

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 418 (2006) 595-598

www.elsevier.com/locate/laa

Linear structure of sets of divergent sequences and series

A. Aizpuru^a, C. Pérez-Eslava^a, J.B. Seoane-Sepúlveda^{b,*}

^a Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain ^b Department of Mathematics, Kent State University, Kent, OH 44242, USA

> Received 27 July 2005; accepted 28 February 2006 Available online 18 May 2006 Submitted by R.A. Brualdi

Abstract

We show that there exist infinite dimensional spaces of series, every non-zero element of which, enjoys certain pathological property. Some of these properties consist on being (i) conditional convergent, (ii) divergent, or (iii) being a subspace of l_{∞} of divergent series. We also show that the space $l_1^{\omega}(X)$ of all weakly unconditionally Cauchy series in X has an infinite dimensional vector space of non-weakly convergent series, and that the set of unconditionally convergent series on X contains a vector space E, of infinite dimension, so that if $x \in E \setminus \{0\}$ then $\sum_i ||x_i|| = \infty$. © 2006 Elsevier Inc. All rights reserved.

AMS classification: Primary 40C05; Secondary 46E25, 46B45

Keywords: Lineability; Conditionally convergent series; Divergent series; Vector series

1. Introduction

This paper contributes to the search for large vector spaces of functions on \mathbb{K} (\mathbb{R} or \mathbb{C}) which have special properties. Given such a property, we say that the subset M of functions on \mathbb{K} which satisfy it is *spaceable* if $M \cup \{0\}$ contains a *closed* infinite dimensional subspace. The set M will be called *lineable* if $M \cup \{0\}$ contains an infinite dimensional vector space. We will say that the set

0024-3795/\$ - see front matter $_{\odot}$ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2006.02.041

^{*} Corresponding author.

E-mail addresses: antonio.aizpuru@uca.es (A. Aizpuru), sonriencanto@hotmail.com (C. Pérez-Eslava), jseoane@math.kent.edu (J.B. Seoane-Sepúlveda).

M is μ -lineable if it contains a vector space of dimension μ . Also, we denote $\lambda(M)$ the maximum dimension of such a vector space [1].

One of the first results in this area was proved by Fonf et al. [5], who showed that the set of *nowhere differentiable functions* on [0, 1] is spaceable in $\mathscr{C}[0, 1]$. Moreover, Rodríguez-Piazza proved [7] that the X in [5] can be chosen to be isometrically isomorphic to any separable Banach space. In this work, we continue the search for *pathological* vector spaces. Particularly, we study *large* vector spaces of sequences and series enjoying several *special* properties. There are many examples of scalar series in \mathbb{K} which are conditionally convergent, unconditionally convergent, and examples of unconditionally convergent vector series $\sum_i x_i$ in a Banach space X so that $\sum_i ||x_i|| = \infty$ [4]. Here we study the lineability of sets of scalar and vector series enjoying, amongst others, these *special* properties.

2. Sequences, scalar series, and vector series

A family $\{A_{\alpha} : \alpha \in I\}$ of infinite subsets of \mathbb{N} is called *almost disjoint* if $A_{\alpha} \cap A_{\beta}$ is finite whenever $\alpha, \beta \in I$ and $\alpha \neq \beta$. The usual procedure to generate such a family is the following. Let us denote *I* the irrationals in [0, 1] and $\{q_n : n \in \mathbb{N}\}$ denotes $[0, 1] \cap \mathbb{Q}$. For every $\alpha \in I$ we choose a subsequence $(q_{n_k})_k$ of $\{q_n : n \in \mathbb{N}\}$ so that $\lim_{k\to\infty} q_{n_k} = \alpha$ and we define $A_{\alpha} = \{n_k : k \in \mathbb{N}\}$. By construction we obtain that $\{A_{\alpha} : \alpha \in I\}$ is an almost disjoint family of subsets of \mathbb{N} . In this paper, we use this notion on several occasions.

If V denotes the set of conditionally convergent series then, clearly, $V \cup \{0\}$ is not a vector space in $CS(\mathbb{K})$, the set of convergent series. The following theorem shows that the set of conditionally convergent series is c-lineable.

Theorem 2.1. $CS(\mathbb{K})$ contains a vector space E verifying the following properties:

- (i) Every $x \in E \setminus \{0\}$ is a conditionally convergent series.
- (ii) $\dim(E) = c$.
- (iii) span{ $E \cup c_{00}$ } is an algebra and its elements are either elements of c_{00} or conditionally convergent series.

Proof. Let us fix any conditionally convergent series $\sum_i a_i$ such that $a_i \neq 0$ for every $i \in \mathbb{N}$. Consider the family $(A_{\alpha})_{\alpha \in I}$ of almost disjoint subsets of \mathbb{N} . We have that $\operatorname{card}(I) = c$. For every $\alpha \in I$ we define x^{α} given by $x_i^{\alpha} = a_n$ if i = nth element of A_{α} and $x_i^{\alpha} = 0$ otherwise. For every $\alpha \in I$ we have that the series $\sum_i x_i^{\alpha}$ has a conditionally convergent subseries and, therefore, it is conditionally convergent. Let $E = \operatorname{span}\{x^{\alpha} : \alpha \in I\}$. We have that $\{x^{\alpha} : \alpha \in I\}$ is a linearly independent family, and so dim(E) = c.

