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Abstract. We present an abductive mechanism that works as a robust
parser in realistic tasks of Natural Language Processing involving in-
complete information in the lexicon, whether it lacks lexical items or the
items are partially and/or wrongly tagged. The abductive mechanism
is based on an algorithm for automated deduction in Lambek Calcu-
lus for Categorial Grammar. Most relevant features, from the Artificial
Intelligence point of view, lie in the ability for handling incomplete infor-
mation input, and for increasing and reorganizing automatically lexical
data from large scale corpora.

1 Introduction

1.1 Logic and Natural Language Processing

Natural Language Processing (NLP) is an interdisciplinary field where lots of re-
search communities meet. Out of all NLP objectives, parsing is among the basic
tasks on which other treatments of natural language can be founded. Develop-
ment of efficient and robust parsing methods is a pressing need for computational
linguistics; some of these methods are also relevant to Logic in AI whether they
are founded on Logic or they use AI characteristic techniques.

Lambek Calculus (LC) for Categorial Grammar (CG) is a good candidate
for developing parsing techniques in a logic framework. Some of the major ad-
vantages of CG lie in: (a) its ability for treating incomplete subphrases; (b) it is
(weakly) equivalent to context free grammars, but (c) CG is radically lexicalist,
it owns no (production) rule except logical ones; therefore, (d) syntactic revisions
are reduced to type reassignments of lexical data of a given lexicon.

On the other hand, the Gentzen-style sequent formulation of LC for CG also
presents several attractive features: (a) a well-known logical behaviour —LC
corresponds to intuitionistic non-commutative multiplicative linear logic with
non empty antecedent; (b) the cut-rule elimination, and hence the subformula
property that is desirable with regard to its implementation.
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When it comes to using LC in realistic tasks of NLP, one must admit that
LC has two possible disadvantages: (a) its complexity is unknown; (b) in so
far as it is equivalent to context free grammars, LC cannot account for several
linguistic phaenomena. These limitations accepted, we encounter another kind of
dificulties: the realistic tasks of NLP involve characteristic problems that cannot
be solved by the sole use of deductive systems. A deduction is always something
closed, in accordance with immovable rules; however our language understanding
is robust enough and it succeeds even if partial information is lacking.

1.2 Learning and Revising Data

The AI researches intend to enlarge the logical machinery from the precise math-
ematical reasoning to the real situations in the real world. That means, for ex-
ample: to learn from experience, to reorganize the knowledge, to operate even if
the information is incomplete. The task of building robust parsers comes right
into the goals of AI in a natural way.

The (informal) notion of robustness refers to the indifference of a system to
a wide range of external disruptive factors [Ste92], [Men95]. Out of all desirable
properties of a robust parser we focus on two ones chiefly: (a) a robust parser
has to work in absence of information (hence it must learn from data); (b) a
robust parser has to revise and to update the information.

In the last years, the idea that systematic and reliable acquisition on a large
scale of linguistic information is the real challenge to NLP has been actually
stressed. Moreover, currently available corpora make it is possible to build the
core of a grammar and to increase the grammatical knowledge automatically
from corpora. Two strategies vie with each other when it comes to approach-
ing the specific problems of NLP we refer before: statistical versus rule-based
strategies. From an engineering point of view, statistical extensions of linguistic
theories have gained a vast popularity in the field of NLP: purely rule-based
methods suffer from a lack of robustness in solving uncertainty due to overgen-
eration (if too many analyses are generated for a sentence) and undergeneration
(if no analysis is generated for a sentence) [Bod98]. We think this ‘lack of robust-
ness’ can be filled in the AI intention using abductive mechanisms that enlarge
the deductive systems.

1.3 Abductive Mechanisms

We use the terms ‘abductive mechanism’ in a sense that may require a deeper
explanation.

A deductive logical system typically offers a ‘yes/no’ answer to a closed ques-
tion stated in the language of this logic. The two situations pointed out above
can be found whenever we try to use a deduction system in realistic tasks of
NLP:
(a) Lack of information in the lexicon. Thus, we have to use variables that do
not belong to the logical language —α(X)— for unknown values . An equivalent
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problem in classical logic would be the following task: p∨q, p → r, X � r. Stated
in this way, it is not a deduction problem properly.
(b) A negative answer merely: 0 α.

