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direct limits of countable sequences of finite direct sums of monoids of the form either
(Z/nZ) � {0} or Z � {0}. This characterization involves the Riesz refinement property
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product �×G, where � is a distributive semilattice with zero and G is an abelian group.
When applied to the monoids V (A) appearing in the nonstable K-theory of C*-algebras,
our results yield a full description of V (A) for C*-inductive limits A of finite sums of
full matrix algebras over either Cuntz algebras On, where 2≤n<∞, or corners of O∞ by
projections, thus extending to the case including O∞ earlier work by the authors together
with K. R. Goodearl.
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1. Introduction

The goal of this paper is the full elucidation of the nonstable K-theory
of a class of C*-algebras called extended Cuntz limits, defined as the
C*-inductive limits of sequences of finite direct sums of full matrix algebras
over the Cuntz algebras On and over nonzero corners of O∞ by projec-
tions. (We recall the definition of the latter for the information of non-
C*-algebraic readers: for 2 ≤ n<∞, the Cuntz algebra On, introduced in
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[6], is the unital C*-algebra generated by elements s1, . . . , sn with relations
s∗i sj = δij and

∑n
i=1 sis

∗
i = 1. Further, O∞ is the unital C*-algebra defined

by generators si , i ∈ N and relations s∗i sj = δij .) Hence our work is a con-
tinuation of [11] (where the case of O∞ is not covered), so it provides an
analogue, for extended Cuntz limits, of the description of the range of the
invariant for separable AF C*-algebras (namely, ordered K0) by Elliott [9]
and Effros, Handelman, and Shen [8].

We begin by sketching the source of the problem and giving a precise for-
mulation. Most of the remainder of the paper is purely semigroup-theoretic,
except for the applications to C*-algebras in the final two sections.

In [17], Rørdam gives a K-theoretic classification of even Cuntz lim-
its (i.e., C*-inductive limits of sequences of finite direct sums of matrix
algebras over Ons with n even). The invariant which Rørdam used for
his classification is equivalent, in the unital case, to the pair (V (A), [1A])
where V (A) denotes the (additive, commutative) monoid of Murray–von
Neumann equivalence classes of projections (self-adjoint idempotents) in
matrix algebras over a C*-algebra A, and [1A] is the class in V (A) of the
unit projection in A (cf. [4, Sections 4.6, 5.1, and 5.2]). Thus, the unital
case of the classification states that if A and B are unital even Cuntz lim-
its, then A∼=B if and only if (V (A), [1A])∼= (V (B), [1B ]), that is, there is a
monoid isomorphism V (A)→V (B) sending [1A] to [1B ] (cf. [17, Theorem
7.1]). Subsequently, Lin and Phillips [15] extended Rørdam’s classification
result, by including not only Ons with n even, but also nonzero corners
over O∞ (i.e., extended even Cuntz limits). While the authors and Good-
earl were writing [11], Rørdam communicated to us [18] that his classifica-
tion can be extended to all Cuntz limits by applying the work of Kirchberg
[14] and Phillips [16]. By the same reason, Lin and Phillips’ classification
result can be enlarged to all extended Cuntz limits.

Most of the paper is devoted to the proof of a semigroup-theoretical
result, namely Theorem 6.6, that provides an ‘internal’ characterization of
direct limits of sequences of finite sums of monoids of the form either
(Z/nZ)�{0} or Z�{0}. It turns out that the hard core of the proof of The-
orem 6.6 consists of a lattice-theoretical statement about homomorphisms
from finite distributive lattices to subgroup lattices of abelian groups, see
Theorem 5.4.

2. Lattices and Abelian Groups

A lattice is a structure (L,≤,∨,∧), where (L,≤) is a partially ordered set
in which every pair {x, y} of elements admits a join, x ∨ y, and a meet,
x∧y. The zero (resp., unit) of a lattice L are its smallest (resp., largest) ele-
ment if it exists, then denoted by 0 (resp., 1). We say that L is complete,
if every subset X of L has a supremum, denoted by

∨
X. For elements
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a and b in L, let a≺ b hold, if a < b and there exists no x ∈L such that
a<x<b. A nonzero element p in L is join-irreducible, if p is not the join
of two smaller elements. In case L is finite, there exists a largest element of
L smaller than p, denoted by p∗ (so p∗ ≺p). We denote by J(L) the set of
all join-irreducible elements of L. For a∈L, we denote by JL(a), or J(a) if
L is understood, the set of all join-irreducible elements of L below a. It is
well-known that if L is finite, then a=∨ J(a) for all a∈L.

We say that L is distributive (resp., modular), if x ∧ (y ∨ z)= (x ∧ y)∨
(x∧ z) (resp., x≥ z implies that x∧ (y∨ z)= (x∧y)∨ z), for all x, y, z∈L.

For an abelian group G, we denote by SubG the lattice of all subgroups
of G, ordered by inclusion. It is well-known that SubG is a modular
lattice. For subgroups A and B of an abelian group G, we abbreviate

A�B, if A is a subgroup of B,
A�pureB, if A is a pure subgroup of B,
A�⊕B, if A is a direct summand of B.

In particular, A�⊕B
⇒A�pureB
⇒A�B.
We shall denote disjoint union by the symbol �.

3. Equivalence of Projections in C∗-Algebras

We shall denote by M∼N the Murray–von Neumann equivalence of self-
adjoint, idempotent matrices M and N over a C∗-algebra A, that is, M∼N
if there exists a matrix X such that M=X∗X and N =XX∗ (in particular,
X=XX∗X). We denote by [M] the ∼-equivalence class of a matrix M, and
by V (A) the abelian monoid of ∼-equivalence classes of self-adjoint, idem-

potent matrices over A, with addition defined by [M] + [N ] =
[(
M 0
0 N

)]
.

The monoid V (A) encodes the so-called nonstable K-theory of A. We shall
use the following basic lemma.

LEMMA 3.1 (folklore). Let p be a projection (i.e., a self-adjoint, idempo-
tent element) in a C∗-algebra A and let α,β∈V (A). If [p]=α+β, then there
are projections a, b∈pAp such that p=a+b, [a]=α, and [b]=β.

(Observe that the given conditions imply that ab=ba=0.)

Proof. Let M ∈ Mk(A) and N ∈ Ml(A) be self-adjoint, idempotent
matrices such that α = [M] and β = [N ]. By assumption, there exists
X∈Mk+l,1(A) such that

p=X∗X,
(
M 0
0 N

)

=XX∗.
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Write X =
(
U

V

)

with U ∈ Mk,1(A) and V ∈ Ml,1(A). Hence p = U ∗U +
V ∗V , M = UU ∗, N = VV ∗, while UV ∗ = 0. From XX∗X = X it follows
that UU ∗U =U and VV ∗V =V . Therefore, a=U ∗U and b=V ∗V are as
required.

LEMMA 3.2 (folklore). Let A be a C*-algebra. Then:

(i) For every n≥1, V (Mn(A))∼=V (A).
(ii) If A is separable, then V (A) is countable.

(iii) If A is unital and has real rank zero, then given a nonzero projection p∈
A, V (pAp)∼=V (A)|[p] (the order-ideal of V (A) generated by [p]∈V (A)).

