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Juan Manuel Górriz, and Isidro Lloret

1 University of Cádiz, EPS-Electronics Instrumentation Group,
Av. Ramón Puyol S/N, 11202 Algeciras-Cádiz, Spain

juanjose.delarosa@uca.es

http://www2.uca.es/grup-invest/instrument electro/ppjjgdr/jjgdr.htm
2 University of Granada, Department of Architecture and Computers Technology,

ESII, C/Periodista Daniel Saucedo, 18071 Granada, Spain

Abstract. An extended robust independent components analysis algo-
rithm based on cumulants is applied to identify vibrational alarm signals
generated by soldier termites (reticulitermes grassei) from background
noise. A seismic accelerometer is employed to characterize acoustic emis-
sions. To support the proposed technique, vibrational signals from a low
cost microphone were masked by white uniform noise. Results confirm
the validity of the method, taken as the basis for the development of a
low cost, non-invasive, termite detection system.

1 Introduction

Termites damage structures world-wide irreparably. The costs of this harm could
be significantly reduced through earlier detection. Detection is also important
because environmental laws are becoming more restrictive with termiticides due
to their health threats. Besides, only about 25 percent of the building structure
is accessible, and the conclusions depend very much on subjectiveness [1]. Thus,
new techniques have been developed to gain accessibility. But at best they are
considered useful only as supplements. Acoustic methods have emerged as an
alternative.

When wood fibers are broken by termites they produce acoustic signals which
can be monitored using ad hoc resonant acoustic emission (AE) piezoelectric
sensors which include microphones and accelerometers, targeting subterranean
infestations by means of spectral and temporal analysis. The drawback is the
relative high cost and their practical limitations (biophysical factors).

Modern signal processing techniques can be used to distinguish insect sounds
from background noise with good reliability in soil, because sound insulating
properties of soil help reduce interference. Besides, such techniques have been
successfully used in relatively noisy urban environments [2], [3].

The particular contribution of this study is to show that a robust ICA
cumulant-based algorithm is capable of separating termite alarm signals, gen-
erated in wood and recorded using a low cost microphone, from background
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noise. This could be the basis of separating low-level termite activity signals
from background urban noise using cheap equipment with non-invasive sensors.
A seismic accelerometer was used to characterize the frequency contents. Data
were acquired in the “Costa del Sol” (Malaga, Spain), in subterranean wood
structures and roots.

The paper is structured as follows: Section 2 summarizes the methods for
acoustic detection of termites; Section 3 defines the ICA model and outlines the
characteristics of emissions in wood; Section 4 describes the experiments carried
out. Conclusions are drawn in Section 5.

2 Acoustic Detection of Termites:
Characteristics and Devices

Acoustic emission (AE) is the elastic energy that is spontaneously released by
materials undergoing deformation. This energy travels through the material as
a stress and can be detected using a piezoelectric transducer.

Termites use a sophisticated system of vibratory long distance alarm. When
disturbed in their extended galleries, soldiers produce vibratory signals by drum-
ming their heads against the substratum [4]. The signals consist of pulse trains
which propagate through the substrate with pulse repetition rates (beats) in
the range of 10-25 Hz, with burst rates around 500-1000 ms, depending on the
species [3]. Workers perceive the vibrations, become alert and tend to escape.
Figure 1 shows a typical drumming signal produced by a soldier by taping its
jaws against a chip of wood. It comprises two four-impulse bursts. Each of the
pulses arises from a single, brief tap of the jaw.

Signals’ amplitudes were highly variable and depend on the wood and strength
of the taps. Power spectrum of a single impulse shows that significant drumming
responses are produced over the range 200 Hz-10 kHz and the carrier frequency
is around 2600 Hz. The spectrum is not flat as a function of frequency as one

0.2 0.4 0.6 0.8 1 1.2 1.4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

N
or

m
al

iz
ed

 a
m

pl
itu

de

Two bursts of alarm signals

Fig. 1. Two bursts of a typical AE alarm signal produced by a soldier.
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would expect for a pulse-like event. This is due to the frequency response of the
microphone, and also to the frequency-dependent attenuation coefficient of the
wood.