In both cases we could consider we have a theory (here, the lexicon, L) and a
problem to solve: how the lexicon has to be modified and/or increased in order
to obtain a deduction:
(a’) L � SubsA

Xα(X), where A belongs to the used logical language;
(b’) L � β, where β is obtained from α according to some constraints.

That is precisely what we have called ‘abductive’ problems (inasmuch as it
is not a new rule, but new data that have to be searched for), and ‘abductive
mechanism’ (as the method for its solution). One matter is the logical system
on whose rules we justify a concrete yes/no answer to a closed question, and
another matter is the procedure of searching for some answer, that admits to be
labelled as abductive.

Our purpose is to introduce an abductive mechanism that enlarges LC in
order to obtain a robust parser that can be fruitfully employed in realistic ap-
plications of NLP.1

1.4 State-of-the-Art in Categorial Grammar Learning

Large electronic corpora make the induction of linguistic knowledge a challenge.
Most of the work in this field falls within the paradigm of classical automata and
formal language theory [HU79], whether it uses symbolic methods, or statistical
methods, or both.2 As formal automata and language theory does not use the
mechanisms of deductive logics, the used methods for learning a language from
a set of data are not abductive or inductive mechanisms. Instead, they build an
infinite sequence of grammars that converges in the limit.

This being the background, much of the work about learning Categorial
Grammars deals with the problem of what classes of categorial grammars may
be built from positive or negative examples in the limit.3 This approach manages
corpora that hold no tags at all, or that are tagged with the information of which
item acts as functor and which item acts as argument.

The difference between those works and ours is that the former ones (a) have
a wider goal—that of learning a whole class of categorial grammars from tagged
corpora—, and (b) that they do not make use of any abductive mechanism, but
follow the steps made in the field of formal language theory.

1 Currently, LC seems to be relegated to an honourable logical place. It is far from
constituting an indispensable methodology in NLP. Let us use the TMR Project
Learning Computational Grammars as an illustration. This project “will apply sev-
eral of the currently interesting techniques for machine learning of natural language
to a common problem, that of learning noun-phrase syntax.” Eight techniques are
used. None is related to LC.

2 Cfr. Gold [Gol67], Angluin [Ang80], [AS83], Bod [Bod98] and references therein.
3 For this approach, cfr. Buszkowski [Bus87a], [Bus87b], Buszkowski and Penn [BP90],

Marciniec [Mar94], Kanazawa [Kan98].
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On the other hand, our work is (i) of a narrower scope—we are only interested
in filling some gaps that the lexicon may have, or we want to change the category
assigned by the lexicon to some lexical item when it does not lead to success —,
and (ii) we use an abductive mechanism.

Finding the right category to assign to a lexical item is possible because we
make use of a goal directed parsing algorithm that avoids infinite ramifications of
the search tree trying only those categories that are consistent with the context.

2 A Parsing Algorithm Based on Lambek Calculus

2.1 Lambek Calculus

First, we introduce the Gentzen-style sequent formulation of LC. The underlying
basic idea in the application of LC to natural language parsing is to assign a
syntactic type (or category) to a lexical item. A concrete sequence of lexical items
(words in some natural language) is grammatically acceptable if the sequent with
these types as antecedent and the type s (sentence) as succedent is provable in
LC.

The language of the (product-free) LC for CG is defined by a set of basic
or atomic categories (BASCAT ) -also called primitive types-, from which we
form complex categories -also called types- with the set of right and left division
operators {/, \}:
If A and B are categories, then A/B, and B\A are categories.
We define a formula as being a category or a type.
In the following we shall use lower case latin letters for basic categories, upper
case latin letters for whatever categories, lower case greek letters for non-empty
sequences of categories, and upper case greek letters for, possible empty, se-
quences of categories.

The rules of LC are [Lam58]:
1. Axioms:

A ⇒ A
(Ax)

2. Right Introduction: /R, \R
γ, B ⇒ A

γ ⇒ A/B
(/R)

B, γ ⇒ A

γ ⇒ B\A
(\R)

3. Left Introduction: /L, \L
γ ⇒ B Γ, A, ∆ ⇒ C

Γ, A/B, γ, ∆ ⇒ C
(/L)

γ ⇒ B Γ, A, ∆ ⇒ C

Γ, γ, B\A, ∆ ⇒ C
(\L)

4. Cut
γ ⇒ A Γ, A, ∆ ⇒ C

Γ, γ, ∆ ⇒ C
(Cut)