Proof. (i), (ii). See [4, p. 28].
(iii). By [2, Theorem 7.2], A is a unital exchange ring. By [2, p. 111],

V (A)|[p] = V (ApA). Thus, as V (pAp)∼= V (ApA) by [1, Proof of Lemma
7.3], the result holds.

It is routine to check that for any unital C*-algebra A, the class [1A] is an
order-unit in V (A), and that the canonical isomorphism V (Mm(A))→V (A)

sends [1Mm(A)] to m[1A]. Observe that the isomorphism in Lemma 3.2(iii)
sends [p] ∈V (pAp) to [p] ∈V (ApA). Also observe that, by [20, Theorem 1]
(see also [5, Proposition 3.9]), every purely infinite simple C*-algebra has real
rank zero, whence Lemma 3.2(iii) applies to Cuntz algebras.

We shall also use the fact that V (−) is a functor from C*-algebras
to abelian monoids that preserves finite direct sums and inductive (direct)
limits [4, 5.2.3–5.2.4].

4. Distributive Subgroups with Respect to a Lattice Homomorphism

DEFINITION 4.1. For lattices D and M and a lattice homomorphism
ϕ : D→M, we say that an element a of M is distributive with respect to ϕ,
if the map D→M, u �→a∧ϕ(u) is a lattice homomorphism.

Observe that, as ϕ is a lattice homomorphism, it suffices to verify the
condition

a∧ϕ(x∨y)≤ (a∧ϕ(x))∨ (a∧ϕ(y)), for all x, y ∈D. (4.1)

In particular, if D is finite, the unit of D is the join of all join-irreducible
elements of D, so, if a is distributive with respect to ϕ, we get a∧ϕ(1)=∨
(a∧ϕ(p) |p∈ J(D)). Observe that a is distributive with respect to ϕ

iff a ∧ ϕ(1) is distributive with respect to ϕ. We will use the following
characterization of distributive elements.
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LEMMA 4.2. Let D be a finite distributive lattice, let M be a modular lat-
tice, let ϕ : D→M be a lattice homomorphism, and let a≤ϕ(1) in M. Then
a is distributive with respect to ϕ iff there exists a family

(
ap |p∈ J(D)

)
of

elements of M that satisfies the following conditions:

(i) ap≤ϕ(p), for all p∈ J(D).
(ii) p≤q implies that ap≤aq , for all p,q ∈ J(D).

(iii) ap∧ϕ(p∗)=
∨(

aq |q ∈ J(p∗)
)
, for all p∈ J(D).

(iv) a=∨(
ap |p∈ J(D)

)
.

Proof. Suppose first that a is distributive with respect to ϕ and a≤ϕ(1),
and put ap=a∧ϕ(p), for all p∈J(D). Observe that (i) and (ii) are trivially
satisfied. For (iii), we compute

ap ∧ϕ(p∗) =a∧ϕ(p∗) (by the definition of ap)
=∨ (a∧ϕ(q) |q ∈ J(p∗)) (because a is distributive with respect to ϕ)

=∨(
aq |q ∈ J(p∗)

)
.

For (iv), we compute

a =a∧ϕ(1) (because a≤ϕ(1))
=∨ (a∧ϕ(p) |p∈ J(D)) (because a is distributive with respect to ϕ)

=∨(
ap |p∈ J(D)

)
.

Conversely, let
(
ap |p∈ J(D)

)
satisfy (i)–(iv) above and set au = ∨

(
ap |p∈ J(u)

)
, for all u∈D. So au≤ϕ(u), for all u∈D. Furthermore, as D is

distributive, every join-irreducible element of D is join-prime, thus the map
ψ : D→M, u �→ au is a join homomorphism. It also follows from condi-
tion (iv) that a=a1.

We claim that the equality av ∧ ϕ(u)= au holds for all u≤ v in D. As
D is finite, an easy induction proof reduces the problem to the case where
u≺ v. Let p be a minimal element of D with the property that p≤ v and
p�u. So p is join-irreducible, p∧u=p∗, and p∨u=v. We compute

av ∧ϕ(u) = (au∨ap)∧ϕ(u) (because ψ is a join homomorphism)
=au∨ (ap∧ϕ(u)) (because M is modular and au≤ϕ(u))
=au∨ (ap∧ϕ(p)∧ϕ(u)) (because ap≤ϕ(p))
=au∨ (ap∧ϕ(p∧u)) (because ϕ is a lattice homomorphism)
=au∨ (ap∧ϕ(p∗)) (because p∧u=p∗)
=au∨ap∗ (by condition (iii))
=au (because p∗ ≤u),

which completes the proof of the claim. Taking v= 1 in this claim yields
that ψ(u)= au = a ∧ ϕ(u), for all u∈D. In particular, ψ is a meet homo-
morphism.
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THEOREM 4.3. Let G be an abelian group, let D be a finite distributive
lattice, let ϕ : D→ SubG, u �→Gu be a lattice homomorphism. Then every
finitely generated subgroup of G1 is contained in some finitely generated sub-
group of G1 that is distributive with respect to ϕ.

Proof. We argue by induction on | J(D)|. Denote by H(ϕ) the set
of all families �A = (

Ap |p∈ J(D)
)

of finitely generated subgroups of G
such that Ap �Gp and p ≤ q implies that Ap � Aq , for all p,q ∈ J(D).
We put Au = ∑(

Ap |p∈ JD(u)
)
, for all u ∈ D. Further, we set N( �A) ={

p∈ J(D) |Ap ∩Gp∗ =Ap∗
}
. For �A, �B ∈H(ϕ), let �A� �B hold, if Ap�Bp for

all p∈ J(D).

CLAIM. For all �A∈H(ϕ) and all p∈ J(D), there exists �B ∈H(ϕ) such that
�A� �B and N( �A)∪{p}⊆N( �B).

Proof of Claim . As Ap ∩Gp∗ �Gp∗ =∑(
Gq |q ∈ JD(p∗)

)
and Ap ∩Gp∗

is finitely generated (because Ap is), there are finitely generated subgroups
Hq �Gq , for q ∈ JD(p∗), such that

Ap ∩Gp∗ �
∑(

Hq |q ∈ JD(p∗)
)
. (4.2)

As the interval D′ = {x ∈D |x≤p∗} is a sublattice of D with fewer join-
irreducible elements (because J(D′) is contained in J(D) \ {p}), it follows
from the induction hypothesis that there exists a finitely generated sub-
group C of Gp∗ that is distributive with respect to ϕ�D′ , and that contains∑(

Hq |q ∈ JD(p∗)
)
. By using (4.2) and the definition of C, we get

Ap∗ �Ap ∩Gp∗ �C�Gp∗ . (4.3)

We put

Cu=C∩Gp∗∧u , for all u∈D. (4.4)

By using (4.3), we obtain easily that

Ap∗∧u�Cu�Gp∗∧u, for all u∈D. (4.5)

As C is distributive with respect to ϕ�D′ and D is distributive, the assign-
ment u �→Cu defines a lattice homomorphism from D to SubC.

