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Abstract. This paper addresses the characterization of independent
and non-Gaussian sources in a linear mixture. We present an eigensystem
based approach to determine the number of independent components in
the signal received by a single sensor. The temporal structure of the
sources is also characterized using fourth-order statistics.

1 Introduction

In many situations, we observe the superposition of an unknown number of sig-
nals and noise when studying a physical phenomenon of interest. In mathematical
form, the observed signal x(n) can be written as

x(n) =
N∑

i=1

si(n) + r(n) (1)

where si(n) denotes the signal emitted by the i-th source and r(n) stands for
additive noise. Single-Sensor Source Separation is the problem of estimating
the source signals si(n) from x(n); it is a challenging, still unsolved, problem
(excepting the cases in which the source signals have non-overlapping spectra).

The aim of this research was to characterize the source signals si(n) on the
basis of the properties of higher-order statistics. The use of higher-order cumu-
lants offers two main advantages: first of all, they are not affected by additive
Gaussian noise. Secondly, cumulants are linear in the addition of independent
variables. The latter property is very useful when considering mixtures like (1).
Other results could be used to complement BSS of convolutive [3, 5, 8] or single-
channel mixtures [1, 2, 4, 9].

This paper is organized as follows. In Section 2, we state some relevant hy-
pothesis and fix notation. Section 3 presents a new cumulant matrix which col-
lects useful information on the temporal structure of the source signals si(t).
Section 4 discusses some applications of the main theoretical results. Section 5
presents numerical experiments. Finally, Section 6 is devoted to the conclusions.
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2 Model Assumptions and Notation

To begin with, we suppose the following hypotheses:

H1. Each source can be modeled as a moving-average (MA) process of order
L, i.e.,

si(n) =
L∑

k=0

hi(k)wi(n − k) (2)

for i = 1, . . . , N , where the excitation sequences {wi(n)}N
i=1 are non-

Gaussian, zero-mean, i.i.d. processes with variance σ2
i and kurtosis κi.

H2. The source signals {si(n)}N
i=1 are statistically independent among them-

selves.
H3. The additive noise r(n) is stationary, normally distributed and independent

from the sources.
H4. We assume that N ≤ L + 1.

Hypotheses H1–H3 can be usually assumed in practice. We will need hypothesis
H4 later on.

For purposes of notation, given any process {z(n)} we define its covariance
as

cz
2(l)

def
= cum(z(n), z(n + l)) (3)

and the fourth-order cumulant [10] of {z(n)} as

cz
4(l1, l2, l3)

def
= cum(z(n), z(n + l1), z(n + l2), z(n + l3)) (4)

Note that, thanks to H1–H3, the cumulants (3) and (4) of {x(n)} and the source
signals {si(n)} are well-defined.

3 Cumulant Matrix

Let M be the (L + 1) × (L + 1) symmetric cumulant matrix whose (i, j)-entry
is given by

< M >ij= mx(i − 1, j − 1) (5)

where we have defined

mx(p, q) =
∑L−p

k=−L cx
4(k, k + p, q) (6)

This matrix has a very particular structure: it is shown in Appendix A that

M =
N∑

i=1

κi

σ4
i

csi
2 csi

2
T = CDCT (7)

where csi
2 is the (L+1)×1 vector whose k-th entry is csi

2 (k−1), C is the matrix
whose columns are the covariance vectors csi

2 , i.e.,

C = (cs1
2 | . . . |csN

2 )
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and D is the N ×N diagonal matrix whose entries are the fourth-order normal-
ized cumulants κi/σ4

i . It is supposed from now on that:

H5. The covariance vectors cs1
2 , . . . , csN

2 are linearly independent (i.e., matrix
C is full column rank).

Hypothesis H5 is reasonable when the sources have different physical origins (In
particular, sources with the same power spectra1 are excluded). It follows that:

Property 1. The rank of matrix M is N [6].

This is interesting in the sense that property 1 can be used to estimate the
number N of sources.

The following property characterizes the covariances:

Property 2. Vectors csi
2 are a linear combination of the eigenvectors of M asso-

ciated with nonzero eigenvalues.

Proof is given in Appendix B. Let v1, . . . ,vN be those eigenvectors of M
associated with nonzero eigenvalues. We cannot infer from (7) that v1, . . . ,vN

equal the covariances cs1
2 , . . . , csN

2 : as a matter of fact, the eigenvectors v1, . . . ,
vN are orthogonal (since M is symmetric) whereas cs1

2 , . . . , csN
2 are usually not

orthogonal. Mathematically, property 2 only implies that there must exists an
invertible N × N matrix P that relates v1, . . . ,vN and cs1

2 , . . . , csN
2 as follows:

(v1| . . . |vN ) P = (cs1
2 | . . . |csN

2 ) (8)

Unfortunately, matrix P is completely unknown a priori and cannot be found
in practice.