It is required that each sequent has a non-empty antecedent and precisely one
succedent category. The cut-rule is eliminable.
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2.2 Automated Deduction in Lambek Calculus

Given a lexicon for a natural language, the problem of determining the gram-
matical correctness of a concrete sequence of lexical items (a parsing problem)
becomes into a deductive problem in LC. Therefore, a parsing algorithm is just
an LC theorem prover.
LC-theoremhood is decidable. However, LC typically allows many distinct proofs
of a given sequent that assign the same meaning; this problem is called ‘spurious
ambiguity’. An efficient theorem prover has to search for (all) non-equivalent
proofs only. There are in the literature two approaches to this problem, based
on a normal form of proofs (Hepple [Hep90], König, Moortgat [Moo90], Hendriks
[Hen93]) or on proof nets (Roorda [Roo91]). LC theorem prover we present is
related to König’s method [Kön89], but it solves problems which are proper to
König’s algorithm.

First, we introduce some definitions.

1. Value and Argument Formulae
1.1. If F = a, then a is the value formula of F ;
1.2. If (i) F = G/H or (ii) F = H\G, then G is the value formula of F and
H is the argument formula of F . In the case (i), H is the right argument
formula; in the case (ii), H is the left argument formula.

2. Value Path
The value path of a complex formula F is the ordered set of formulae
〈A1, . . . , An〉 such that A1 is the value formula of F and Aj is the value
formula of Aj−1 for 2 ≤ j ≤ n.

3. Argument Path
The argument path of a complex formula F is the ordered set of formulae
〈B1, . . . , Bn〉 such that B1 is the argument formula of F and Bj is the
argument formula of Aj−1, for 2 ≤ j ≤ n, and 〈A1, . . . , An〉 being the value
path of F .
The right (resp. left) argument path of a complex formula F is the ordered
subset of its argument path owning right (resp. left) argument formulae only.

4. Main Value Formula
A is the main value formula of a complex formula F whose value path is
〈A1, . . . , An〉 if and only if A = An.
It follows that: (i) if A is a main value formula, then A ∈ BASCAT ; (ii)
every complex formula has exactly one main value formula.

2.3 The Algorithm

We now sketch the algorithm implemented in both C language and Prolog. We
present the algorithm in a pseudo-Prolog fashion in order to provide an easier
understanding. This is not Prolog, as we have simplified the management of data
structures and other practical problems of the language. At the same time we
assume a“try or fail” strategy of control like that of Prolog, as well as mechanisms
of unification to build data structures. Self-evident procedures (search_value,
etc.) are not included.
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procedure proof
input: data ⇒ target
output: Proof tree if {� data ⇒ target}, otherwise FAIL.
process:

CASE data = target: RETURN { target⇒target (Ax)}
CASE target = A/B: RETURN { proof(data,B⇒A)

data⇒A/B (/R)}
CASE target = B\A: RETURN { proof(B,data⇒A)

data⇒B\A (\R)}
CASE atomic(target):

LET c := target
LET [list1, list2, . . . , listn] := search value(c in data)
FOREACH listi ∈ [list1, list2, . . . , listn] DO

LET [α, F, β] := listi
LET [A1, . . . , Ak] := left argument path(c in F )
LET [B1, . . . , Bm] := right argument path(c in F )
LET treei := STACK reduce([ ], α, [Ak, . . . , A1])

WITH reduce([ ], β, [B1, . . . , Bm])
IF treei = FAIL

THEN CONTINUE
ELSE RETURN { treei c⇒c

data⇒c (|L)}
END FOR

END procedure proof

procedure reduce
input: ([acums], [data], [targets])
output: proof tree if {LC acums, data ⇒ targets}, otherwise FAIL.
process:

CASE acums = data = targets = [ ]: RETURN {—(empty)}
CASE targets = [A]:

RETURN proof(acums, data ⇒ A)
OTHERWISE:

CASE acums �= [ ] AND length(data) ≥ length(tail(targets)):
LET tree := STACK proof(acums ⇒ head(targets))

WITH reduce(head(data),tail(data),tail(targets))
IF tree �= FAIL

THEN RETURN tree
ELSE try next case

CASE length(tail(data)) ≥ length(targets) - 1:
RETURN reduce(acums+head(data),tail(data),tail(targets))

OTHERWISE RETURN FAIL
END procedure reduce

2.4 Remarks on the Algorithm

(i) The proof procedure behaves as expected when input is an axiom.
(ii) The algorithm decomposes any target complex formula until it has to prove
an atomic one, c ∈ BASCAT .



