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Abstract. In this paper we present a novel method for blindly sep-
arating unobservable independent component signals from their linear
mixtures, using genetic algorithms (GA) to minimize the nonconvex and
nonlinear cost functions. This approach is very useful in many fields
such as forecasting indexes in financial stock markets where the search
for independent components is the major task to include exogenous in-
formation into the learning machine. The GA presented in this work is
able to extract independent components with faster rate than the previ-
ous independent component analysis algorithms based on Higher Order
Statistics (HOS) as input space dimension increases showing significant
accuracy and robustness.

1 Introduction

The starting point in the Independent Component Analysis (ICA) research can
be found in [1] where a principle of redundancy reduction as a coding strategy in
neurons was suggested, i.e. each neural unit was supposed to encode statistically
independent features over a set of inputs. But it was in the 90´s when Bell
and Sejnowski applied this theoretical concept to the blindly separation of the
mixed sources (BSS) using a well known stochastic gradient learning rule [2] and
originating a productive period of research in this area [3–6]. In this way ICA
algorithms have been applied successfully to several fields such as biomedicine,
speech, sonar and radar, signal processing, etc. and more recently also to time
series forecasting [7], i.e. using stock data [8]. In the latter application the mixing
process of multiple sensors is based on linear transformation making the following
assumptions:

1. the original (unobservable) sources are statistically independent which are
related to social-economic events.

2. the number of sensors (stock series) is equal to that of sources.
3. the Darmois-Skitovick conditions are satisfied [9].
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On the other hand there is a wide class of interesting applications for which
no reasonably fast algorithms have been developed, i.e. optimization problems
that appear frequently in several applications such as VLSI design or the trav-
elling salesman problem. In general, any abstract task to be accomplished can
be viewed as a search through a space of potential solutions and whenever we
work with large spaces, GAs are suitable artificial intelligence techniques for de-
veloping this optimization [10, 11]. GA are stochastic algorithms whose search
methods model some natural phenomena according to genetic inheritance and
Darwinian strife for survival. Such search requires balancing two goals: exploit-
ing the best solutions and exploring the whole search space. In order to carry
out them GA performs an efficient multi-directional search maintaining a popu-
lation of potential solutions instead of methods such as simulated annealing or
Hill Climbing.

In this work we apply GA to ICA in the search of the separation matrix,
in order to improve the performance of endogenous learning machines in real
time series forecasting speeding up convergence rates (scenarios with the BSS
problem in higher dimension). We organize the essay as follows. In section 2 we
give a brief overview of the basic GA theory and introduce a set of new genetic
operators in sections 3 and 4. The new search algorithm will be compare to the
well-known ICA algorithms and state state some conclusions in section 5.

2 Basis Genetic Algorithms in Higher Dimension

A GA can be modelled by means of a time inhomogeneous Markov chain [12]
obtaining interesting properties related with weak and strong ergodicity, conver-
gence and the distribution probability of the process [13]. In the latter reference,
a canonical GA is constituted by operations of parameter encoding, popula-
tion initialization, crossover , mutation, mate selection, population replacement,
fitness scaling, etc. proving that with these simple operators a GA does not con-
verge to a population containing only optimal members. However, there are GAs
that converge to the optimum, The Elitist GA [14] and those which introduce
Reduction Operators[15]. We have borrowed the notation mainly from [13] where
the model for GAs is a inhomogeneous Markov chain model on probability dis-
tributions (S) over the set of all possible populations of a fixed finite size. Let
C the set of all possible creatures in a given world (number of vectors of genes
equal to that of elements of the mixing matrix) and a function f : C → R+ (see
section 2.1). The task of GAs is to find an element c ∈ C for which f(c) is max-
imal. We encode creatures into genes and chromosomes or individuals as strings
of length � of binary digits (size of Alphabet A is a = 2) using one-complement
representation.

In the Initial Population Generation step (choosing randomly p ∈ ℘N , where
℘N is the set of populations, i.e the set of N-tuples of creatures containing
aL≡N ·� elements) we assume that creatures lie in a bounded region [−1, 1]. After
the initial population p has been generated, the fitness of each chromosome ci

is determined using a contrast function (i.e based on cumulants or neg-entropy)
which measures the pair-wise statistical independency between sources in the
current individual (see section 2.1).
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Table 1. Pseudo-code of GA.