Finally, it can be stated that:

Property 3. Vectors csi
2 are orthogonal to all eigenvectors of M associated with

zero eigenvalues.

Property 3 is an immediate consequence of property 2.

4 Applications

The generative model (1) appears in convolutive BSS and in the single-sensor
BSS problem. In both cases:

A1. Property 1 can be used to estimate the number N of sources.
A2. The covariance csi

2 of each estimated source si(n) must satisfy properties
2 and 3. Hence, constraints can be derived from both properties that may
be used to prevent BSS algorithms from converging to spurious solutions.
For example, property 3 implies that:

csi
2

T U = 0

1 Power spectra is the Fourier transform of the covariance.



Characterization of the Sources in Convolutive Mixtures 589

for i = 1, . . . , N , where

U = (u1| . . . |uL+1−N)

and u1, . . . ,uL+1−N are the eigenvectors of M associated with zero eigen-
values.

A3. If N = 1, it follows from (7) that the eigenvector associated with the unique
nonzero eigenvalue of M is equal to the covariance vector cs1

2 of the unique
source s1(n) (up to a multiplicative constant). Thus, after estimating cs1

2 ,
we can filter the data x(n) with a Wiener filter to enhance the source signal
s1(n) from the noise r(n) [7].

Note that, due to the presence of the noise r(n), A1–A3 would not be feasible
if only second-order statistics were used. By contrasts, the fourth-order cumulant
function (6) is not affected by additive Gaussian noise.

5 Example

Let us consider a mixture of four signals plus noise

x(n) =
4∑

i=1

si(n) + r(n),

where si(n) = hi(n) ∗ wi(n) (‘∗’ denotes ‘convolution’), {wi(n)}4
i=1 are not-

gaussian leptokurtic (i.e. with positive kurtosis) signals, each of which is obtained
by raising to the third power a different i.i.d. Gaussian process and the noise
{r(n)} is i.i.d. and Gaussian. All of them are normalized to have unity variance.
The impulse responses of the MA filters are randomly chosen as:

h1(n) = δ(n)+0.34 δ(n−1)+0.12 δ(n−2)−0.41 δ(n−3)+0.65 δ(n−4)+0.75 δ(n−5),

h2(n) = δ(n)−0.35 δ(n−1)−0.29 δ(n−2)−0.28 δ(n−3)−0.28 δ(n−4)+0.66 δ(n−5),

h3(n) = δ(n)+0.65 δ(n−1)+0.52 δ(n−2)−0.41 δ(n−3)+0.55 δ(n−4)+0.14 δ(n−5),

and

h4(n) = δ(n)−0.50 δ(n−1)−0.31 δ(n−2)−0.81 δ(n−3)−0.60 δ(n−4)+0.24 δ(n−5),

Figure 1 shows the power spectral density of each source, calculated using
Welch’s method with a Hanning window.

We used 7000 samples of x(n) to estimate matrix M with L = 6. After each
experiment, to normalize and facilitate the comparison, eigenvalues were divided
by their maximum value.

The second column of table 1 shows the mean of the normalized eigenvalues,
averaged over 1000 independent experiments (the quantity between brackets is
the standard deviation). The third column of table 1 shows the ‘true’ normalized
eigenvalues, i.e., the eigenvalues that would be obtained if there were no errors
in the estimation of the cumulant matrix M. It is observed in Table 1 that there
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Fig. 1. Power Spectral Density of the four sources s1(n), s2(n), s3(n), s4(n).

Table 1. Statistics of the eigenvalues of M.

Eigenvalue Number Mean (Standard Deviation) True Normalized Eigenvalue

1 1.0000 (0.0000) 1.0000

2 0.1282 (0.0303) 0.1234

3 0.0501 (0.0173) 0.0448

4 0.0186 (0.0113) 0.0155

5 0.0020 (0.0074) 0.0000

6 -0.0107 (0.0074) 0.0000

7 -0.0265 (0.0113) 0.0000

are three clearly-nonzero eigenvalues, indicating that the mixture is composed
of at least N = 3 non-gaussian sources. We may need an additional criterion
to decide whether a fourth-source is present or not (i.e., to decide whether the
fourth eigenvalue is zero or not).

Let pij be the scalar product between the covariance csi
2 and the eigenvector

of M that corresponds to the j-th normalized eigenvalue. Table 2 shows the
mean value and the standard deviation of pij for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 7.

