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Abstract

In this paper we obtain new characterizations of weakly unconditionally Cauchy series and uncondition-
ally convergent series through Cesaro summability. We study new spaces associated to a series in a Banach
space; as a consequence, new characterizations of complete and barrelled normed spaces are proved.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a normed space. For any given series » ; x; in X, let us consider the set S(3_; x;)
(respectively Sy (D, x;)) of sequences (a;); € [ such that ). a;x; converges (respectively con-
verges for the weak topology). The set S(}_; x;) (respectively Sw(D_, x;)), endowed with the
sup norm, will be called the space of convergence (respectively weak convergence) associated
to the series ), x;. The space X is complete if and only if for every weakly unconditionally
Cauchy (wuc) series ) _; x; in X the space S(}_; x;) is complete [7]. This result remains valid if
the space S (Zi x;) is replaced by SW(Zl- x;) [7]. Let us observe that these characterizations of
the completeness of a normed space X using the spaces of convergence (and weak convergence)
associated to weakly unconditionally Cauchy series (wuc, [3,4,6]) in X. Furthermore, a normed
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space X is barrelled if and only if each series D ; x* in X* such that Sy« (D _; x¥) =l (i.e., its
space of weak™ convergence is [, ) is wuc [7].

In this paper we extend these results to the model of Cesaro-convergence. If ) ; x; is
a series in a topological vector space X, then the series is Cesaro-convergent to xo [5] if
lim,, %(Sl 4+ -+ 4+ S,) = x9, where S, = Z?:l x; for n € N. In this case we will write
C->, xi = xo. It is clear that if ), x; = xo then C-) , x; = xo.

Section 2 (respectively 3 and 4) deals with spaces of Cesaro-convergence (respectively weak
Cesaro-convergence and weak™ Cesaro-convergence). It is shown that a series in a Banach space
is wuc if and only if its space of Cesaro-convergence (or weak Cesaro-convergence) is complete.
Furthermore, if this equivalence is true for each series in a normed space X, then X must be a
Banach space. In this way, we obtain new characterizations of completeness of a normed space
through the properties of the space of Cesaro-convergence (or weak Cesaro-convergence) asso-
ciated to weak series. We also prove a characterization of barrelledness (see Section 4), which is
similar to the aforementioned one, but we consider the weak* Cesaro-convergence instead of the
weak™® convergence.

In the last section of this paper we obtain two new versions of the classical Orlicz—Pettis the-
orem by using the Cesaro-sums of subseries in the weak topology. Recently [9—-12], etc.) some
theorems of Orlicz—Pettis type have been obtained. Many of them use supremum properties of
natural families (i.e., a subfamily of P(N) which contains the finite subsets). Swartz [9] proved a
generalization of the Orlicz—Pettis theorem dealing with FQ o -families (see Section 5). Also Wu
Junde and Lu Shijie [12] obtained an interesting improvement in the framework of topological
vector spaces. They used the signed-weak gliding hump property (S-WGHP), which can be trans-
lated to families of P(N) as a supremum property, similar to property FQ. This generalization
considers a dual pair [X, Y] and replaces the subseries-o (X, Y) convergence (or, equivalently,
the mo-multiplier-o (X, Y) convergence, where mg is the scalar-valued sequence space which
satisfies that for each (#;); € mg the set {t;: i € N} is finite) by the A-multiplier-o (X, Y) conver-
gence, where A is a scalar-valued sequences space which has the S-WGHP and contains cpg. Wu
Junde and Lu Shijie prove that these assumptions imply the A-multiplier-t (X, Y) convergence
for a series, where 7(X, Y) is the Mackey topology.

It is also interesting the improvement that the same authors have proved for Abelian topolog-
ical groups [11].

Also, the separation properties of natural families (see the definition of property S; in Sec-
tion 5) have led to new theorems of Orlicz—Pettis type [2].

By considering natural families with the property S; and FQ o -families, we extend these
results to Cesaro summability.

2. The space of Cesaro-convergence

Let ), x; be a series in a Banach space X and let

Sc <Z xi) = {(ai)i €lxo: Zaixi is Ceséro-convergent},

i i

endowed with the sup norm. This space will be called the space of Cesaro-convergence asso-
ciated to the series ) ; x;. The following theorem characterizes the completeness of the space

SC(Z;‘ Xi).
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Theorem 2.1. The following conditions are equivalent:

(1) Y°; x;i is a weakly unconditionally Cauchy series (wuc).
) SC(Zi X;) is a complete space.
(3) co € Sc.

