. 0.1446 0.0535 0.0464 0.0674 
50 

Rank 4 2 1 3 

Mean 0.9155 0.9842 0.9913 0.9681 

Median 0.9265 0.9919 1.0000 0.9771 

Stand. dev. 0.0514 0.0210 0.0164 0.0332 

Gauss 2D 

100 

Rank 4 2 1 3 

Mean 0.9918 0.9935 0.9813 0.9129 

Median 1.0000 1.0000 0.9955 0.9110 

Stand. dev. 0.0149 0.0116 0.0290 0.0460 
100 

Rank 1 2 3 4 

Mean 0.9994 0.9986 0.9903 0.9014 

Median 1.0000 1.0000 0.9977 0.9083 

Stand. dev. 0.0017 0.0031 0.0154 0.0467 

Phoneme 

250 

Rank 1 2 3 4 
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Table 5. Average of the number of component networks per meta-model 

Database 
Sample 
size 

All 
models 

SEM 
using 

Nemenyi 

SEM 
using 

Bonferroni 

Model 
Selection 

50 20 18,34 12,02 1 
Clouds 

250 20 18,91 13,34 1 

50 20 14,03 6,22 1 
Gauss 2D 

100 20 14,83 6,85 1 

100 30 25,96 18,72 1 
Phoneme 

250 30 29,05 23,69 1 

Experimental results from the simulations (tables 2 and 4) suggest that 
generalization capability of SEM is higher (or similar in the worst case) than the 
model with minimum expected generalization error, and better than the ensemble 
obtained combining all component networks. Similar results are obtained applying 
only Nemenyi test or applying Bonferroni correction after it, but the ensembles 
generated after Bonferroni correction are less complex (tables 3 and 5). The SEM 
model selects the optimal cardinality for the ensemble and the appropriate complexity 
for their component networks. 

4   Conclusions 

It is known that combining networks improve the generalization ability. The number 
of component networks and their complexity are free parameters and usually must be 
fixed before the training process begins, but there is no standard procedure to fix these 
parameters. In this paper we have proposed a new ensemble method based on 
statistical techniques (SEM) which fixes these parameters in order to obtain a low 
generalization error with a small set of optimal component networks. Experimental 
results have shown that SEM improves the performance when compared to the 
strategy which selects the model with the lowest estimated generalization error and 
the strategy which combines all the networks.  

Finally, other simulation results obtained applying our method [17] show that: 

1. With other families of models (eg. linear models, polynomials, MLP 
networks,…), SEM always reduced the generalization error. 

2. More powerful multiple comparison procedures based on Bonferroni correction 
[10] are not necessary, because a set of models with similar cardinality is 
selected. 

3. Similar results are obtained applying random hold-out technique, but leave-one-
out or k-fold cross-validation techniques make the results worse, because they 
select set of models with high cardinality. 

A.  Escolano et al. Yáñez 
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