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Stress is now recognised as a significant contributory factor in both

the aetiology and pathophysiology of many diseases (1–3). The

sympathetic nervous system (SNS) and the hypothalamo-pituitary-

adrenocortical (HPA) axis, the principal pathways that respond to

stress, exert tonic inhibitory control over the immune system

through multiple coordinated pathways involving glucocorticoids,

catecholamines, neuropeptides and cytokine networks (4, 5). Stress

can result in a resetting of immune system parameters with conse-

quent impairment in the ability of the organism to respond to

infection and other chronic processes such as inflammatory auto-

immune diseases. Much attention has been paid to the deleterious

effects of chronic stress on disease processes, but it is also estab-

lished that acute stress may exert beneficial immunostimulatory

effects (6). Relationships between the type of stress, timing of the

stressor and selective responses of the SNS, HPA axis and immune

system are complex and far from understood in terms of their

impact on disease processes.

Lipopolysaccharide (LPS), an endotoxin derived from the cell wall

of Gram-negative bacteria, is well-recognised as an activator of the

immune system, but LPS can also act as a potent stressor which

activates the HPA axis and SNS (7, 8). LPS can elicit acute-phase

pro-inflammatory cytokine responses which are inhibited by gluco-
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We have previously demonstrated that Gram-negative bacterial endotoxin can exert long-term

protective effects against the chronic inflammatory disease adjuvant arthritis in rats. The present

study was designed to investigate the mechanisms and time-course of hypothalamo-pituitary-

adrenocortical (HPA) axis activity and cytokine secretion underlying this phenomenon. Rats were

injected with endotoxin (lipopolysaccharide) and blood was collected either 7 or 21 days later.

Priming with endotoxin induced a biphasic alteration in secretion of adrenocorticotrophic hor-

mone and corticosterone in response to a second injection of endotoxin, with decreased secre-

tion observed after 7 days whereas robust secretion was observed at 21 days. Seven days

following priming with endotoxin, plasma concentrations of pro-inflammatory cytokines inter-

leukin (IL)-6 and interferon (IFN)-c were reduced by 90%, and tumour necrosis factor (TNF)-a by

70%, compared to saline-treated rats, whereas robust secretion of the anti-inflammatory cytoki-

ne IL-10 was maintained in both groups. A similar net change favouring an anti-inflammatory

cytokine secretory milieu was also observed 21 days following priming with endotoxin. This

study provides evidence that the long-term protective effects of endotoxin on inflammation are

associated with a sustained reduction in secretion of pro-inflammatory cytokines. HPA axis

hypoactivity at 7 days suggests that corticosterone is not involved in suppressing IL-6, IFN-c
and TNF-a at this time point. Conversely, hypersecretion of corticosterone at 21 days may

underlie synchronous suppression of IL-6 and IFN-c. These data provide novel insight into inter-

actions between HPA axis activity and cytokine secretion following endotoxin priming prior to

induction of inflammatory disease.
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corticoids, in the absence of which a challenge by LPS may prove

fatal (9). Glucocorticoids are an essential homeostatic control dur-

ing inflammation. Several well-characterised animal models of chro-

nic inflammation, such as experimental allergic encephalomyelitis,

streptococcal cell wall arthritis and adjuvant-induced arthritis, are

characterised by an HPA axis which is reset at a higher level of cor-

ticosterone secretion (10–12). Adrenalectomised animals exhibit ear-

lier onset and enhanced severity of inflammation, which rapidly

results in death (13, 14), an outcome which can be prevented by

exogenous corticosterone replacement.

Activation of the HPA axis in response to an acute stressor has

classically been considered to be a finite event, where glucocortic-

oids return to baseline concentrations within hours following the

onset of stress. However, evidence is now emerging for the long-

term effects of a single acute stressor on HPA axis activity (15, 16).

Long-term sensitisation or desensitisation of HPA axis activity may

be dependent on whether the experimental paradigm is composed

of homotypic or heterotypic stressors (17).

In addition to the long-term effects of acute stressors on HPA

axis activity, we have observed that a single injection of endotoxin

several weeks prior to induction of disease in adult rats can com-

pletely protect against the onset and severity of inflammation in

adjuvant-induced arthritis (18), which is a widely used rat model of

rheumatoid arthritis (19). Protection against inflammation in adult

animals was observed whether endotoxin was given neonatally (20)

or to mature rats (18). In the latter study, footshock, although a

potent activator of HPA axis activity, did not protect against devel-

opment of inflammation, which suggests that the protective effect

is not a general consequence of stress but is specific to the stressor

endotoxin, and may be determined by the neuroendocrine-immune

responses to endotoxin. A single injection of interleukin (IL)-1, a

cytokine whose secretion is evoked by endotoxin, attenuated sever-

ity of inflammation in experimental allergic encephalomyelitis (21).

In the animals injected with endotoxin (18, 20) or IL-1 (21), the

HPA axis remained activated even though inflammation was absent.

This suggests that the mechanisms involved in mediating the pro-

tective effects of endotoxin or IL-1 are not specifically related to

increased glucocorticoid secretion.