We prove that the family �B= (Bq |q ∈ J(D)
)
, where

Bq =Aq +Cq, for all q ∈ J(D)

(where Cq is defined via (4.4)), is as required for the claim. First observe
that �B obviously belongs to H(ϕ). As both maps u �→Au and u �→Cu are
join homomorphisms from D to SubG, we obtain
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Bu=Au+Cu, for all u∈D. (4.6)

For all u≥p∗ in D, it follows from (4.3) and (4.4) that Cu=C ∩Gp∗ =C,
and so Bu=Au+C. In particular, Bp=Ap+C and (using (4.3)) Bp∗ =Ap∗ +
C=C, thus

Bp ∩Gp∗ = (Ap+C)∩Gp∗
= (Ap ∩Gp∗)+C (using (4.3) and the modularity of SubG)
=C (using (4.3)),

so Bp ∩Gp∗ =Bp∗ , that is, p∈N( �B).
Now let q ∈N( �A), we prove that q ∈N( �B). If q ≤p∗, then, using (4.5)

and (4.6), we get that Bq =Cq and Bq∗ =Cq∗ , so Bq ∩Gq∗ =Bq∗ (because �C
belongs to H(ϕ�D′)), that is, q∈N( �B). Suppose that q�p∗. From p∗ ∧q<q
it follows that p∗ ∧q≤q∗, and so p∗ ∧q=p∗ ∧q∗, thus (see (4.4)) Cq =Cq∗ .
It follows that

Bq ∩Gq∗ = (Aq +Cq∗)∩Gq∗ (because Cq =Cq∗)

= (Aq ∩Gq∗)+Cq∗ (using (4.5) and the modularity of SubG)
=Aq∗ +Cq∗ (because q ∈N( �A))
=Bq∗ (using (4.6)),

and so q∈N( �B). �� Claim.

Now let A be a finitely generated subgroup of G1. As A �∑(
Gp |p∈ J(D)

)
and A is finitely generated, there exists �A= (Ap |p∈ J(D)

)

in H(ϕ) such that A�
∑(

Ap |p∈ J(D)
)
. By applying the Claim above at

most | J(D)| times, starting with �A, we obtain �B = (
Bp |p∈ J(D)

)
in H(ϕ)

such that �A� �B and N( �B)=J(D). The latter condition means that Bp∩Gp∗ =
Bp∗ for all p ∈ J(D). Hence, by applying Lemma 4.2 (with M = SubG), we
obtain that the subgroup B=∑(

Bp |p∈ J(D)
)

is distributive with respect to
ϕ. Furthermore, B is finitely generated (because all the Bps are). Finally,

A�
∑(

Ap |p∈ J(D)
)
�
∑(

Bp |p∈ J(D)
)=B,

so the subgroup B is as required.

DEFINITION 4.4. For a lattice D and an abelian group G, a map
ϕ : D→ SubG satisfies the purity condition, if u≤ v implies that ϕ(u)�pure

ϕ(v), for all u≤v in D.

We shall avoid the terminology ‘pure homomorphism’, as it conflicts
with another one frequently used in lattice theory and universal algebra.



8 ENRIQUE PARDO AND FRIEDRICH WEHRUNG

Remark 4.5. In case G is torsion-free, A�pureB implies that A∩C�pure

B∩C, for all subgroups A, B, and C of G (this condition is well-known to
fail, as a rule, in the non torsion-free case). In particular, in the context of
Theorem 4.3, if the original map ϕ : u �→Gu satisfies the purity condition,
then so does the map u �→B ∩Gu.

The lattice-theory oriented reader will observe that the proof of Theo-
rem 4.3 depends only on a few lattice-theoretical properties of SubG. In
order to state the corresponding lattice-theoretical generalization of Theo-
rem 4.3, we need the following classical definitions. An element a in a com-
plete lattice L is compact, if for every X⊆L, if a≤∨X, then there exists a
finite subset Y of X such that a≤∨Y . We say that L is compactly nœthe-
rian, if it is complete, every element of L is a supremum of compact ele-
ments, and every subelement of a compact element of L is compact. For
example, for an abelian group G, the subgroup lattice SubG is a compactly
nœtherian modular lattice, in which the compact elements are exactly the
finitely generated subgroups of G. Now we can state the announced gener-
alization of Theorem 4.3. The proof is, mutatis mutandis, the same as the
one of Theorem 4.3.

THEOREM 4.3′. Let D be a finite distributive lattice, let M be a compactly
nœtherian modular lattice, and let ϕ : D→M be a lattice homomorphism.
Then every compact element of M below ϕ(1) lies below some compact ele-
ment b≤ϕ(1) of M such that the map D→M, u �→b∧ϕ(u) defines a lattice
homomorphism.

5. Pure Approximations of Lattice Homomorphisms Satisfying the Purity
Condition

DEFINITION 5.1. For a lattice D and an abelian group G, we say that
a lattice homomorphism ϕ : D→ SubG satisfying the purity condition is
purely finitely approximated, if for every finitely generated subgroup H of
G, there exists a lattice homomorphism ψ : D→SubG satisfying the purity
condition such that ψ(u) is finitely generated and H ∩ϕ(u)�ψ(u)�ϕ(u),
for all u∈D.

For an abelian group G and a positive integer m, we put G[m] =
{x ∈G |mx=0}. We also put T (G)=⋃ (G[m] |m∈N), the torsion subgroup
of G. The following lemma will make it possible to reduce the proof of
Theorem 5.4 to the torsion case and the torsion-free case.

LEMMA 5.2. Let D be a lattice, let G be an abelian group, and let ϕ : D→
SubG, u �→Gu be a lattice homomorphism satisfying the purity condition.
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Denote by π : G � G/T (G) the canonical projection. Then each of the
following maps is a lattice homomorphism satisfying the purity condition.

(i) The map ϕ[m] : D→SubG[m], u �→Gu[m].
(ii) The map T (ϕ) : D→SubT (G), u �→T (Gu).

(iii) The map ϕ : D→Sub(G/T (G)), u �→πGu.

Proof. (i) (see the proof of Proposition 3.4 in [11]). It is obvious that
ϕ[m] is a meet homomorphism. Let u, v ∈D and let z ∈Gu∨v[m]. As z ∈
Gu∨v=Gu+Gv, there are x∈Gu and y∈Gv such that z=x+y. As 0=mz=
mx+my, we get mx=−my, so mx∈Gu∩Gv=Gu∧v. As Gu∧v�pureGu, there
exists t ∈Gu∧v such that mx=mt . As z= (x− t)+ (y+ t) with x− t ∈Gu[m]
and y + t ∈Gv[m], we get Gu∨v[m] =Gu[m] +Gv[m]. Therefore, ϕ[m] is a
lattice homomorphism.

Let u≤v in D, let x ∈Gv[m], and let n∈N such that nx ∈Gu[m]. Let d
be the greatest common divisor of m and n. There are integers k and l such
that km+ ln=d, so, from nx∈Gu[m] and mx=0 it follows that dx∈Gu[m],
thus dx ∈Gu. As Gu �pureGv, there exists y ∈Gu such that dx= dy. As d
divides m, we get my=mx=0, so y∈Gu[m]. As d divides n, we get nx=ny.
Therefore, Gu[m]�pureGv[m], thus completing the proof of (i).

As T (G) is the directed union of all G[m]s, (ii) follows immediately from
(i).