An Abductive Mechanism for Natural Language Processing 93

(iii) The reduce procedure is the main charasteristic of our algorithm. When we
have to prove an atomic target, (i) we search for the formulae in the antecedent
whose main value formula is the same as the atomic target (F1, . . . , Fn); (ii) for
each Fi, 1 ≤ i ≤ n, the left-hand side (resp. right-hand side) of the antecedent
(with respect to Fi) and the left argument path of Fi (resp. right argument path)
have to be cancelled out. The algorithm speeds up the deduction trying to satisfy
the argument paths of Fi. The major advantages are obtained when the length of
the sequence of data is long enough (note that a sentence in natural language may
be up to 40 to 50 words long), and argument paths of the formulae are high. This
property lies in the fact that the reduce procedure cares for still- not-consumed
data and target formulae remaining to be proved. Efficient implementation for
this algorithm has to avoid unnecessary calls to proof procedure from the reduce
procedure, memorizing the proofs already tried.
(iv) FAIL may be regarded as an error propagating value. If any of the arguments
of the proof-tree constructors —such as STACK, (|L), (/R), etc.— is FAIL, then
resultant proof-tree is FAIL. A sensible implementation should be aware of this
feature to stop the computational current step and to continue with the next
one.

2.5 Properties of the Algorithm

(1) The algorithm is correct : If the output of proof procedure is not FAIL, then
the proof tree constructed is a deduction of the input in LC.
Proof. Every rule we employ is a direct LC rule: axiom, /R, \R. Note that the
symbol |L stands for successive applications of /L and/or \L. The conditions
needed for applying each rule are exactly the same as they are required in LC.
Hence, we can construct a proof tree in LC from the output of the proof pro-
cedure. �
(2) The algorithm is complete: If �LC data ⇒ target, then the output of the
proof procedure is a proof tree.

The proof follows from (2.1) and (2.2) below:
(2.1) If there is no deduction in LC for γ, B ⇒ A, then there is no deduction in
LC for γ ⇒ A/B. (Similarly for B, γ ⇒ A, and γ ⇒ B\A)

Proof: Let us suppose that there is a proof tree, Π , in LC for γ ⇒ A/B.
Case 1: If every rule in Π is either a L-rule either an axiom, then we follow the
deduction tree in a bottom-up fashion and we reach the sequent A/B ⇒ A/B.
We can construct a proof Π ′ from Π in this way:

B ⇒ B A ⇒ A

A/B, B ⇒ A
(/L)

Next we apply the rules of Π over A/B that yield γ ⇒ A/B in Π , and we obtain
in Π ′: γ, B ⇒ A.
Case 2: If there is an application of /R in Π that yields

δ, B ⇒ A

δ ⇒ A/B
(/R)
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but it is not at the bottom of Π , we can postpone the application of the /R rule
in Π ′ till remaining rules of Π have beeing applied, and so we have in Π ′ the
sequent γ, B ⇒ A. �

We use these properties to decompose any complex succedent until we reach
an atomic one.
(2.2) Let c ∈ BASCAT , and γ = γ1, . . . , γn (n > 0).
If �LC γ ⇒ c, then it exists some γj , (1 ≤ j ≤ n) such that:
(i) c is the main value formula of γj ;
(ii) LC γ1, . . . , γj−1 ⇒ Φ;
(iii) LC γj+1, . . . , γn ⇒ ∆;
(iv) A deduction tree for γ ⇒ c can be reconstructed from (ii), (iii), and from
the axiom c ⇒ c.
(Where 〈A1, . . . , Ak〉 is the left argument path of γj , Φ = 〈Ak, . . . , A1〉, and
∆ = 〈B1, . . . , Bm〉 is the right argument path of γj).