In view of Table 2, pij seeems to be zero-mean for all i, j. However, the key
is the standard deviation: observe that the standard deviations are large for
j = 1, 2, 3, whereas they are small for j = 5, 6, 7. It is inferred that the covari-
ances belong to the subspace spanned by the first, second and third eigenvectors,
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Table 2. Statistics of the scalar product between csi
2 and the eigenvectors of M.

pij i = 1 i = 2 i = 3 i = 4

j = 1 -0.1288 (2.45) -0.1110 (1.7416) -0.1191 (2.2495) -0.1379 (2.3996)

j = 2 -0.0124 (0.78) 0.0154 ( 0.8566) -0.0441 (0.6651) -0.0322 ( 0.7814 )

j = 3 0.0524 ( 0.42) 0.0233 (0.5616) -0.0085 ( 0.3563) -0.0576 (0.4778 )

j = 4 -0.0040( 0.28) 0.0136 ( 0.3223) 0.0047 ( 0.2816) -0.0370 (0.3133)

j = 5 -0.0149 ( 0.21) -0.0026 ( 0.2043) 0.0052 (0.2080) 0.0050 ( 0.2132)

j = 6 -0.0052 (0.20) -0.0122 (0.1742) 0.0006 (0.1988) 0.0036 ( 0.1928)

j = 7 0.0051 ( 0.21 ) -0.0028 ( 0.1674) -0.0010 (0.2523) 0.0053 (0.2036)

whereas they are orthogonal to the subspace spanned by the fifth, sixth and sev-
enth eigenvectors. Both conclusions agree with properties 2 and 3, respectively.
Again, we may need an additional criterion to decide whether the covariances
are orthogonal to the fourth eigenvector or not.

6 Conclusions

We have proposed a method that can be used to estimate the number of sources
in a linear mixture and characterize their temporal structure. The method is
robust against gaussian noise, since it is based on higher-order statistics.

Appendix A

Since x(n) =
∑N

i=1 si(n) + r(n), it holds that cx
4(l1, l2, l3) =

∑N
i=1 csi

4 (l1, l2, l3).
As a consequence

mx(p, q) =
L−p∑

k=−L

cx
4(k, k + p, q) =

N∑

i=1

L−p∑

k=−L

csi
4 (k, k + p, q) (9)

Thanks to the multi-linearity property of the cumulants, the covariance of
the source si(n) can be written as

c2
si

(p) =
L∑

n=0

hi(n)hi(n + p)σ2
i (10)

and the fourth-order cumulant equals

csi
4 (p, q, r) =

L∑

n=0

hi(n)hi(n + p)hi(n + q)hi(n + r)κi (11)

Both cumulants can be easily related, as follows: from (10), we get

csi
2 (p) csi

2 (q) =
L∑

n=0

L∑

k=0

hi(n)hi(n + p)σ2
i hi(k)hi(k + q)σ2

i (12)
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Using in (12) the change of variables k′ = k − n and n′ = n, we obtain:

csi
2 (p) csi

2 (q) =
L∑

n′=0

L−n′∑

k′=−n′
hi(n′)hi(n′ + k′)hi(n′ + k′ + p)hi(n′ + q)σ4

i (13)

Now, it is supposed that p, q > 0. Using that the MA coefficients hi(n) = 0 if
n �∈ {0, . . . , L}, it is readily obtained from (13) that

csi
2 (p) csi

2 (q) =
L∑

n′=0

L−p∑

k′=−L

hi(n′)hi(n′ + k′)hi(n′ + k′ + p)hi(n′ + q)σ4
i (14)

Then, comparing (11) with (14), it is deduced the following relation between
cumulants:

csi
2 (p)csi

2 (q) =
σ4

i

κi
msi(p, q), (15)

where we have defined

msi(p, q) =
L−p∑

k=−L

csi
4 (k, k + p, q) (16)

Then, inserting (16) in (9) and taking into account (15), we finally have:

mx(p, q) =
N∑

i=1

κi

σ4
i

csi
2 (p)csi

2 (q) (17)

which completes the proof �.

Appendix B

Let λ1 ≥ λ2 ≥ ... ≥ λL+1 be the eigenvalues of M. Furthermore, let v1,v2, . . . ,
vN be the unit-norm eigenvectors associated with λ1, . . . , λN and u1,u2, . . . ,
uL+1−N be the eigenvectors corresponding to λN+1,. . ., λL+1. Observe that
λN+1,. . ., λL+1 are all equal to zero since rank(M) = N .

Using the definition of the eigenvalues yields:

Mvi = λi vi (18)

Substituting (7) into (18) gives:

N∑

i=1

κi

σ4
i

csi
2

(
csi
2

T vi

)
= λi vi (19)

or, equivalently,

vi =
N∑

i=1

κi

σ4
i λi

(
csi
2

T vi

)
csi
2 (20)
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which means that each eigenvector vi can be expressed as a linear combination
of the covariances csi

2 .
Note that vectors csi

2 (1 ≤ i ≤ N) form a basis since they are linearly
independent and, hence, span an N dimensional subspace. From this point of
view, the preceding identity (20) just means that all eigenvectors vi belong to this
subspace. But these eigenvectors are orthogonal and therefore also form a basis
for the subspace. Consequently, each covariance vector csi

2 can be represented as
a linear combination of v1, . . . ,vN as well. This completes the proof �.
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