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Abstract. In this work we propose a new method for solving the blind
source separation (BSS) problem using a support vector machine (SVM)
workbench. Thus, we provide an introduction to SVM-ICA, a theoretical
approach to unsupervised learning based on learning machines, which has
frequently been proposed for classification and regression tasks. The key
idea is to construct a Lagrange function from both the objective function
and the corresponding constraints, by introducing a dual set of variables
and solving the optimization problem. For this purpose we define a spe-
cific cost function and its derivative in terms of independence, i.e. inner
products between the output and the objective function, transforming an
unsupervised learning problem into a supervised learning machine task
where optimization theory can be applied to develop effective algorithms.

1 Introduction

Independent Component Analysis (ICA) is a recently developed method in which
the goal is to find a suitable representation of non-gaussian sources so that the
components are as independent as possible [1]. ICA has been applied successfully
to fields such as biomedicine, speech, sonar and radar, signal processing and,
more recently, to time series forecasting [2].

There exists a wide range of ICA algorithms for solving blind source sepa-
ration (BSS) problems, consisting of the minimization (or maximization) of a
contrast function [3–7]. In practice, thus ICA, is an algorithm for maximizing
the selected statistical principle, i.e. the stochastic gradient descent method can
be used to minimize mutual information. The heuristics (learning rates, start-
ing parameters) used in this kind of methods, however, damage the convergence
rates. The gradient-based method fails to obtain the correct parameters of the
separation system from different initializations due to its limited local search
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ability and to the complex nonlinear characteristics of the problem (nonlinear
or high dimensional ICA)[8].

Optimization Theory is the branch of mathematics concerned with charac-
terizing the solutions to such problems and with developing efficient algorithms
for finding such solutions. Any optimization problem can be described using an
objective function and equality or inequality constraints (functions defined in a
domain Ω ⊂ Rn). Depending on the nature of these functions, the problem is
called a linear, quadratic, etc. programme.

In this paper, support vector machine (SVM) methodology is applied to ICA
in the search for the separation matrix, in order to make use of feature space
learning and the numerous regression algorithms developed in this context. The
paper is organized as follows; in Section 2 we give a brief overview of basic ICA
theory and introduce the notation used in the rest of the paper. The new method
is presented in Sections 3 and 4 and some conclusions are drawn in section 5.

2 Definition of ICA

We define ICA using a statistical latent variables model (Jutten & Herault,
1991). Assuming the number of sources n is equal to the number of mixtures,
the linear model can be expressed as:

xj(t) = bj1s1 + bj2s2 + . . . + bjnsn ∀j = 1 . . . n , (1)

where we explicitly emphasize the time dependence of the samples of the random
variables and assume that both the mixture variables and the original sources
have zero mean without loss of generality. Using matrix notation instead of sums
and including additive noise, the latter mixing model can be written as:

x(t) = B · s(t) + b(t) , or (2)

s(t) = A · x(t) + c(t) , where A = B−1, c(t) = −B−1 · b(t) . (3)

The conditions that must be satisfied to guarantee the separation are given
by Darmois’ Theorem in [9]. In brief, the components si must be non-gaussian
statistically independent. For simplicity, we assume that the unknown matrix
is square and that the mixing can be characterized by a linear scenario. Noise
is included in the model for two reasons: because the classical statistical lin-
ear model is used and because in many applications there is some noise in the
measurements (the ‘cocktail party’ effect).

3 ICA and Convex Optimization
Under Discrepancy Constraints

In order to solve ICA problems using the SVM paradigm, we use an approach
based on reformulating the determination of the unknown demixing matrix
A = B−1 in the model (3) as a convex optimization problem. The optimization
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program we formulate is solved using the Lagrange multiplier method combined
with an approximation to a given derivative of a convenient discrepancy function
based on cumulants or on the characteristic function of the original sources. Note
that our approach could easily be modified to take into account other paradigms
in ICA research such as density estimation-based approximation methods.

We first restrict the range of possible solutions to the problem, by what
is usually a reasonable normalizing constraint: that the Frobenius norm of the
matrix A that we wish to find is minimum. We take the following, however, to
be our explicit objective function:

minimize
1
2
· ‖A‖2

2, (4)

because this makes our program a convex one (at least with the Frobenius norm).
The discrepancy between the model and what is iteratively observed is contained
in the restrictions:

−ε < L̃(ai) < ε , (i = 1, 2, . . . , n) . (5)

where, for each time instant t, we have L̃(ai) ≈< ai,x > −ci − si, with ai

denoting the i-th row of the demixing matrix A, and ci being the i-th component
on vector c. Note that for simplicity we have not written the dependency on the
time instant t, but of course this must be taken into account when implementing.