Proof. (1) = (2). Let ) _; x; be a wuc series and let
= sup: Z a;Xx;

Let (a"), be a sequence in Sc(}_; x;) with lim,, a" = a in I.. We will prove that a° € Sc(Q; xi).
For any m € N and k € N, let S}" be the kth partial sum S} = Zle a!"x; and, similarly,

a1, 1<i<n, neNy.

let Sk Z, 14 Oy;. It is sufficient to prove that ( Yo S?)n is a Cauchy sequence.
LetmgeN be such that ||a® — a™|| < 5H and let ng be such that

_ SlmO _ SlmO
P E
forp,qeN,p>qg> no It is clear that

p
INET 2s° z
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and that, for j € N,

Zsf(a — ™)y,

i=1

< H.

Hence,

Is2 - 5] = <

j
Z a; — a <
Now, it is easy to check that (; > SZ.O),, is a Cauchy sequence.

It is obvious that (2) = (3). Let us prove that (3) = (1). If the series is not wuc, let f € X*
be such that ) ; | f(x;)| = 00

Inductively, we will construct a sequence («;); € co such that Zi o; f(xj) = oo and
o; f(x;) > 0; then, C-); o; f (x;) = oo, which is a contradiction.

Let m; be such that Z’” |f(xl)| >2-2. We define o; = 5 if f(x;) >0 and o; = —5
if f(xj) <0 for i € {1,2,...,m}. It is clear that Z, Lo f(xi) > 2 and o; f(x;) >0
forie{l,2,...,m}.

Let my > m1 be such that /2 . [f(x;)| > 2% - 2%, We define o; = 2‘—2 if f(x;) >0
and o; = —2—2 if f(x;) <0 for i e {m + 1,...,my}. Similarly, it can be deduced that
Zm_zmlH o f(xj)>2%and o; f(x;) > 0fori € {m +1,...,ma)}.

Now, it is easy to conclude the inductive argument to obtain the sequence (¢;); with the
properties given above. This completes the proof. O

| ™
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Remark 2.2. The space of convergence.
Let ), x; be a series in a normed space X and let

S(Zx,') = {(a,-)i €lso: Za[xi converges},

i i
endowed with the sup norm. It is obvious that S(3_, x;) is a subspace of /o and S(3_; x;) C

Sc(Q_; xi). If X is a Banach space, then ), x; is wuc if and only if S(3_, x;) is complete [7].
Theorem 2.1 gives us a similar characterization by considering Cesaro-convergence.

Theorem 2.1 and Remark 2.2 allow us to obtain the following theorem.

Corollary 2.3. Let X be a Banach space and let ), x; be a series in X. The following properties
are equivalent:

(D) Y, xi is wuc.
) S(Zi X;) is a complete space.

(3) co S SQ_; xi).
(4) Sc(3_; xi) is a complete space.

(5) co S Sc(Q_; xi)-
(6) > |f(x;)| is Cesaro-convergent for every f € X*.

Proof. The equivalence of properties (1), (2) and (3) can be found in [7]. The remaining equiv-
alences are consequence of Theorem 2.1. O

Remark 2.4. Let X be a normed space and let ), x; be a series in X. Let us consider the
following two spaces:

SC<in) = {(ai),- €loo: Zaix,- is a Cauchy series},
i

i
Sg ( Zx,-) = {(a,-)i €l Zaixi is a Cesaro Cauchy series}.
i i

From the discussion given above, it can be deduced that

(A) Y, x;is wue & S, x;) is complete < g € SE(X; x;).
B) 3, x; is wuc & SE(3; x;) is complete < ¢ € SS(X; xi).

The following theorem characterizes the completeness of a normed space using the space

Sc(D_; xi)-

Theorem 2.5. Let X be a normed space. X is a Banach space if and only if Sc(D_; x;) is complete
for any wuc series ) _; x;.

Proof. By Theorem 2.1, the condition is necessary. Conversely, if X is not a complete space, let
> xi be aseries in X such that ||x;|| < %, fori e N,and ), x; = x™ € X™*\ X.Itis clear that
C-Yjxi =x™
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Let ), z; be the series defined by zo;—1 = ix; and zp; = —ix;, for i € N. Clearly ), z; is
wuc. Let us consider the sequence (a;); € co defined by azi_1 = 21_1 and ay; = E—II fori € N. We
have C-)"; a;z; € X**\ X and so Sc(}_; z;) is not a complete space. O

A series ), x; in a normed space X is wuc if and only if the map 7': S(3_, x;) — X defined
by T ((a;);) = Zi a;x; is continuous [1]. We now give a similar characterization of wuc series.