Initialize Population

i=0

while not stop do
do N/2 times

Select two mates from pi

Generate two offspring using crossover operator

Mutate the two children

Include children in new generation pnew

end do
Build population p̂i = pi ∪ pnew

Apply Reduction Operators (Elitist Strategies) to get pi+1

i=i+1

end

The next step in canonical GA is to define the Selection Operator. New
generations for mating are selected depending on their fitness function values
using roulette wheel selection. Let p = (c1, . . . , cN ) ∈ ℘N , n ∈ N and f the
fitness function acting in each component of p. Scaled fitness selection of p is
a lottery for every position 1 ≤ i ≤ N in population p such that creature cj

is selected with probability proportional to its fitness value. Thus proportional
fitness selection can be described by column stochastic matrices Fn, n ∈ N , with
components:

〈q,Fnp〉 =
N∏

i=1

n(qi)fn(p, qi)∑N
j=1 fn(p, j)

(1)

where p, q ∈ ℘N so pi, qi ∈ C, 〈. . .〉 denotes the standard inner product, and n(qi)
the number of occurrences of qi in p. Once the two individuals have been selected,
an elementary crossover operator C(K, Pc) is applied (setting the crossover rate
at a value, i.e. Pc → 0, which implies children similar to parent individuals) that
is given (assuming N even) by:

C(K, Pc) =
N/2∏

i=1

((1 − Pc)I + PcC(2i − 1, 2i, ki)) (2)

where C(2i− 1, 2i, ki) denotes elementary crossover operation of ci, cj creatures
at position 1 ≤ k ≤ � and I the identity matrix, to generate two offspring (see
[13] for further properties of the crossover operator), K = (k1, . . . , kN/2) a vector
of cross over points and Pc the cross over probability.

2.1 Fitness Function Based on Cumulants

The independence condition for the independent components of the output vec-
tor y is given by the definition of independence random variables:

p(y) =
n∏

i=1

pyi(yi); (3)
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In order to measure the independence of the outputs we express equation 3 in
terms of higher order statistics (cumulants) using the characteristic function (or
moment generating function) φ(k), where k is a vector of variables in the Fourier
transform domain, and considering its natural logarithm Φ = log(φ(k)). Thus
we get:

Cum(
stimes︷ ︸︸ ︷

yi, yj , . . .) = κi
sδi,j,... ∀i, j, . . . ∈ [1, . . . , n] (4)

where Cum(
stimes︷︸︸︷. . . ) is the s-th order cross-cumulant and κs = Cum(

stimes︷︸︸︷
yi ) is the

auto-cumulant of order s straightforward related to moments [16]. Hence vanish-
ing cross-cumulants are a necessary condition for y1, . . . , yn to be independent1.
Based on the briefly above discussion, we can define the fitness function for BSS
as:

f(po) =
∑

i,j,...

||Cum(
stimes︷ ︸︸ ︷

yi, yj, . . .)|| ∀i, j, . . . ∈ [1, . . . , n] (5)

where po is the parameter vector (individual) containing the separation matrix
and || . . . || denotes the absolute value.

3 Mutation Operator Based on Neighborhood Philosophy

The new Mutation Operator MPm is applied (with probability Pm) indepen-
dently at each bit in a population p ∈ ℘N , to avoid premature convergence (see
[10] for further discussion) and enforcing strong ergodicity. The multi-bit muta-
tion operator with changing probability following a exponential law with respect
to the position 1 ≤ i ≤ L in p ∈ ℘N :

Pm(i) = µ · exp

(
−mod{ i−1

N }
∅

)
(6)

where ∅ is a normalization constant and µ the change probability at the beginning
of each creature pi in population p; can be described as a positive stochastic
matrix in the form:

〈q,MPmp〉 = µ∆(p,q) exp



−
∆(p,q)∑

dif(i)

mod{ i−1
N }

∅



 ·
L−∆(p,q)∏

equ(i)

[1 − Pm(i)] (7)

where ∆(p, q) is the Hamming distance between p and q∈ ℘N , dif(i) resp. equ(i)
is the set of indexes where p and q are different resp. equal. Following from
equation 7 and checking how the matrices act on populations we can write:

MPm =
N∏

λ=1

(
[1 − Pm(i)]1 + Pm(i)m̂1(λ)

)
(8)

1 In practice we need independence between sources two against two.
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where m̂1(λ) = 1 ⊗ 1 . . . ⊗
λ︷︸︸︷

m̂1 ⊗ . . . ⊗ 1 is a linear operator on V℘, the free
vector space over AL and m̂1 is the linear 1-bit mutation operator on V1, the
free vector space over A. The latter operator is defined acting on Alphabet as:

〈â(τ ′), m̂1â(τ)〉 = (a − 1)−1, 0 ≤ τ ′ 	= τ ≤ a − 1 (9)

i.e. probability of change a letter in the Alphabet once mutation occurs with
probability equal to Lµ. The spectrum of MPm can be evaluated according to
the following expression:

sp(MPm) =

{(
1 − µ(λ)

a − 1

)λ

; λ ∈ [0, L]

}
(10)

where µ(λ) = exp
(−mod{λ−1

N }
∅

)
.

The operator presented in equation8 has similar properties to the Constant
Multiple-bit mutation operator Mµ presented in [13]. Mµ is a contracting map
in the sense presented in [13]. It is easy to prove that MPm is a contracting map
too, using the Corollary B.2 in [13] and the eigenvalues of this operator(equation
10). We can also compare the coefficients of ergodicity:

τr(MPm) < τr(Mµ) (11)

where τr(X) = max{‖Xv‖r : v ∈ Rn, v⊥e and ‖v‖r = 1}.
Mutation is more likely at the beginning of the string of binary digits (“small

neighborhood philosophy”). In order to improve the speed convergence of the
algorithm we have included mechanisms such as elitist strategy (reduction op-
erator [17] consisting of sampling a Boltzmann probability distribution in the
extended population) in which the best individual in the current generation al-
ways survives into the next (a further discussion about reduction operator, PR,
can be found in [18]).