(iii). It is obvious that ϕ is a join homomorphism. Let u, v ∈D and let
x∈πGu∩πGv, say x=π(x) for some x∈G. There are a, b∈T (G) such that
x−a∈Gu and x−b∈Gv. Pick m∈N such that ma=mb=0. We obtain that
mx∈Gu∩Gv=Gu∧v, hence, as ϕ satisfies the purity condition, mx=my for
some y ∈Gu∧v, thus x−y ∈T (G), and so x=π(y)∈πGu∧v. Therefore, ϕ is
a lattice homomorphism.

Let u≤v in D, let x ∈πGv and m∈N such that mx ∈πGu. Writing x=
π(x) for x∈Gv, we obtain that mx∈Gu+T (G), and so nmx∈Gu for some
n∈ N, hence, as ϕ satisfies the purity condition, nmx = nmy for some y ∈
Gu, so x−y∈T (G), and so x=π(y)∈πGu. Therefore, ϕ satisfies the purity
condition.

The statements of Lemma 5.3 and Theorem 5.4 relate the concepts
introduced in Definitions 4.4 (purity condition) and 5.1 (purely finitely
approximated). The following result deals with the torsion case, and it is
implicit in [11].

LEMMA 5.3. Let D be a finite distributive lattice and let G be an abelian
torsion group. Then every lattice homomorphism ϕ : D→SubG satisfying the
purity condition is purely finitely approximated.

Proof. Write ϕ(u)=Gu, for all u∈D, and let H be a finitely generated
subgroup of G. Pick a positive integer m such that all elements of H have
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order dividing m, and put Hu =H ∩Gu, for all u∈D. As H �G1[m] and
by Lemma 5.2, this reduces the problem to the case where mG={0}.

Now we argue as in the proof of [11, Theorem 6.1]. For all p ∈ J(D),
since Gp∗ �pureGp and mGp ={0}, it follows from Kulikov’s Theorem (see
[10, Theorem 27.5]) that Gp = Gp∗ ⊕ Kp for some subgroup Kp of Gp.
Hence, [11, Lemma 5.2] yields that

Gu=G0 ⊕
⊕(

Kp |p∈ J(u)
)
, for all u∈D. (5.1)

As Hu�Gu and Hu is finitely generated, for all u∈D, there are finitely gen-
erated subgroups G′

0 �G0 and K ′
p�Kp, for p∈ J(D), such that, putting

G′
u=G′

0 ⊕
⊕(

K ′
p |p∈ J(u)

)
,

we get Hu�G′
u, for all u∈D. The map u �→G′

u is the desired approxima-
tion.

Now we remove the torsion assumption from Lemma 5.3.

THEOREM 5.4 (Pure approximation theorem). Let D be a finite distribu-
tive lattice and let G be an abelian group. Then every lattice homomorphism
from D to SubG satisfying the purity condition is purely finitely approximated.

Proof. Let ϕ : D→SubG, u �→Gu be a lattice homomorphism satisfying
the purity condition. Denote by π : G�G/T (G) be the canonical projec-
tion and let ϕ : D→Sub(G/T (G)), u �→πGu.

Now let A be a finitely generated subgroup of G. Without loss of gener-
ality we may take A�G1. By applying Theorem 4.3 to the group G/T (G),
the homomorphism ϕ, and the subgroup πA, we obtain a finitely gen-
erated subgroup H of πG1 containing πA such that the map ψ : D →
Sub(G/T (G)), u �→Hu=H ∩πGu is a lattice homomorphism. As G/T (G)
is torsion-free and ϕ satisfies the purity condition (see Lemma 5.2(iii)),
the map ψ is a lattice homomorphism satisfying the purity condition
(see Remark 4.5). As H is a finitely generated subgroup of the torsion-
free abelian group G/T (G), it is free abelian (of finite rank). Denote by
ε : H ↪→G/T (G) the inclusion map.

CLAIM. There exists a group embedding α : H ↪→G such that π ◦α=ε and
αHu�Gu for all u∈D.

Proof of Claim . For each p ∈ J(D), as Hp∗ �pure Hp and H is finitely
generated, there exists Kp�Hp such that Hp=Hp∗ ⊕Kp. Hence it follows
from [11, Lemma 5.2] that

Hu=H 0 ⊕
⊕(

Kp |p∈ J(u)
)
, for all u∈D. (5.2)
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For all p ∈ J(D), as Kp �H and H is free abelian (of finite rank), Kp is
free abelian (of finite rank), thus projective. Hence, as Kp�Hp�πGp and
denoting by πp : Gp � πGp the restriction of π and by εp : Kp ↪→ πGp

the restriction of ε, we obtain a group homomorphism αp : Kp→Gp such
that πp ◦ αp = εp. Similarly, denoting by π0 : G0 � πG0 the restriction of
π and by ε0 : H 0 ↪→ πG0 the restriction of ε, we obtain a group homo-
morphism α0 : H 0 →G0 such that π0 ◦α0 = ε0. Applying (5.2) to u= 1, we
get H =H 0 ⊕⊕(

Kp |p∈ J(D)
)
, so we can define a group homomorphism

α : H →G by the rule

α

(

x0 +
∑

p∈J(D)

xp

)

=α0(x0)+
∑

p∈J(D)

αp(xp), (5.3)

for all x0 ∈H 0 and all
(
xp |p∈ J(D)

)∈∏(
Kp |p∈ J(D)

)
. From πp ◦αp = εp

for all p∈J(D)∪{0} it follows that π ◦α=ε. As ε is an embedding, so is α.
Finally, let u∈D and let x∈Hu. It follows from (5.2) that x can be decom-
posed as

x=x0 +
∑

p∈J(u)

xp, where x0 ∈H 0 and xp ∈Kp for all p∈ J(u).

As αp(xp)∈Gp for all p ∈ J(u)∪ {0}, it follows from (5.3) that α(x)∈Gu.
�� Claim.

Put H =αH . As ε is an embedding and π ◦α= ε, we obtain

H ∩T (G)={0} . (5.4)

As α is an embedding, the map ψ : D→ SubH , u �→Hu = αHu is a lat-
tice homomorphism satisfying the purity condition (because ψ : u �→Hu has
these properties). For u∈D, we observe that

π(A∩Gu)�H ∩πGu=Hu=πHu,
thus for all x ∈A∩Gu, there exists y ∈Hu such that x − y ∈ T (G). As y ∈
Gu (because y ∈Hu =αHu �Gu) and x ∈Gu, we obtain that x− y belongs
to T (G)∩Gu=T (Gu), and so x ∈T (Gu)+Hu. Hence, using (5.4), we have
proved that A∩Gu�T (Gu)⊕Hu. As A∩Gu is finitely generated, there exists
a finitely generated subgroup Bu of T (Gu) such that A∩Gu�Bu⊕Hu.

It follows from Lemma 5.2(ii) that the map T (ϕ) : D → SubT (G),
u �→ T (Gu) is a lattice homomorphism satisfying the purity condition.
Hence, applying Lemma 5.3 to this morphism and the sum of all Bus,
we obtain a lattice homomorphism D→ SubT (G), u �→G′

u, satisfying the
purity condition and with G′

1 finitely generated, such that Bu�G′
u�T (Gu)

for all u∈D. So A∩Gu�G′
u⊕Hu, for all u∈D. It follows from (5.4) that
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the map D→SubG, u �→G′
u⊕Hu is a lattice homomorphism satisfying the

purity condition, so it is as desired.