Theorem 2.6. Let ) _; x; be a series in a normed space X. The series ) _; x; is wuc if and only if
the map T : Sc(}_; xi) = X defined by T ((a;);) = C-)_; aix; is continuous.

Proof. If the map 7 is continuous, we prove ), x; is a wuc series. Since cog € Sc (D _; x;) and
T is continuous, we have that

n
sup{ Z a; xX;

i=1
Hence ) ; x; is a wuc series.
Conversely, let

: n e Nylg;| < 1} < T

n
E ai xj

i=1

H:sup{

: neNy|ai|<1}

and let (q;); € Bsc<z,- x;)- Write §; = Zigj a;x; for j € N. It is clear that

1 n
§ 25

for n € N. Therefore, T is continuous. O

<H

1 n
- Z(n — i+ Daix;
i

3. The space of weak Cesaro-convergence

We now consider the space of weak Cesaro-convergence associated to a series ), x; in a
normed space X:

Swc ( Zx,-) = {(ai)l- €loo: Z a; x; 18 w—Cesaro—convergent},
i i

endowed with the sup norm.

Theorem 3.1. Let ) ; x; be a series in the Banach space X. The following statements are equiv-
alent:

(1) >, xi is wuc.
(2) Swc(Q_; xi) is a complete space.
(3) co € Swc(X; xi).

Proof. (1) = (2). Let ) _; x; be a wuc series and let

n
E a;Xi

i=1

H:sup{ :neNy|a,-|§l}.
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Let (a¥) be a sequence in Swc(}_; xi) with limg a* = a° in Is. We prove that a° € Swe (D xi).
Define zx = wC-)_; a xi, where a¥ (alk),- and k € N.

Let us check that (zx)x is a Cauchy sequence. Let ¢ > 0 and let kg € N be such that
lak — a < SLH for k > ko. Let us suppose p,q € N satisfy p,q > ko and fy € Sx+ is such
that [z, — zgll = fo(zp — z2¢) = C->_; (@’ — a?) fo(x;). We can assume that [a? — a’]| # 0
(if there exists a constant subsequence of (ax )i then a’e Swc(D_; xi)), and it is obvious that

‘ Z(m—l—i—]) al)x;

for m € N. Therefore ||z, — z4 Il < 28 for p,q > ko This proves that (zx )¢ is a Cauchy sequence.

Let zg = limy zx. We prove that 20 =wC-); a; Oy;. Consider k € N with ||zx — zo|l < < and

lak —a®| < 5H.Letfe Bx+ and m; € N be suchthat

<H

lla? —ad] —aqll

1 < s k &
— Y m—i+Daf f(x) = [ < 2
m = 5
for m > my. Then
1 m
— > (m—i+Da) f(x) = £(z0)
i=1

Z(m—l+1)(a —af ) f(xi) Z (m—i—i—l)a,{(f(xi))—f(Zk)

+ || f @) — fzo)| < g

form >m;.
It is obvious that (2) = (3). An analysis similar to that in the proof of (3) = (1) in Theo-
rem 2.1 shows that (3) = (1). O

We now consider the space Swc(D_; x;) and obtain a characterization similar to the one in
Theorem 2.5.

Theorem 3.2. A normed space X is a Banach space if and only if Syc(}_; x;) is complete for
any wuc series y_; x; in X.

Proof. The proof is similar to the one in Theorem 2.5: in the notation of this proof, we only need
to observe that (a;); ¢ Swc(3_; zi) because C-)_; a; f (z;) =x**(f). O

Remark 3.3. The space of weak convergence.
Let ), x; be a series in a normed space X and let

Sw <Zx,-> = {(ai)i € loo: Zaixi is w convergent},
i i

endowed with the sup norm. It is clear that SW(Z[ x;) C SWC(Zi X;). As in the previous section,
Theorems 3.1 and 3.2 have been obtained using the spaces SW(Zi x;) instead of ch(Zi xi) [7]
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4. The space of weak* Cesaro-convergence

In this section we study the convergence spaces associated to a series in the dual space
(X*, 0 (X, X)).
Let X be a normed space and let ), f; be a series in X*. Let us consider

SW*C(Z fi) = {(a,-)l- €lxo: Za,- fiis W*-Cesélro-convergent},
i i
endowed with the sup norm. This space will be called the space of weak* Cesaro-convergence
associated to the series ) ; f;.