We define the Lagrangian corresponding to (5) as (introducing a soft margin
in equation 5)

Li = 1
2 · ‖ai‖2

2 + C · ∑l
j=1(ξj + ξ∗j ) − ∑l

j=1 αj(ε + ξj + L̃(ai))
−∑l

j=1 α∗
j (ε + ξ∗j − L̃(ai)) −

∑l
j=1(ηjξj + η∗

j ξ∗j ) .
(6)

where l is the number of samples and ξj , ξ
∗
j , αj , α

∗
j , ηj , η

∗
j are the slack variables

introduced in Lagrangian optimization problems.
Now we take the corresponding partial derivatives (according to the La-

grangian method) and equal them to 0, as follows

∂ciLi =
l∑

j=1

(α∗
j + αj) = 0 . (7)

∂
ξ
(∗)
i

Li = C − α
(∗)
j − η

(∗)
j = 0 . (8)

∂aiLi = ai −
l∑

j=1

(αj − α∗
j ) · ∂aiL̃(ai) = 0 . (9)

From equation 9 we see how the algorithm is able to extract independent compo-
nents one by one, just working with the maximization of the selected Lagrangian
function Li. The selection of a suitable function L̃(ai,x) determines the cur-
rent algorithm or strategy used in the process, i.e. if we describe it in terms
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of neg-entropy we obtain a generalization of FastICA [7]. After some algebraic
manipulation, we obtain

Li =
1
2
·
∥
∥
∥
∥
∥
∥

l∑

j=1

(αj − α∗
j )∂aiL̃(ai)

∥
∥
∥
∥
∥
∥

2

− ε
l∑

j=1

(αj + α∗
j ) −

l∑

j=1

(αj − α∗
j )L̃(ai). (10)

Finally, ICA is transformed into a multidimensional maximization of the
Lagrangian function defined as:

L =








L1

L2

...
Ln








. (11)

4 Statistical Independence Criterion

The Statistical Independence of a set of random variables can be described in
terms of their joint and individual probability distribution. The independence
condition for the independent components of the output vector y is given by the
following definition of independence random variables:

py(y) =
n∏

i=1

pyi(yi) (12)

where py is the joint pdf of the random vector (observed signals) y and pyi is
the marginal PDF of yi. In order to measure the independence of the outputs,
equation 12 is expressed in terms of higher order statistics (cumulants) using
the characteristic function (or moment generating function) φ(k), where k is a
vector of variables in the Fourier transform domain, and considering its natural
logarithm Φ = log(φ(k)). We first evaluate the difference between the terms in
equation 12 to obtain:

π(y) =

∥
∥
∥
∥
∥
py(y) −

n∏

i=1

py(yi)

∥
∥
∥
∥
∥

2

(13)

where the norm || . . . ||2 can be defined using the convolution operator with
different window functions according to the specific application [8] as follows:

‖F (y)‖2 =
∫

{F (y) ∗ v(y)}2dy (14)

and v(y) =
∏n

i=1 w(yi). In the Fourier domain and taking natural log (in order
to use higher order statistics, i.e. cumulants) this equation is transformed into:

Π(k) =
∫ ∥

∥
∥
∥
∥
Ψy(k) −

n∑

i=1

Ψyi
(ki)

∥
∥
∥
∥
∥

2

V(k)dk (15)



260 Carlos G. Puntonet et al.

where Ψ is the cumulant generating or characteristic function (the natural log of
the moment generating function) and V is the Fourier transform of the selected
window function v(y). If we take the Taylor expansion around the origin of the
characteristic function, we obtain:

Ψy(k) =
∑

λ

1
λ!

∂|λ|Ψy

∂kλ1
1 . . . ∂kλn

n

(0)kλ1
1 . . . kλn

n (16)

where we define |λ| ≡ λ1 + . . . + λn, λ ≡ {λ1 . . . λn}, λ! ≡ λ1! . . . λn! and:

Ψyi
(ki) =

∑

λi

1
λi!

∂λiΨyi

∂kλi

i

(0)kλi

i (17)

where the factors in the latter expansions are the cumulants of the outputs (cross
and non-cross cumulants):

Cλ1...λn
y1...yn

= (−j)|λ|
∂λ1+...+λnΨy

∂kλ1
1 . . . ∂kλn

n

(0) Cλi
yi

= (−j)λi
∂λiΨyi

∂kλi

i

(0) (18)

Thus, we define the difference between the terms in equation 15 as

βλ =
1
λ!