As an immediate corollary, we get a lattice-theoretical characterization
of purity for embeddings of abelian groups, similar to the one mentioned
in [12].

COROLLARY 5.5. A subgroup A of an abelian group B is a pure subgroup
iff for any finitely generated H �B, there are finitely generated A′ �A and
B ′ �B such that A∩H �A′, H �B ′, and A′ �⊕B ′.

Proof. That the given condition implies purity is an easy exercise (take
H monogenic). Conversely, suppose that A �pure B and let H � B be a
finitely generated subgroup. Denote by D = {0,1} the two-element chain
and by ϕ : D→SubB the homomorphism sending 0 to A and 1 to B. As ϕ
satisfies the purity condition and by Theorem 5.4, there exists a homomor-
phism ψ : D→ SubB with finitely generated values such that H ∩ ϕ(u)�
ψ(u)�ϕ(u), for all u∈D. Put A′ =ψ(0) and B ′ =ψ(1).

6. Regular Refinement Monoids; the Classes B, L, and R
We shall use the notation and terminology of [11] concerning (abelian)
monoids and semilattices of groups. In particular, every abelian monoid M
is endowed with a partial preordering ≤ defined by x ≤ y iff there exists
z such that x + z= y. We say that M is conical, if x + y = 0 implies that
x=y=0, for all x, y∈M. We say that M is regular, if 2x≤x, for all x∈M,
and we say that M is a semilattice of groups, if M is a disjoint union of
groups (i.e., subsemigroups each of which happens to be a group). We say
that M is a refinement monoid, if for all a0, a1, b0, b1 ∈M, if a0 +a1 =b0 +b1,
then there are ci,j ∈M, for i, j <2, such that ai=ci,0 +ci,1 and bi=c0,i+c1,i ,
for all i < 2. We put �(M)= {x ∈M |2x=x}. A semilattice is an abelian,
idempotent monoid. It is distributive, if it is a refinement monoid.

We recall the following characterization of regular abelian monoids, see
[13, Corollary IV.2.2], also [11, Lemma 2.1].

LEMMA 6.1. An abelian monoid M is regular iff it is a semilattice of
groups.

A regular abelian monoid M is the disjoint union of all subgroups

GM [e]={x ∈M | e≤x≤ e} , for e∈�(M).
For a ≤ b in �(M), the assignment ja,b : x �→ x + b defines the natural
map from GM [a] to GM [b]. It is a group homomorphism. If ja,b is an
embedding for all a ≤ b in M, then we shall say that M satisfies the
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embedding condition, denoted by (emb). If the range of ja,b is a pure sub-
group of GM [b] for all a≤b in �(M), then we shall say that M satisfies the
purity condition, denoted by (pur).

The following definition introduces classes B, L, and R of abelian mo-
noids, which properly contain, respectively, the classes B, L, and Rep con-
sidered in [11].

Notation 6.2. Denote by B the class of all finite direct sums of abe-
lian monoids of the form (Z/nZ) � {0}, where n ∈ N, or Z � {0} (where �
denotes disjoint union). Further, denote by L the class of all direct limits
of monoids from B, and by R the class of all regular refinement monoids
satisfying the conditions (emb) and (pur).

As B is a class of finitely generated abelian monoids, closed under finite
direct sums, the following lemma is an easy consequence of Proposition 3.1
and Section 4 in [11].

LEMMA 6.3. The class L is closed under direct limits, finite direct sums,
and retracts, and contains as a member A � {0}, for any finitely generated
abelian group A. Furthermore, L is contained in R.

LEMMA 6.4. Any finitely generated monoid in R belongs to L.
Proof. Similar to the proof of [11, Proposition 5.3], the key point being

this time that every pure subgroup of a finitely generated abelian group is
a direct summand.

LEMMA 6.5. Each monoid M in R is the directed union of those finitely
generated submonoids of M that belong to R.

Proof. We argue as in the proof of [11, Theorem 6.1]. We must prove
that any finite subset X of M is contained in some finitely generated
submonoid of M lying in R. For convenience, we assume that 0∈X. Fur-
thermore, by [11, Theorem 3.3], we may assume that

M=
⊔

e∈�
({e}×Ge)⊆�×G,

for some distributive semilattice � and some abelian group G with sub-
groups Ge satisfying the following conditions:

(i) G=⋃e∈�Ge.
(ii) a≤b implies that Ga �pureGb, for all a, b∈�.

(iii) G0 ={0}.
(iv) Ga +Gb=Ga+b, for all a, b∈�.
(v) Ga ∩Gb=⋃e≤a,b in �Ge, for all a, b∈�.
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Now we denote by Id� the lattice of all ideals of �, that is, those non-
empty subsets A of � such that x+y∈A iff x, y∈A, for all x, y∈�. As �
is a distributive semilattice, Id� is a distributive lattice.

Now we set GA =⋃
e∈AGe, for all A ∈ Id�. Observe that the union

defining GA is directed, and that G[0,e] =Ge, for all e∈�. Hence the map
Id�→ SubG, A �→GA is a lattice homomorphism satisfying the purity
condition, and sending {0} to {0}.

Write any x ∈X in the form x= (ex, gx)∈M. Denote by D the sublat-
tice of Id� generated by {[0, ex ] |x ∈X} and by K the (finitely generated)
subgroup of G generated by {gx |x ∈X}. As Id� is distributive, D is finite.
Moreover, the ideal {0} belongs to D since 0 ∈X. By Theorem 5.4, there
exists a lattice homomorphism D → SubG, A �→G′

A satisfying the purity
condition such that G′

A is finitely generated and GA∩K�G′
A�GA, for all

A ∈ D. For each P ∈ J(D), as G′
P∗ �pure G

′
P and G′

P is finitely generated,
there exists HP �G′

P such that G′
P =G′

P∗ ⊕HP . As G′
{0} = {0}, we obtain,

using [11, Lemma 5.2], that

G′
A=

⊕
(HP |P ∈ JD(A)) , for all A∈D.

Using the observations that X is finite and that for each x∈X, the element
[0, ex ] is the join of all join-irreducible elements of D below it, we obtain,
as in the proof of [11, Theorem 6.1], elements uP ∈P , for P ∈ J(D), such
that

ex =
∨
(uP |P ∈ JD([0, ex ])) , for all x ∈X.

Since each G′
P is a finitely generated subgroup of the directed union GP =⋃

e∈P Ge, we may enlarge the elements uP to ensure that G′
P �GuP , for

all P ∈ J(D). Finally, denoting by P † the largest element of D such that
P �⊆ P † (its existence is ensured by P being a join-irreducible element of
the finite distributive lattice D), we may enlarge uP further to ensure that
uP ∈P \P †. We define a map ϕ : D →� by the rule

ϕ(A)=
∨
(uP |P ∈ JD(A)) , for all A∈D.

Now we conclude the proof as in the final section of the proof of [11, The-
orem 6.1]. The construction of ϕ ensures that it is a semilattice embedding
from D into �, that ϕ(A)∈A for all A∈D, and that ϕ([0, ex ])= ex for all
x ∈X. Further, we set

N =
⊔

A∈D

({ϕ(A)}×G′
A)⊆�×G.