AE sensors have been used primarily for detection of termites in wood [5], but
there is also the need of detecting termites in trees and soil surrounding building
perimeters. Soil and wood have a much longer coefficient of sound attenuation
and distortion than air( ∼600 dB m−1, compared with 0.008 dB m−1 in the
air), and the coefficient increases with frequency [2].This attenuation reduces
the detection range of the emission to 2-5 cm in soil and 2-3 m in wood, as long
as the sensor is in the same piece of material [5].

3 The ICA Model and Its Properties

3.1 Outline of ICA

Blind source separation (BSS) by ICA is receiving attention because of its ap-
plications in many fields such as speech recognition, medicine and telecommu-
nications [6],[7],[8]. Statistical methods in BSS are based in the probability dis-
tributions and the cumulants of the mixtures. The recovered signals (the source
estimators) have to satisfy a condition which is modelled by a contrast function.
The underlying assumptions are the mutual independence among sources and
the non-singularity of the mixing matrix [6],[9],[10].

Let s(t) = [s1(t), s2(t), . . . , sm(t)]T be the vector of unknown sources (statis-
tically independent), where the superscript represents transpose. Independence
means one source provides no further information about any other [11]. The
mixture of the sources is modelled by

x(t) = A · s(t) (1)

where x(t) = [x1(t), x2(t), . . . , xm(t)]T is the available vector of observations and
A = [aij ] ∈ �m×n is the unknown mixing matrix, modelling the environment in
which signals are mixed, transmitted and measured [12]. We assume that A is a
non-singular n×n square matrix. The goal of ICA is to find a non-singular n×m
separating matrix B such that extracts sources via

ŝ(t) = y(t) = B · x(t) = B · A · s(t) (2)

where vector y(t) = [y1(t), y2(t), . . . , ym(t)]T is an estimator of the sources
[13],[14]. The separating matrix has a scaling freedom on each of its rows be-
cause the relative amplitudes of sources in s(t) and columns of A are unknown
[6],[10],[14]. The transfer matrix G ≡ BA relates the vector of independent
original signals to its estimators [15].

3.2 The Implementation of the Algorithm

High order statistics, known as cumulants, are used to infer new properties about
the data of non-Gaussian processes [16],[17]. Before cumulants, such processes
had to be treated as if they were Gaussian. Cumulants and polyspectra re-
veal information about amplitude and phase, whereas second order statistics
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are phase-blind [18],[19]. The relationship among the cumulant of r stochastic
signals and their moments of order p, p ≤ r, can be calculated by using the
Leonov-Shiryayev formula [17],[18]

Cum(x1, ..., xr) =
∑

(−1)k · (k − 1)! · E{
∏

i∈v1

xi}

· E{
∏

j∈v2

xj} · · ·E{
∏

k∈vp

xk}
(3)

where the addition operator is extended over all the set of vi (1 ≤ i ≤ p ≤ r)
and vi compose a partition of 1,. . . ,r.

It has been proved that a set of random variables are statistically independent
if their cross-cumulants are zero [14]. This property can be used to define a
contrast function. A criteria to obtain this function is to minimize the distance
between the cumulants of the sources s(t) and the outputs y(t). But in a real
situation sources are unknown, so it is necessary to involve the observed signals.
Separation of the sources can be developed using the following contrast function
based on the entropy of the outputs [9],[14]

H(z) = H(s) + log[det(G)] −
∑ C1+β,yi

1 + β
(4)

where C1+β,yi is the 1 + βth-order cumulant of the ith output, z is a non-linear
function of the outputs yi, s is the source vector, G is the global transfer matrix
of the ICA model and β > 1 is an integer verifying that β + 1-order cumulants
are non-zero.