The symbol LC stands for the fact that a sequence of formulae (data)
proves a sequence of target formulae keeping the order. If we consider the Lam-
bek Calculus with the product operator, •, Φ and ∆ can be constructed as the
product of all Ai and all Bi respectively, and LC can be substituted for �LC

in (ii), (iii).
Note that (ii) and (iii) state that γ1, . . . , γj−1 can be split up in k sequences
of categories (αk, . . . , α1), and γj+1, . . . , γn can be split up in m sequences of
categories (β1, . . . , βm) such that
(ii′) �LC αn ⇒ An, for 1 ≤ n ≤ k;
(iii′) �LC βn ⇒ Bn, for 1 ≤ n ≤ m.
Proof:
Ad (i) No rule except an axiom allows to introduce c in the succedent. Following
the deduction tree in a bottom-up fashion, successive applications of /L and \L
are such that (a) the argument formulae in the conclusion turn into the succe-
dent of the premise on the left; (b) the value formula remains as part of the
antecedent of the premise on the right; (c) the succedent of the conclusion re-
mains as the succedent of the premise on the right — note that this ordering
of the premises is always possible. Therefore we will reach the sequent c ⇒ c
eventually, being c the main value formula of γj . �
This property allows us to restrict, without loss of completeness, the application
of the L-rules to complex formulae whose main value formula is the same as the
(atomic) target succedent.
Ad (ii) Let �LC γ ⇒ c. The only possibility of introducing An as a left argument
formula of γj is from a L-rule. Hence, it exists some αn such that �LC αn ⇒ An,
because of αn ⇒ An is the left-hand side premise of the L-rule. Otherwise, An

together with c have to be introduced as an axiom, but the succedent is supposed
to be an atomic type.
Note that we can first apply all L-rules for (/), followed by all L-rules for (\) —or
vice versa—, whatever the formula may be. That follows from the theorems:
(a) �LC (A\(B/D))/C ⇒ ((A\B)/D)/C
(b) �LC ((A\B)/D)/C ⇒ (A\(B/D))/C
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(c) �LC C\((D\B)/A) ⇒ C\(D\(B/A))
(d) �LC C\(D\(B/A)) ⇒ C\((D\B)/A) �
Ad (iii) Similar to (ii). �
Ad (iv) Immediate from successive applications of /L and \L. �
(3) The algorithm stops. For whatever sequence of data and target, the number
of tasks is finite, and every step simplifies the complexity of the data and/or the
target. �
(4) The algorithm finds all different deduction and only once.
If there are several formulae in γ such that (i)–(iii) hold, each case corresponds
to a non equivalent deduction of γ ⇒ c.
The proof is based upon the fact that property (2.2) may be regarded as the
construction of a proof-net for γ ⇒ c (in the equivalent fragment of non-
commutative linear logic). The axiom c ⇒ c becomes the construction of an
axiom-link, and the points (ii) and (iii) become the construction of the corre-
sponding sub-proof-nets with no overlap. Different axiom-links produce different
proof-nets. �

3 An Abductive Mechanism for NLP

We say a sequent is open if it has any unknown category instance in the an-
tecedent and/or in the succedent; otherwise we say the sequent is closed. We use
upper case latin letters from the end of the alphabet (X, Y, Z) for non-optional
unknown categories, and X∗, Y ∗, Z∗ for optional unknown categories.

3.1 Learning and Discovery Processes

We would consider two abductive mechanisms that we shall call learning and
discovery processes, depending on the form of the target sequent. Discovery
processes are related to tasks involving open sequents; learning processes are
related to tasks involving closed sequents.

1. Given a closed sequent, we may subdivide the possible tasks into:
(a) Grammatical correctness: to check either or not a sequence of data yields

a target, merely. This is the normal use of LC.
(b) If a closed sequent is not provable, we can introduce a procedure for

learning in two ways: according to data priority or according to target
priority.
i. If we have certainty about data, and a closed target is not prov-

able from them, we remove the given target and we search for a
(minimum) new target that may be provable from data. We need
the target to be a minimum in order to avoid the infinite solutions
produced by the type-raising rule.

ii. If we have certainty about target, and the set of closed data does
not prove it, we remove data, by means of re-typing the necessary
lexical items, in such a way that the target becomes provable from
these new data.
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iii. If we have certainty about data and about target, we could consider
the sequence as a linguistic phaenomenon that falls beyond a context
free grammar, ellipsis, etc.

In both cases (b.i) and (b.ii) we can appropriately say that we learn new
syntactic uses. Moreover, in case (b.ii) we carry out a revision of the
lexicon.

2. An open sequent is related to discovery tasks. In a sense, every discovery
task is also susceptible of being considered as a learning one (or vice versa).
However, we would rather prefer to differentiate them by pointing out that
they are based on formal features of the sequents.