As A �→G′
A is a zero-preserving lattice homomorphism satisfying the purity

condition, it follows from [11, Theorem 3.3] that N belongs to R. As all
groups G′

A are finitely generated, N is finitely generated. As
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G′
A=

∑

P∈JD(A)

G′
P �

∑

P∈JD(A)

GuP �
∑

P∈JD(A)

Gϕ(P )=Gϕ(A),

for all A ∈ D, we see that N is contained in M. Finally, for each x ∈X,
as gx belongs to Gex =G[0,ex ] and gx ∈K, we get gx ∈G[0,ex ] ∩K⊆G′

[0,ex ], so
x= (ex, gx)∈N . Therefore, X is contained in N .

By using Lemmas 6.3, 6.4, and 6.5, we obtain our main monoid-
theoretical result.

THEOREM 6.6. The direct limits of finite direct sums of abelian monoids of
the form (Z/nZ)�{0}, where n∈N, or Z�{0}, are exactly the regular conical
refinement monoids satisfying (emb) and (pur). That is, L=R.

An obvious adaptation of [11, Corollary 6.6] give us the following
result.

COROLLARY 6.7. Let (M,u) be an abelian monoid with order-unit. Then
(M,u) is a direct limit of finite direct sums of pairs of the form ((Z/nZ)�
{0} , m) and

(
Z � {0} , m) if and only if M is a regular conical refinement

monoid satisfying (emb) and (pur).

7. Lifting Monoid Maps by C∗-Algebra Maps

DEFINITION 7.1. A Cuntz algebra is an algebra of the form On, where
2 ≤ n≤ ∞. A special Cuntz limit is a C*-inductive limit of a sequence of
finite direct sums of Cuntz algebras. An extended Cuntz limit is a C*-induc-
tive limit of a sequence of finite direct sums of full matrix algebras over
Cuntz algebras On for 2≤n<∞ and nonzero corners of O∞ by projections.

The basic K-theoretic information concerning the Cuntz algebras On,
where 2 ≤ n < ∞, is usually summarized in the statements K0(On) ∼=
Z/(n− 1)Z and K1(On)= 0 [7, Theorems 3.7–3.8]. Also, K0(O∞ )∼= Z and
K1(O∞ ) = 0 [7, Corollary 3.11]. However, Cuntz also showed that the
Murray–von Neumann equivalence classes of nonzero projections in a
purely infinite simple C*-algebra A form a subgroup of V (A) that maps
isomorphically onto K0(A) under the natural map V (A)→K0(A) [7, p.
188]. Moreover [3, Proposition 2.1, Corollary 2.2], V (A)∼= {0} �K0(A). It
follows that V (On)\ {0} is a group isomorphic to K0(On), that is, V (On)∼=
(Z/(n− 1)Z) � {0}. It is routine to check that the corresponding isomor-
phism sends [1On

] to the coset 1 in Z/(n−1)Z, and thus we get
(
V (Mm(On)), [1Mm(On)]

)∼= ((Z/(n−1)Z)�{0} , m), (7.1)

for all m≥1 and n≥2.
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Remark 7.2. Because of (7.1), for every n ≥ 2, k ≥ 1, and for every
nonzero projection p ∈ Mk(On), there exists l ∈ {1,2, . . . , n−1} such that
pMk(On)p ∼= Ml(On). To see this, observe that as p �= 0, there exists l ∈
{1,2, . . . , n−1} such that [p]= l∈Z/(n−1)Z. Denote by K the C*-algebra
of compact operators over an infinite-dimensional, separable Hilbert space

H, set It =
t∑

i=1
ei,i ∈K for any t ≥1, and set El =1⊗ Il ∈On⊗K. From

Mk(On)⊗K ∼=On⊗Mk(C)⊗K ∼=On⊗Mk(K),

and Mk(K)∼=K (see [19, Proposition 1.10.2]), we obtain a natural isomor-
phism Mk(On)⊗K ∼=On⊗K. Let the projection q ∈On⊗K correspond to
p⊗ I1 ∈ Mk(On)⊗K under this isomorphism (whence [q] = l ∈Z/(n− 1)Z).
It follows that q∼El in On⊗K, whence

pMk(On)p∼= (p⊗ I1)(Mk(On)⊗K)(p⊗ I1)∼=q(On⊗K)q∼=El(On⊗K)El ∼=Ml (On),

as desired.

Analogously [7, Section 3], we get V (O∞ )∼=Z�{0}, via an isomorphism
sending [1O∞ ] to 1 in Z, and

(
V (Mm(O∞ )), [1Mm(O∞ )]

)∼= (Z�{0} , m), for all m∈N. (7.2)

We also need to consider the case of the pairs (Z,−m), with m ∈ Z
+,

which cannot be represented by any pair (K0(Mn(O∞ )), [1Mn(O∞ )]). We can
solve this problem by using corners by projections of O∞ . Throughout
Sections 7 and 8, we shall use the projections of O∞ defined as

pn=1−
n∑

i=1

sis
∗
i , for all n≥0 (so p0 =1).

Observe that [pn]∈K0(O∞ ) corresponds to −(n−1)∈Z. Hence
(
V (pnO∞pn), [pn]

)∼= (Z�{0} , −(n−1)
)
. (7.3)

Remark 7.3. Because of (7.2) and (7.3), we get the following facts:
(i) For every k ≥ 1 there exists a projection p ∈ O∞ such that pO∞p ∼=
Mk(O∞ ). To see this, notice that for every k≥1 there exists a projection p∈
O∞ such that [p]= k∈Z. So, as in Remark 7.2, p⊗ I1 ∼1⊗ Ik in O∞ ⊗K,
and hence

pO∞p∼= (p⊗ I1)(O∞ ⊗K)(p⊗ I1)∼= (1⊗ Ik)(O∞ ⊗K)(1⊗ Ik)∼=Mk(O∞ ).

(ii) For every projection p ∈ O∞ and every k ∈ Z
+, one of the following

cases occurs (by arguments similar to those in part (i)):
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(a) If
(
V (pO∞p), [p]

)∼= (Z�{0} , k), then pO∞p∼=Mk(O∞ );
(b) If

(
V (pO∞p), [p]

)∼= (Z�{0} , −k), then pO∞p∼=Mk(p2O∞p2);
(c) If

(
V (pO∞p), [p]

)∼= (Z�{0} , 0Z

)
, then pO∞p∼=p1O∞p1.

Thus, in order to represent Z � {0} by corners of O∞ , we can restrict our
arguments to those corners generated by 1, p1, and p2. Furthermore, by
[15, Theorem 3.5(1)], the isomorphism

τ : (V (O∞ ), [1])→ (V (p2O∞p2), [p2]), (7.4)

is induced by a unital C*-algebra isomorphism

ψ : O∞ →p2O∞p2.

The remaining basic facts that we shall need are contained in the fol-
lowing lemmas.

LEMMA 7.4. Let B be a C*-algebra and let q ∈B a projection. Then any
normalized monoid homomorphism

α : (V (O∞ ), [1])→ (V (B), [q]),

is induced by a C*-algebra homomorphism φ : O∞ →B that sends 1 to q.
That is, V (φ)=α.