Using this contrast function it has been demonstrated [14] that the separating
matrix can be obtained by means of the following recurrent equation

B(h+1) = [I + µ(h)(C1,β
y,yS

β
y − I)]B(h) (5)

where Sβ
y is the matrix of the signs of the output cumulants. Equation (5) can

be interpreted as a quasi-Newton algorithm of the cumulant matrix C1,β
y,y . The

learning rate parameters µ(h) and η are related by

µ(h) = min(
2η

1 + ηβ
,

η

1 + η‖C1,β
y,y‖p

) (6)

with η < 1 to avoid B(h+1) being singular; ‖.‖p denotes de p-norm of a matrix.
The adaptative equation (5) converges, if the matrix C1,β

y,yS
β
y tends to the identity.

4 Results and Discussions

Data acquisition took place in a basement, using a low-cost microphone, Ariston
CME6 model, with a sensibility of 62±3 (dB) and a bandwidth of 100 Hz-8
kHz, connected to the sound card of a portable computer (96000 Hz, sample
frequency).
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High-pass filtering suppresses non-relevant low-frequency coupling from the
sensor and the environment, obtaining two zero-mean normalized bursts (sources
1 and 2). Normalized kurtosis are 212.93, and 211.09, respectively; which shows
that ICA is expected to work. The third and forth sources consist of two uni-
form distributed noise signals with enough amplitude to mask the burst. The
mixing matrix is a 4×4 matrix whose elements are chosen from uniformly dis-
tributed random numbers within 0 and 1. No pre-whitened was applied in order
to manipulate four mixtures.

In order to compare this method with traditional ones, based on power spec-
trum comparisons, we compared the power spectra of the separated signals to
the original sources of reticulitermes grassei.

AE methods work under the hypothesis of considering the vibratory signals
as pulse trains. Characterization was developed using a seismic accelerometer
(KB12V, MMF). Figure 2 shows a comparison between the impulse response
(upper graph) of the accelerometer and the spectrum of the drumming signals,
which let us conclude the 2600 Hz peak corresponding to the carrier [1],[3].
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Fig. 2. Comparison between impulsive response and spectrum of vibratory alarm sig-
nals.

Figure 3 shows the original filtered sources and the mixtures, which give very
little information about the original sources. Comparing the separated results,
in figure 4, with the source signals in figure 3, a number of differences are found.
First, the amplitudes are amplified to some extent due to the changes in the
demixing matrix, implying that original amplitude information has lost. Second,
there are time shifts between the original sources and the recovered signals.
Three, the sequences are arranged as the same way as the original, although this
can be changed.

Figure 5 show the normalized power spectrum of the second output. The
spectra of the separated signals y1(t) and y2(t) show the same carrier frequency,
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Fig. 3. The sources and their mixtures. Horizontal units: 1/96000 (s).
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Fig. 4. The separation results by the ICA algorithm. Horizontal units: 1/96000 (s).

confirming the validity of the proposed method based on the traditional spectra-
based method.
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Fig. 5. Normalized power spectrum of the second output.

5 Conclusions

ICA has been presented as a novel method used to detect vibratory signals from
termite activity. This method is far different from traditional ones, as power spec-
trum, which obtain an energy diagram of the different frequency components,
with the risk that low-level sounds could be masked.

This experience shows that the algorithm is able to separate the sources with
small energy levels in comparison to the background noise. This is explained away
by statistical independence basis of ICA, regardless of the energy associated
to each frequency component. Results of the spectra let us conclude that the
separation has been performed correctly, because the same spectral shape as
the accelerometer response is outlined. In this stage we have proved the validity
of ICA over a pre-processed set of signals. No frequency-domain comparison is
made; a time-domain characterization is enough.

If we focus on the device, it has been proved that a low-cost microphone can
be used for insect-detection purposes. This is so because in case of high-level
background noise, even if it is white, as it has been proved, ICA is capable of ex-
tracting the burst of impulses. This means that accelerometers-based equipment
could be displaced when it is not needed a high sensitive device. In the case of
a high sensibility requirement, accelerometers can be used to extract distorted
information which would be processed by ICA to extract the vibratory signals
produced by insects.
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