As in the previous sections, we can consider the space of weak™ convergence

Sw*(Zf,-) = {(ai)i €l Za,-fi is w* convergent}.
i i
It is clear that
Cmem(zi)
i i

The following theorem is similar to [7, Theorem 4.1] but we consider the space Sw+c(Q_; fi).

Theorem 4.1. Let X be a normed space and let ) ; f; be a series in X*. Let us consider the
following statements:

(1) > fi is wuc.
(2) Swc( i fi) =loo-
(3) Ifxe X and M CN, then ), fi(x) is Cesaro-convergent.

Then (1) = (2) = (3). The space X is a barrelled space if and only if (3) = (1).

Proof. (1) = (2). If (4;); € I, then the series ), a; fi is w* convergent in X*. Therefore the
w*-Cesaro sum ) ; a; f; exists.

It is easy to check that (2) = (3).

We now prove the last statement. Let us suppose that X is a barrelled normed space. Define

n
E = Zaifi: ne€Nand |g;| < 1}.
i=1
In order to prove (3) = (1), it is sufficient to show that E is pointwise bounded. On the contrary,
let us suppose that there exists xo € X such that the series ), | fi (xo)| diverges. Write M =
{i e N: fi(xo) >0} and R = {i € N: fj(x0) < 0}. With this notation, either ) _,,, fi(x0) or
> icr (= fi)(x0) is divergent, which contradicts (3).
Assume that statements (1) and (3) are equivalent for a normed space X. Next we prove that
X is a barrelled space. Suppose, contrary to our claim, that there exists a pointwise bounded
set M C X* which is not bounded. Let f; € M be such that || ;|| > 2! - 2/ for i € N. Define
gi= %f; for i € N, it is obvious that the series ) ; g; satisfies (3) and also ||g;|| > 2! which is
impossible. O
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5. Some versions of Orlicz—Pettis theorem for Cesaro-convergence

Theorem 5.1. Let X be a Banach space. A series ), x; in X is unconditionally convergent (uco)
ifand only if ), x; is subseries weakly Cesaro-convergent.

Proof. It is clear that every unconditionally convergent series is subseries weakly Cesaro-
convergent.

Conversely, let )", x; be a series in X such that ), _,, x; is weakly Cesaro-convergent for
every M C N. We first prove that ), _,, &;x; is a weakly Cesaro-convergent series for every
M C N and every sequence (g;); in {—1,1}. Define o; =1 if & =1 and o; =0 if &; # 1
forie M.Let B =—1ifg;=—1and B; =0if ¢; £ —1 fori e N.

It is obvious that WC-) ;s &ixi = WC-)", pyaixi +WC- ", ), Bixi and s0 D,y €ixX; is
weakly Cesaro-convergent.

Let us prove that ), x; is wuc. On the contrary, consider f € X* with ), | f(x;)| = oo and
lete; =1if f(x;) >0ande; = —1if f(x;) <Ofori € N.Itis clear that ) ; &; f(x;) = oo, which
is a contradiction.

We are now in a position to show ), x; is subseries weakly convergent. Let M C N and let
xg =wC-) ;4 Xi. Since ) ; x; is wuc, the series ) ;.,, f(x;) is convergent for f € X* and
fxo)=C-> iem S (xi). Hence xg = w- > iem Xi- The classical Orlicz—Pettis theorem allows us
to conclude the proof. O

From the previous result we can easily conclude the following one.

Corollary 5.2. Let ) ; x; be a series in the Banach space X. The following statements are equiv-
alent:

(1) > xi is uco.
) ScQixi) =l
(3) Swc(Q_; xi) =loo.

Definition 5.3. Let F be a natural family and let ¢o(N) be the family of finite subsets of N. It is
said that F is an FQ o-family [8] if for every sequence (A;); of mutually disjoint sets in ¢o(N)
there exists an infinite set M C N such that A = J;,, Ai € F.

Definition 5.4. Let F be a natural family. A series ) ; x; in a normed space X is F-convergent
(respectively F-weakly convergent) if ) ;_, x; is convergent (respectively weakly convergent)
for every A € F [2].