Proof. Set a= [1] and bn= [pn], for all n≥1. Observe that a= [s1s∗1 ]=a+
b1 and bn=a+bn+1. As [q]=α([1])= [q]+α(b1) and by Lemma 3.1, there
exists a projection q1 ∈ qBq such that q1 ∼ q and [q− q1] =α(b1). Suppose
that we have constructed pairwise orthogonal projections q1, . . . , qn ∈ qBq
such that ql ∼q and α(bl)=

[
q−∑l

i=1 qi
]

for 1≤ l≤n. As
[

q−
n∑

i=1

qi

]

=α(bn)= [q]+α(bn+1),

there exists a projection qn+1 ∈ (
q − ∑n

i=1 qi
)
B
(
q − ∑n

i=1 qi
)

such that
qn+1 ∼q and

[
q−∑n+1

i=1 qi
]=α(bn+1). Thus we have constructed, by induc-

tion, a sequence (qi | i≥1) of pairwise orthogonal projections in qBq such
that qn ∼ q while α(bn)=

[
q −∑n

i=1 qi
]

for all n≥ 1. Hence there exists a
sequence (ti | i≥1) of elements of qBq with t∗i tj = qδi,j and ti t

∗
i = qi for

all positive integers i, j . There exists a unique C*-algebra homomorphism
φ : O∞ →B such that φ(1)=q while φ(si)= ti for all i≥1. As

V (φ)([1])= [q]=α([1]),

V (φ)([pn])=
[
q−

n∑

i=1

qi

]
=α([pn]), for all n≥1,

and {[1]}∪ {[pn] |n≥1} generates the monoid V (O∞ ), we get V (φ)=α.
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LEMMA 7.5. Let A be a finite direct sum of full matrix algebras over Cuntz
algebras, let B a C*-algebra, and let q ∈B be a projection. Then any normal-
ized monoid homomorphism

α : (V (A), [1A])→ (V (B), [q]),

is induced by a C*-algebra homomorphism φ : A→ B that sends 1A to q.
That is, V (φ)=α.

Proof. Write A = ⊕r
j=1 Mkj (Onj ) ⊕ ⊕s

i=1 Mli (O∞ ) for some kj , nj ,

li ∈ N. Let p be the central projection of A corresponding to the unit of⊕r
j=1 Mkj (Onj ), and let q1, . . . , qs be the orthogonal central projections

in A corresponding to Ml1(O∞ ), . . . , Mls (O∞ ), respectively. Thus p and
q1, . . . , qs are orthogonal central projections summing up to 1A.

Each qi is an orthogonal sum of pairwise equivalent projections
g
(i)

1 , . . . , g(i)li such that g(i)1 Ag
(i)

1
∼=O∞ . In V (A), we get the equation

[p]+
s∑

i=1

li [g
(i)

1 ]= [p]+
s∑

i=1

[qi ]= [1A],

whence α([p]) + ∑s
i=1 liα([g

(i)

1 ]) = [q] in V (B). By Lemma 3.1, q is an
orthogonal sum of projections p,q1, . . . , qs of B such that α([p]) = [p],
α([qi ])= [qi ], and each qi is an orthogonal sum of pairwise equivalent pro-
jections h(i)1 , . . . , h(i)li such that α([g(i)1 ])= [h(i)1 ].

As pAp ∼=⊕r
j=1 Mkj (Onj ), it follows from [11, Lemma 7.1] that the

restriction of α to V (pAp) is induced by a C*-algebra homomor-
phism φ′ : pAp→B such that φ′(p)= p. Furthermore, as g(i)1 Ag

(i)

1
∼= O∞ ,

the restriction of α to V (g
(i)

1 Ag
(i)

1 ) defines a normalized monoid mor-
phism αi : (V (O∞ ), [1]) → (V (B), [h(i)1 ]). By Lemma 7.4, there exists a
C*-algebra homomorphism ψi : g

(i)

1 Ag
(i)

1 →B inducing αi such that ψi(g
(i)

1 )=
h
(i)

1 . As qiAqi ∼=Mli (g
(i)

1 Ag
(i)

1 ) and qiBqi ∼=Mli (h
(i)

1 Bh
(i)

1 ), the map ψi extends
to a C*-algebra homomorphism φi : qiAqi →qiBqi that induces the restric-
tion of α to V (qiAqi). As the equivalence classes of projections from pAp

and from g
(i)

1 Ag
(i)

1 , for 1 ≤ i ≤ s, generate V (A), the C*-algebra homomor-
phism

φ=φ′ ⊕
s⊕

i=1

φi : A→pBp⊕
s⊕

i=1

qiBqi =qBq⊆B,

induces α.

THEOREM 7.6. An abelian monoid M is isomorphic to V (A) for some spe-
cial (resp., extended) Cuntz limit A if and only if
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(a) M is a countable, regular conical refinement monoid.
(b) For all idempotents e ≤ f in M, the homomorphism GM [e] → GM [f ]

given by x �→ x + f is injective, and GM [e] + f is a pure subgroup of
GM [f ].

Proof. (
⇒): By (7.1) and (7.2) and since the V (−) functor preserves
direct limits and finite direct sums, the present implication follows from the
easy direction of Theorem 6.6.
(⇐
): Since M is countable, Theorem 6.6 implies that M is the direct

limit of a sequence of the form

M1
α1−→M2

α2−→M3
α3−→· · ·

where each Mi is a finite direct sum of monoids Z � {0} and (Z/nijZ) �
{0} for some 2 ≤ nij <∞. Hence, denoting by Ai the direct sum of the
corresponding Cuntz algebras O∞ and Onij+1, there is an isomorphism
hi : V (Ai)→Mi . Each of the homomorphisms

h−1
i+1αihi : V (Ai)−→V (Ai+1)

sends [1Ai ] to the class of a projection in Ai+1, and so, by Lemma 7.5,
h−1
i+1αihi is induced by a C*-algebra homomorphism φi : Ai →Ai+1. There-

fore M∼=V (A), where A is the C*-inductive limit of the sequence

A1
φ1−→A2

φ2−→A3
φ3−→· · · ��

A structural description of the monoids appearing in Theorem 7.6 is
easily obtained with the help of [11, Theorem 3.3], as follows.

COROLLARY 7.7. Let M be an abelian monoid. Then M∼=V (A) for some
special (resp., extended) Cuntz limit A if and only if

M∼=
⊔

e∈�

({e}×Ge

)⊆�×G,

where

(a) � is a countable distributive semilattice.
(b) G is a countable abelian group.
(c) Ge is a pure subgroup of G for all e∈�.
(d) G0 ={0} and

⋃
e∈�Ge=G.

(e) Ge+Gf =Ge+f and Ge∩Gf =⋃g∈�,g≤e,f Gg for all e, f ∈�.

COROLLARY 7.8. For every extended Cuntz limit A, there exists a special
Cuntz limit B such that V (A)∼=V (B).
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8. Algebras with Order-Unit

In the present section, we establish unital versions of Theorem 7.6 and
Corollary 7.7. For this, we need suitable adaptations of Lemma 7.4 to the
corners of O∞ generated by the projections p1 and p2.