3.2 The Abductive Mechanism

The objectives we pointed out above need the parsing algorithm —hereafter,
LC— to be enlarged using an abductive mechanism —hereafter, ACG, Abduc-
tive Categorial Grammar— for handling open sequents and removing types if
necessary. ACG manages:
(i) input sequences either from corpora or users;
(ii) information contained in the lexicon;
(iii) data transfer to LC;
(iv) input adaptation and/or modification, if necessary;
(v) output of LC;
(vi) request for a choice to the user;
(vii) addition of new types to the lexicon —its update.

What we have called an abductive mechanism has to do with the point (iv)
most of all. We sketch only its main steps for taking into account the learning
and discovery processes. Similarly to the parsing algorithm (2.3.), we present the
procedure in a pseudo-prolog fashion.

procedure learning
input: (data ⇒ target)(A)

such that 0LC data ⇒ target, closed(data), closed(target)
output: substitution {A := B}

such that �LC (data ⇒ target){A := B}
process:

CASE certainty about target:
LET [A1, . . . , An] := data
FOREACH Ai ∈ [A1, . . . , An] DO

LET new data := [. . . , Ai−1, Xi, Ai+1, . . . ]
{Xi := Bi} := discovering new data ⇒ target

END FOR
RETURN {A1 := B1, . . . , An := Bn}

CASE certainty about data:
{X := B} := discovering data ⇒ X
RETURN {A := B}

END procedure learning
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procedure discovering
input: (data ⇒ target)(X)
output: {X := B}

such that �LC (data ⇒ target){X := B}
process:

CASE open target: data ⇒ X
IF data = [B]
THEN RETURN {X := B}
IF data = [F1, . . . , Fn]
THEN FOREACH Fi(1 ≤ i ≤ n), Fi �∈ BASCAT , DO

LET ci := search value(Fi)
{Y ∗

i := Bi, Z
∗
i := Ci} := new proof Y ∗

i , data, Z∗
i ⇒ ci

END FOR
RETURN {X1 := B1\c1/C1, . . . , Xn := Bn\cn/Cn}

CASE open data: data(X1, . . . , Xn) ⇒ target
IF data = [X ]
THEN RETURN {X := target}
FOREACH Xi(1 ≤ i ≤ n) DO

LET [F1, . . . , Fi−1, Xi, Fi+1, . . . , Fn] := data
LET c := target
LET new data := [F1, . . . , Y ∗\c/Z∗, . . . , Fn]
{Xi := Bi\c/Ci} := new proof new data ⇒ target

END FOR
RETURN {X1 := B1\c/C1, . . . , Xn := Bn\c/Cn}

END procedure discovering

3.3 Remarks on ACG
The old proof procedure (2.3) has to be adapted to a new proof one. To achieve
this goal, we make two main changes: (a) the old proof procedure was built to
work with closed sequents and now it should be able to deal with open ones;
(b) the old proof procedure was initially designed to return a proof tree but it
should now return the substitution that makes the open sequent provable.

The old proof algorithm may work with open sequents, behaving as an ab-
ductive mechanism, if we consider the (=) operator as unification. It is well
known that the unification algorithm produces the substitution we are looking
for.

Two major changes come (a) from the search value(c in data) procedure,
and (b) from the reduce procedure.

(a) The search value procedure was considered to be self-evident, but now
it needs further explanations inasmuch as unknown data or targets are present.
What does it mean a value occurrence of X in Y ? We will discuss the change in
the process that considers a formula to be the main value of another one.

procedure search value
input: (Formula from data, target formula)
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output: ([right argument path],target formula,[left argument path]) or FAIL
CASE closed data (F ) and closed target (c):

CASE F = c: RETURN ([ ], c, [ ])
CASE F = B\A: RETURN ([B] + γ, c, δ)

where (γ, c, δ) := search value(A, c)
CASE F = A/B: RETURN (γ, c, [B] + δ)

where (γ, c, δ) := search value(A, c)
OTHERWISE RETURN FAIL

CASE closed data (F ) and open target (X):
CASE F = c: RETURN X := c
CASE F = B\A: RETURN STACK F

WITH search value(A, c)
CASE F = A/B: RETURN STACK F

WITH search value(A, c)
CASE open data (Y ) and closed target (c): RETURN ([ ], Y := c, [ ])
OTHERWISE RETURN FAIL

end procedure search value

(b) Unknown categories may be either basic or complex ones. A treatment of
the second case is rather difficult and it forces us to introduce constraints for
bounding the search. We have to decide the upper bound of the complexity;
i.e. X may be A\c/B, or A1\A2\c/B1/B2, etc. The reduce procedure requires
some adaptations for working with optional categories. Optional categories are
matched only if they are needed in the proof.