4 Guided Genetic Algorithm

In order to include statistical information into the algorithm (it would be a
nonsense to ignore it!) we define the hybrid statistical genetic operator based on
reduction operators as follows (in standard notation acting on populations):

〈q,Mn
Gp〉 =

1
ℵ(Tn)

exp
(
−||q − Sn · p||2

Tn

)
; p, q ∈ ℘N (12)

where ℵ(Tn) is the normalization constant depending on temperature Tn, n is
the iteration and Sn is the step matrix which contains statistical properties, i.e
based on cumulants it can be expressed using quasi-Newton algorithms as [5]:

Sn = (I − µn(C1,β
y,yS

β
y − I)); pi ∈ C (13)
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where C1,β
y,y is the cross-cumulant matrix whose elements are [Cα,β

y,y ]ij =
Cum(yi, . . . , yi︸ ︷︷ ︸

α

, yj , . . . , yj︸ ︷︷ ︸
β

) and Sβ
y is the sign matrix of the output cumulants.

Such search requires balancing two goals: exploiting the blindly search like
a canonical GA and using statistical properties like a standard ICA algorithm.
Finally the guided GA (GGA) is modelled, at each step, as the stochastic matrix
product acting on probability distributions over populations:

Gn = Pn
R · Fn · Ck

Pn
c
· M(Pm,G)n (14)

The GA used applies local search (using the selected mutation and crossover
operators) around the values (or individuals) found to be optimal (elite) the
last time. The computational time depends on the encoding length, number
of individuals and genes. Because of the probabilistic nature of the GA-based
method, the proposed method almost converges to a global optimal solution on
average. In our simulation, however, nonconvergent case was not found. Table 1
shows the GA-pseudocode.

5 Simulations and Conclusions

To check the performance of the proposed hybrid algorithm, 50 computer sim-
ulations were conducted to test the GGA vs. the GA method [7] and the most
relevant ICA algorithm to date, FastICA [5]. In this paper we neglect the eval-
uation of the computational complexity of the current methods, described in
detail in several references such as [7] or [19]. The main reason lies in the fact
that we are using a 8 nodes Cluster Pentium II 332MHz 512Kb Cache, thus the
computational requirements of the algorithms (fitness functions, encoding, etc.)
are generally negligible compared with the cluster capacity. Logically GA-based
BSS approaches suffer from a higher computational complexity.

Consider the mixing cases from 2 to 20 independent random super-gaussian
input signals. We focuss our attention on the evolution of the crosstalk vs. the
number of iterations using a mixing matrix randomly chosen in the interval
[−1, +1]. The number of individuals chosen in the GA methods were Np = 30
in the 50 (randomly mixing matrices) simulations for a number of input sources
from 2 (standard BSS problem) to 20 (BSS in biomedicine or finances). The
standard deviation of the parameters of the separation over the 50 runs never
exceeded 1% of their mean values while using the FASTICA method we found
large deviations from different mixing matrices due to its limited capacity of local
search as dimension increases. The results for the crosstalk are displayed in Ta-
ble 2. It can be seen from the simulation results that the FASTICA convergence
rate decreases as dimension increases whereas GA approaches work efficiently.

A GGA-based BSS method has been developed to solve BSS problem from
the linear mixtures of independent sources. The proposed method obtain a good
performance overcoming the local minima problem over multidimensional do-
mains. Extensive simulation results prove the ability of the proposed method.
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Table 2. Figures: 1) Mean Crosstalk (50 runs) vs. iterations to reach the convergence
for num. sources equal to 2 2) Mean Crosstalk (50 runs) vs. iterations to reach the con-
vergence for num. sources equal to 20 3) Evolution of the crosstalk area vs. dimension.
4) Example of independent source used in the simulations.

0 10 20 30 40 50 60
−40

−35

−30

−25

−20

−15

−10

−5

0

ITERATIONS

C
R

O
S

S
T

A
L

K

FASTICA
GGA−ICA
GA−ICA

0 5 10 15 20 25 30 35 40 45
−25

−20

−15

−10

−5

0

5

ITERATIONS

C
R

O
S

S
T

A
L

K

GA−ICA
GGA−ICA
FASTICA

2 4 6 8 10 12 14 16 18 20
−1100

−1000

−900

−800

−700

−600

−500

−400

−300

−200

DIMENSION

D
B

 A
re

a
 E

v
o

lu
ti
o

n

GGA−ICA
FASTICA
GA−ICA

0 1 2 3 4 5 6 7 8

x 10
4

−1

−0.5

0

0.5

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

12000

14000

This is particular useful in some medical applications where input space dimen-
sion increases and in real time applications where reaching fast convergence rates
is the major objective.
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