Suppose that $\{\lambda_1, \ldots, \lambda_n\} \subset \mathbb{K} \setminus \{0\}$ and $\{\alpha_1, \ldots, \alpha_n\} \subset I$. We now see that $z = \lambda_1 x^{\alpha_1} + \cdots + \lambda_n x^{\alpha_n}$ is a conditionally convergent series. Indeed, it is easy to check that there exists $A \subset A_{\alpha_1}$, infinite, so that $A_{\alpha_1} \setminus A$ is finite, and verifying that $A \cap (A_{\alpha_2} \cup \cdots \cup A_{\alpha_n}) = \emptyset$. Then $\sum_{i \in A} z_i = \sum_{i \in A} \lambda_i x_i^{\alpha}$ is conditionally convergent and, therefore, so is z.

To check that span $(E \cup c_{00})$ is an algebra it suffices to notice that

$$(\lambda_1 x^{\alpha_1} + \dots + \lambda_n x^{\alpha_n})(\mu_1 x^{\beta_1} + \dots + \mu_m x^{\beta_m}) \in c_{00}$$

if $\{\lambda_1, \ldots, \lambda_n, \mu_1, \ldots, \mu_m\} \subset \mathbb{K} \setminus \{0\}$ and $\{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m\} \subset I$. \Box

This same technique can be also used to prove the following results in a similar way:

Theorem 2.2. There exists a vector space $E \subset BS(\mathbb{K})$ (the set of all series with bounded partial sums) such that:

- (i) Every $x \in E \setminus \{0\}$ is a divergent series.
- (ii) $\dim(E) = c$ and E is non-separable.
- (iii) span{ $E \cup c_{00}$ } is an algebra and every element of it is either a divergent series or is an element of c_{00} .

Theorem 2.3. There exists a vector space $E \subset l_{\infty}$ such that:

- (i) $\dim(E) = c$.
- (ii) Every $x \in E \setminus \{0\}$ is a divergent sequence.
- (iii) $E \oplus c_0$ is an algebra.
- (iv) Every element in $cl(E) + c_0$ is either a divergent sequence or a sequence in c_0 .

If X is a Banach space and $\sum_{i} x_{i}$ is a series in X, we say that $\sum_{i} x_{i}$ is *unconditionally convergent* (UC) if, for every permutation π of \mathbb{N} , we have that $\sum_{i=1}^{\infty} x_{\pi(i)}$ converges. We say that $\sum_{i} x_{i}$ is *weakly unconditionally Cauchy* (WUC) if $\sum_{i=1}^{\infty} |f(x_{i})| < \infty$ for every $f \in X^{*}$, the dual space of X. It is also known that [2,3,6] if X is a Banach space, then there exists a WUC series in X which is convergent but which is not unconditionally convergent if and only if X has a copy of c_{0} . It is a well known fact that every infinite dimensional Banach space has a series $\sum_{i} x_{i}$ which is unconditionally convergent and so that $\sum_{i} ||x_{i}|| = \infty$ [4]. The technique from the proof of Theorem 2.1 lead to the following final results:

Theorem 2.4. There exists a vector space $E \subset l_1^{\omega}(c_0)$ (the space of all weakly unconditionally Cauchy series in c_0) verifying:

(i) dim(E) = c.
(ii) If x ∈ E \ {0} then ∑_i x_i is not weakly convergent.

Theorem 2.5. Let X be an infinite dimensional Banach space. Then there exists a vector subspace E of UC(X) such that dim(E) = c, and if $x \in E \setminus \{0\}$ then $\sum_i ||x_i|| = \infty$.

To conclude, notice that from Theorem 2.4 it follows that X has a copy of c_0 if and only if there exists a vector subspace E of $l_1^{\omega}(X)$ with dim(E) = c, so that every non-zero element of E is a non-weakly convergent series.

References

- R. Aron, V. Gurariy, J.B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc. 133 (2005) 795–803.
- [2] V. Bessaga, A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958) 151–164.
- [3] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, Springer-Verlag, New York, 1984.
- [4] A. Dvoretzky, C.A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Natl. Acad. Sci. USA 36 (1950) 192–197.

- [5] V. Fonf, V. Gurariy, V. Kadeč, An infinite dimensional subspace of C[0, 1] consisting of nowhere differentiable functions, C. R. Acad. Bulgare Sci. 52 (1999) 11–12, 13–16.
- [6] C.W. McArthur, On relationships amongst certain spaces of sequences in an arbitrary Banach space, Canad. J. Math. 8 (1956) 192–197.
- [7] L. Rodríguez-Piazza, Every separable Banach space is isometric to a space of continuous nowhere differentiable functions, Proc. AMS 123 (12) (1995) 3649–3654.