CASE X∗ in target:
IF data = [ ]

THEN X∗ := [ ]
ELSE X∗ := X

CASE X∗ in data
IF target = [ ]

THEN X∗ := [ ]
ELSE

LET [F1, . . . , X∗, . . . , Fn] := data
IF proof [F1, . . . , Fn] ⇒ target �= FAIL

THEN X∗ := [ ]
ELSE X∗:= new proof [F1, . . . , X, . . . , Fn] ⇒ target

Finally, let us note that type-raising rules yield sequents like following: A ⇒
X/(A\X) or A ⇒ (X/A)\X —where A and X are whichever formulae— that are
provable in LC. The basic (deductive) proof algorithm is complete and has no
problem with the proof of such sequents, although some LC parsing algorithms in
the literature (mainly natural deduction based ones) are not complete because
of the type-raising rules are not provable in them. Regarding our new proof
algorithm, the problem arises when it works as an abductive process in which
X , the target consequent, is unknown; then it may be regarded as atomic or as a
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complex one. To regard it as atomic —our choice— causes no trouble but makes
the type rising rule not provable (if the consequent is unknown). If we consider
the possibility of an unknown consequent to be complex, then it may yield an
endless loop. In fact, the type raising rule allows us to infer an endless number
of more and more complex types.

3.4 Running ACG
Example 1:
Data: “John loves”.
Initial state of the lexicon:
John = np
loves = np\s/np
Sketch of the abductive process:
(1) proof (np, np\s/np ⇒ s) = FAIL
(2) Certainty about data:
(2.1) np, np\s/np ⇒ X
(2.2) X := Y ∗\s/Z∗

(2.3) Y ∗, np, np\s/np, Z∗ ⇒ s
(2.4) Y ∗, np ⇒ np; Z∗ ⇒ np
(2.5) Y ∗ := [ ]; Z∗ := np; X := s/np
Output:
• John loves = s/np
(3) Certainty about target:
(3.1) X, np\s/np ⇒ s
(3.2) X := s/Y ∗

(3.3) np\s/np ⇒ Y ∗

(3.4) Y ∗ := np\s/np; X := s/(np\s/np)
Output:
• John = s/(np\s/np)
(3.5) np, X ⇒ s
(3.6) X := Y ∗\s/Z∗

(3.7) np, Y ∗\s/Z∗ ⇒ s
(3.8) np ⇒ Y ∗;
(3.9) Y ∗ := np; Z∗ := [ ]
(3.10) X := np\s
Output:
• loves = np\s
(4) Certainty about data and target:
Output:
• John loves X = np, np\s/np, np ⇒ s.
Example 2:
Data: “someone bores everyone”.
Initial state of the lexicon:
someone = ? (unknown)
bores = np\s/np
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everyone = ? (unknown)
X, np\s/np, Z ⇒ s
Sketch of the abductive process:
(1)X := s/Y ∗; s/Y ∗, np\s/np, Z ⇒ s
(1.1) np\s/np, Z ⇒ Y ∗

(1.2) Y ∗ := Y ∗
1 \s/Y ∗

2

(1.3) Y ∗
1 , np\s/np, Z, Y ∗

2 ⇒ s
(1.4) Y ∗

1 ⇒ np
(1.5) Z, Y ∗

2 ⇒ np
(1.6) Y ∗

1 := np; Z := np; Y ∗
2 := [ ]

Output:
• someone = s/(np\s)
• everyone = np
(2) X ⇒ np; Z ⇒ np
(2.1) X := np; Z := np
Output:
• someone = np
(3) Z := Y ∗\s; X, np\s/np, Y ∗\s ⇒ s
(3.1) X, np\s/np ⇒ Y ∗

(3.2) Y ∗ := Y ∗
1 \s/Y ∗

2

(3.3) Y ∗
1 , X, np\s/np, Y ∗

2 ⇒ s
(3.4) Y ∗

1 , X ⇒ np
(3.5) Y ∗

2 ⇒ np
(3.6) Y ∗

1 := [ ]; X := np; Y ∗
2 := np

Output:
• everyone = (s/np)\s
State of the lexicon after runing ACG:
someone = np, s/(np\s)
bores = np\s/np
everyone = np, (s/np)\s
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