Let F be an FQ o -family. Swartz [9] proved that each F-convergent series in a Banach space
is uco. We next extend this result to Cesaro-convergence.

Theorem 5.5. A series ), x; in the Banach space X is uco if and only if there exists an FQ
o-family F such that )_;_ 4 x; is w-Cesaro-convergent for every A € F.

Proof. Let ) ; x; be a series such that there exists wC-) ;4 x; for every A € F, where F
denotes an FQ o-family. As in the proof of Theorem 5.1, it is sufficient to show that ) ; x; is
wuc (let us observe that every F-weakly convergent series is uco).
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If ), x; is not wuc, there exists f € X* with ) ;| f(x;)| = +o0. With the notation P =
{i: f(xj) 20} and Q = {i: f(x;) <0}, we can assume that Ziep f(xi) = +o00. We can in-
ductively construct a disjoint sequence (A;), in ¢o(N) N P such that sup A, < infA,4+; and
ZieAn f(x;) > n foreachn € N.

Consider M € N with A =, )y An € F. Itis clear that ) ;_, f(x;) = 400, which contra-
dicts Y, ea f(xi) is Cesaro-convergent. 0O

We now introduce a separation property which has allowed us to improve the mentioned
Swartz’s result concerning FQ o -families [2].

Definition 5.6. It is said that a natural family F has property S [2] if for every pair [(4;);, (B;)i]
of disjoint sequences of mutually disjoint sets in ¢o(N) there exist an infinite set M C N and
B e F such that A; € B and B; C B€ fori e M.

It is obvious that each FQ o -family has the property S;. However there exists natural families
with property S; which are not FQ o -families [2].

The following generalization of the Orlicz—Pettis theorem is proved in [2]. Let >, x; be a
series in a Banach space X and let F be a natural family with the property Si. Then, ) _; x; is
uco if and only if ), x; is F-weakly convergent.

The property S; and the weak Cesaro-convergence allow us to characterize the unconditional
convergence of a series in a Banach space. An analysis similar to that in the proofs of Theo-
rems 5.1 and 5.5 shows the main step of this argument is to prove that each series ), x; with
Y iea Xi weakly Cesaro-convergent for A € F is wuc.

Lemma 5.7. Let X be a Banach space. A series ) ; x; in X is wuc if and only if there exists
a natural family F with the property Sy such that the partial sums ) ;4 x; are bounded for
each A € F.

Proof. Let F be a natural family with the property Sy and let ) ; x; be a series such that the
partial sums ), x; are bounded for each A € F. The sequence (3 _;csny1.,) Xi)n is bounded
for each A € F. Suppose, contrary to our claim, that the series ), x; is not wuc. There exists
feX*with) | f(x;)| =+occ.Let P ={i: f(x;) >0}and Q = {i: f(x;) <0}. We can assume
that Ziep f(x;) = +oo. As in the proof of Theorem 5.1, let (A,), be a disjoint sequence in
¢o(N) N P such that sup A, < infA,+; and ZieAn f(x;) >nforneN.Let p, =infA,, q, =
sup A, and B, = [py, gn]\ A, for n € N. The pair of sequences [(A,),, (Bn)n] allow us to obtain
A € F and an infinite set M C N such that A, € A and B, C A€ for n € M (see Definition 5.6).
Write §; = ZieA’ i<j f(x;). Itis clear that the sequence (S, — Sp,—1)» is not bounded, which
contradicts our hypothesis. O

From the previous result we deduce the following characterization of unconditional conver-
gence.

Corollary 5.8. Let ), x; be a series in a Banach space X. The following statements are equiva-
lent:

(1) X, xi is uco.
(2) There exists a natural family F with the property S1 such that the series ) ;4 x; is weakly
Cesaro-convergent and its partial sums are bounded for every A € F.
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Let us observe that there exists Cesaro-convergent series such that the sequence of its partial
sums is not bounded.

Remark 5.9. Let ) ; x; be a wuc series in a normed space X. It is clear that ) ; a;x; is wuc
for each (a;); € loo. Therefore if (a;); € Sc(}_; xi) then ), a;x; is weakly Cauchy and Cesaro-
convergent, and so this series is weakly convergent. From this we have SC(Z[ x;) C SW(Zi Xi),
but we do not know what conditions allow us to obtain the equality of both spaces.
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