(j)|λ|Cλ
y (19)

which contains the infinite set of cumulants of the output vector y . By substi-
tuting 19 into 15 we obtain

Π(k) =
∫ ∥

∥
∥
∥
∥

∑

λ

βλkλ1
1 . . . kλn

n

∥
∥
∥
∥
∥

2

V(k)dk (20)

Hence, vanishing cross-cumulants are a necessary condition for y1, . . . , yn to be
independent1. Equation 20 can be transformed into:

Π(k) =
∫ ∑

λ,λ∗
βλβ∗

λ∗k
λ1+λ∗

1
1 . . . k

λn+λ∗
n

n V(k)dk (21)

Finally, by interchanging the sequence of summation and integral equation 21
can be rewritten as:

Π =
∑

λ,λ∗
βλβ∗

λ∗Γλ,λ∗ (22)

where Γ =
∫

k
λ1+λ∗

1
1 . . . k

λn+λ∗
n

n V(k)dk. In this way, we describe the generic
function L̃ in the Lagrangian function L. We must impose some additional re-
strictions on L̃, which is a version of the previous one but limiting the set λ.
That is, we only consider a finite set of cumulants {λ, λ∗} such as |λ|+ |λ∗| < λ̃

1 In practice, we need independence between sources two against two.
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and include only the cumulants affecting the current Lagrangian component.
Mathematically, these two restrictions are expressed as:

L̃i ≡ Π =
∑

{λ,λ∗}
βλβ∗

λ∗Γλ,λ∗ \
{{λ, λ∗}⋂{λi} �= 0

|λ| + |λ∗| < λ̃

}

(23)

In order to evaluate the most relevant term in the Lagrangian ∂L̃
∂ai

the above
equations must be rewritten in terms of the output vector as yi = aix, and we
must use the connection between cumulants and moments shown in [10]:

∂L̃i

∂ai
∝ ∂Cλ

y

∂ai
∝ ∂ai · x

∂ai
(24)

4.1 Using the Connection Between Moments and Cumulants

The connection between moments and cumulants can be expressed as:

Cλ
y =

∑

p1,...,pm

(−1)m−1(m − 1)! · E[
∏

j∈p1

Yj ] . . . E[
∏

j∈pm

Yj ] (25)

where {p1, . . . , pm} are all the possible partitions with m = 1, . . . , λ included in
the set of integers {1, . . . , λ}. In SVM methodology, we work with instantaneous
values (sample by sample) and thus we have to approximate expected values
to instantaneous ones. Finally, by evaluating the derivative term in equation 25
and using the above-mentioned approximations, we obtain

∂Cλ
y

∂ai
=

∑

p1,...,pm

(−1)m−1(m−1)!·
m∑

k=1



sk(A−1 · y)sk−1

ysk
i

∏

j∈p1

yj . . .
∏

j∈pm

yj



 (26)

where λ satisfies the conditions shown in equation 23 and sk is an integer in the
set {1, . . . , λ̃}. In practice, the order of the statistics used never exceeds four or
five, and so the latter expression can be simplified significantly, rewriting the
cumulants in terms of dot products between the output signals yi. Expressions
of cumulants in terms of moments are well-known and thus equations 26 and 9
allow us to iteratively obtain the coefficients αj , α

∗
j and then the support vector

parameters ai of the separation matrix A:

ai =
∑l

j=1(αj − α∗
j ) · ∂aiL̃(ai) =

∑l
j=1(αj − α∗

j ) ·
∑

{λ,λ∗} ∂ai (βλβ∗
λ∗)Γλ,λ∗

=
∑l

j=1(αj − α∗
j ) ·

∑
{λ,λ∗}

(j)|λ|+|λ∗|

λ!λ∗! ∂ai

(
Cλ

yC
λ∗
y

)
Γλ,λ∗

(27)

5 Conclusions

A support vector-based BSS-ICA method has been developed to solve the BSS
problem from linear mixtures of independent sources. The generalization to non-
linear ICA is straightforward considering nonlinear maps to feature spaces. The
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proposed method obtains a good performance (this statement is back up by
the extensive work in the workbench of SVM algorithms), and benefits from
the Theoretical Optimization Theory, which consists of solving a uniquely solv-
able (with order n) optimization problem instead of Newton or gradient descent
methods, which require suitable nonlinear optimization, with the consequent risk
of getting stuck in local minima.

The tacit assumption in equation 5 avoids cases such as in noisy environments
where the separation matrix does not actually exist as a linear function between
independent components and observed signals, i.e. the convex optimization prob-
lem is not feasible. That is, in cases where the separation is not possible, we use
a ”soft margin” by introducing slack variables to cope with the otherwise unfea-
sible constraints of the optimization problem [11]. The main disadvantage of this
kind of methods is that Quadratic programs are computationally quite expensive
as they scale between quadratic and cubic in the number of patterns although
there exists a unique solution, but this is also true for algebraic algorithms like
e.g. Cardoso’s JADE [12].
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