LEMMA 8.1. Let B be a C*-algebra, and q ∈B a projection. Then any nor-
malized monoid homomorphism

α : (V (p2O∞p2), [p2])→ (V (B), [q]),

is induced by a C*-algebra homomorphism φ : p2O∞p2 →B that sends p2 to
q. That is, V (φ)=α.

Proof. As noticed in (7.4), the normalized monoid isomorphism

τ : (V (O∞ ), [1])→ (V (p2O∞p2)),

is induced by a unital C*-algebra isomorphism ψ : O∞ →p2O∞p2, that is,
τ = V (ψ). Thus, β = ατ : (V (O∞ ), [1])→ (V (B), [q]) is a normalized mo-
noid morphism. By Lemma 7.4, there exists a C*-algebra homomorphism
ϕ : O∞ →B sending 1 to q, such that V (ϕ)=β=ατ . Since ψ is an isomor-
phism and V (−) is a functor, we get τ−1 =V (ψ−1), and thus α=V (ϕψ−1),
where ϕψ−1 : p2O∞p2 →B is a C*-algebra homomorphism that sends p2

to q. Thus, φ=ϕψ−1 is the desired morphism.

In the case of the corner p1O∞p1, as [p1] is idempotent, we need to
restrict the target algebras in order to preserve the ‘lifting’ property.

LEMMA 8.2. Let B be a finite direct sum of full matrix algebras over Cuntz
algebras On (for 2≤n<∞) and pO∞p (for any nonzero projection p∈O∞ ),
and let q ∈B be a projection. Then any normalized monoid homomorphism

α : (V (p1O∞p1), [p1])→ (V (B), [q]),

is induced by a C*-algebra homomorphism φ : p1O∞p1 → B that sends p1

to q. That is, V (φ)=α.
Proof. By Remark 7.3, we can write B=⊕r+s

l=1 Bl, where Bj = Mkj (Onj )

for 1 ≤ j ≤ r (with kj , nj ∈ N) and Br+i = pliO∞pli for 1 ≤ i ≤ s (with
li ∈ Z

+). There exist pairwise orthogonal projections qi ∈Bi such that q =
r+s∑

i=1
qi . Since the functor V (−) preserves finite direct sums, we can reduce

the problem to the case where B is either Mkj (Onj ) or pliO∞pli with
li ∈ Z

+, by composing with the canonical projections πi : B �Bi . We get
αi =V (πi)α : V (p1O∞p1)→V (Bi) with αi([p1])= [qi ]. If qi = 0, then αi is
induced by the zero homomorphism φi : p1O∞p1 → Bi ; so suppose that
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qi �= 0. Since [p1] is an order-unit of V (p1O∞p1), the image of αi is con-
tained in the order-ideal of V (Bi) generated by [qi ], whence αi restricts to
a normalized monoid morphism

αi : (V (p1O∞p1), [p1])→ (V (qiBiqi), [qi ]).

Since Bi is a purely infinite simple C*-algebra, so is qiBiqi .
Since V (p1O∞p1) \ {0} is a group containing [p1], [qi ] �= 0 in V (qiBiqi),

and V (qiBiqi) is a conical monoid, it follows from [3, Corollary 2.2] that

βi =αi�V (p1O∞p1)\{0} : K0(p1O∞p1)→K0(qiBiqi),

is a group homomorphism such that βi([p1])= [qi ]. By Remark 7.2, for
each i≥1, qiBiqi is isomorphic to either Mk(On) (for some k≥1) or pO∞p
(for some projection p∈O∞ ). Thus, by [15, Lemma 3.7], there exists a un-
ital C*-algebra homomorphism φi : p1O∞p1 →qiBiqi such that K0(φi)=βi ,
and thus V (φi)=αi . The map

φ=
r+s⊕

i=1

φi : p1O∞p1 →qBq⊆B,

satisfies the desired properties.

Thus, we get the following version of Lemma 7.5.

LEMMA 8.3. Let A,B be finite direct sums of full matrix algebras over
either Cuntz algebras On (2 ≤ n <∞) or pO∞p (for projections p ∈ O∞ ).
Then any normalized monoid homomorphism

α : (V (A), [1A])→ (V (B), [1B ]),

is induced by a C*-algebra homomorphism φ : A→B that sends 1A to 1B .
That is, V (φ)=α.

Outline of proof. By arguing as in the proof of Lemma 7.5 and using
Remark 7.3 together with (7.3), we reduce the problem to the case where
A is either O∞ , or p1O∞p1, or p2O∞p2. The first case is covered by
Lemma 7.4, the second case by Lemma 8.2, and the third case by
Lemma 8.1.

THEOREM 8.4. Let (M,u) be an abelian monoid with order-unit. Then
(M,u)∼= (V (A), [1A]) for some unital extended Cuntz limit A if and only if

(a) M is a countable, regular conical refinement monoid.
(b) For all idempotents e ≤ f in M, the homomorphism GM [e] →GM [f ]

given by x �→ x + f is injective, and GM [e] + f is a pure subgroup of
GM [f ].
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Proof. (
⇒): Theorem 7.6.
(⇐
): Corollary 6.7 implies that (M,u) is the direct limit of a sequence

of the form

(M1, u1)
α1−→(M2, u2)

α2−→(M3, u3)
α3−→· · ·

where each (Mi, ui) is a finite direct sum of pairs ((Z/nijZ) � {0} , mij )
and (Z � {0} , ki) for some nij ,mij ∈ N, ki ∈ Z. In view of (7.1)–(7.3), there
exist isomorphisms hi : (V (Ai), [1Ai ])→ (Mi, ui) where Ai is a direct sum
of matrix algebras of the form either Mmij (Onij+1) or pkiO∞pki , with pki
being suitable projections. By Lemma 8.3, each of the normalized homo-
morphisms

h−1
i+1αihi : (V (Ai), [1Ai ])−→ (V (Ai+1), [1Ai+1 ]),

is induced by a unital C*-algebra homomorphism φi : Ai →Ai+1. Therefore
(M,u)∼= (V (A), [1A]) where A is the C*-inductive limit of the sequence

A1
φ1−→A2

φ2−→A3
φ3−→· · · ��

COROLLARY 8.5. Let (M,u) be an abelian monoid with order-unit. Then
(M,u)∼= (V (A), [1A]) for some unital extended Cuntz limit A if and only if

(M,u)∼=
(
⊔

e∈�

({e}×Ge

)
, (1, u1)

)

⊆ (�×G1, (1, u1)
)
,

where

(a) � is a countable distributive semilattice with maximum element 1.
(b) G1 is a countable abelian group.
(c) Ge is a pure subgroup of G1 for all e∈�, and G0 ={0}.
(d) Ge+Gf =Ge+f and Ge∩Gf =⋃g∈�,g≤e,f Gg for all e, f ∈�.
(e) u1 ∈G1.

Proof. (
⇒): By Corollary 7.7, M is isomorphic to a monoid of the
form

M ′ =
⊔

e∈�

({e}×Ge

)⊆�×G,

for some countable distributive semilattice � and some countable abelian
group G with subgroups Ge satisfying the conditions of that corollary. As
M has an order-unit, � has a largest element. Conditions (a)–(e) are now
all satisfied.
(⇐
): With the help of [11, Theorem 3.3], it is clear that M satisfies

conditions (a) and (b) of Theorem 8.4.
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