It has been reported that endotoxins can induce or reactivate

experimental arthritis (22, 23), probably through rapid stimulation

of secretion of the Th1-type pro-inflammatory cytokines such as

IL-1, interferon (IFN)-c and tumour necrosis factor (TNF)-a, and

IL-6 (24). This is counter-intuitive to a protective effect of endo-

toxin in a disease such as adjuvant-induced arthritis which, like

rheumatoid arthritis, is associated with increased secretion of Th1-

type cytokines (25). However, long-term patterns of cytokine

secretion following endotoxins have received little attention. In

the present study, we proposed the hypothesis that endotoxin

protects against the onset and severity of inflammation by indu-

cing long-term changes in the blood cytokine milieu which favour

secretion of anti-inflammatory cytokines. We also hypothesised

that this change in the balance of cytokine secretion is accom-

panied by increased HPA axis activity leading to increased corti-

costerone production. We tested this hypothesis by measuring a

range of cytokines, and the hormones adrenocorticotrophic

hormone (ACTH) and corticosterone, at 7 and 21 days following

priming with endotoxin.

Materials and methods

Animals

Adult male Wistar rats (200–225 g; Bantin & Kingman, Hull, UK) were

housed under standard conditions of temperature and humidity under a

12 : 12 h light ⁄ dark cycle (lights on 07.00 h). Animals were fed laboratory

chow and water ad libitum throughout the experiments. The care and use

of the animals was performed in accordance with the Animals (Scientific

Procedures) Act UK 1986 and the Ethical Committee for Animal Experimen-

tation of the School of Medicine of the University of Cadiz, Spain.

Experimental procedures

Rats were injected intraperitoneally (i.p.) with endotoxin-free saline (0.5 ml)

or endotoxin (ENDO; Sigma, Poole, UK; serotype Escherichia coli 055:B5;

1 mg ⁄ kg body weight in 0.5 ml of saline) and returned to their home cages

for 7 or 21 days. We have previously demonstrated that doses below

1 mg ⁄ 100 g body weight of ENDO of the 055:B5 serotype are sufficient to

stimulate the HPA axis with no apparent effects on animal behaviour (26).

Mean body weights did not differ between groups 21 days after treatment

with ENDO or saline. On either day 7 or day 21, separate groups of animals

were injected i.p. with either 0.5 ml of saline or endotoxin (ENDO-2) derived

from Salmonella enteritidis (1 mg ⁄ kg body weight, 100K4088; Sigma) in

0.5 ml of saline. This second injection of endotoxin was necessary to stimu-

late blood cytokine concentrations which under basal conditions would be

very low. ENDO-2 was selected from an alternative bacterial source to ENDO

to act as a heterotypic stressor, thus avoiding the well-recognised phenom-

enon of habituation of the HPA axis to repeated homotypic stress (27). Fol-

lowing ENDO-2 injection, groups of animals were returned to their home

cages for either 1 h, which is optimal for measurement of TNF-a and IL-10

(28, 29), or 4 h, which is optimal for measurement of IFN-c and IL-6 (perso-

nal observations) before being sacrificed by decapitation. Trunk blood was

collected in heparinised tubes, centrifuged, and the plasma was stored at

)80 �C prior to measurement of hormones and cytokines.

Measurements

Hormones

Total plasma corticosterone was measured by in-house radioimmunoassay

(11). Plasma ACTH was measured by in-house radioimmunoassay following

extraction on Sep-Pak columns (30). The intra- and interassay coefficients of

variation for ACTH and corticosterone are < 10%. Antisera for corticosterone

and ACTH were kindly donated by G. Makara (Institute of Experimental Med-

icine, Budapest, Hungary).

Cytokines

Cytokines were measured in plasma using commercially available enzyme-

linked immunosorbent assay kits specific for rat cytokines (R&D Systems

Europe Ltd, Abingdon, UK). The plates were read using a Bio-Rad 550 Micro-

plate reader (Bio-Rad, Hercules, CA, USA) set at 450 nm and the data inter-

preted using Microplate Manager version 5.1 (Bio-Rad). The limit of

detection was 20 pg ⁄ ml for IL-6, 5 pg ⁄ ml for TNF-a and 10 pg ⁄ ml for IFN-

c and IL-10. The intra- and interassay coefficients of variation for all assay

kits are < 10%.
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Statistical analysis

All values are expressed as the mean ± SEM. Statistical comparisons were

made using the Fisher post-hoc least significant difference test following

one-way ANOVA.

Results

Hormones: 7-day timepoint

Basal concentrations of plasma ACTH (Fig. 1A) and corticosterone

(Fig. 1B) were similar in both the saline and ENDO-pretreated

groups. There were significant increases (P < 0.0001) in plasma

ACTH and corticosterone 4 h following injection of ENDO-2

(Sal + ENDO-2) compared to the control group (Sal + Sal). These

responses were significantly attenuated (P < 0.0001) in animals

pretreated with ENDO (ENDO + ENDO-2).

Cytokines: 7-day timepoint

Basal plasma IFN-c was below the limit of assay detection. There

was a significant increase in IFN-c in the Sal + ENDO-2 group

which was significantly attenuated (P < 0.0001) in animals pre-

treated with ENDO (ENDO + ENDO-2) (Fig. 2A).

Basal concentrations of plasma IL-6 (Fig. 2B) and TNF-a (Fig. 2C)

were similar in both saline and ENDO-pretreated groups. There were

significant increases in plasma IL-6 and TNF-a in the Sal + ENDO-2

group which were significantly attenuated (P < 0.0001) in animals

pretreated with ENDO (ENDO + ENDO-2).

Basal concentrations of plasma IL-10 (Fig. 2D) were similar in

both saline and ENDO-pretreated groups. There were significant

increases in plasma IL-10 in the Sal + ENDO-2 group and in the

group pretreated with ENDO (ENDO + ENDO-2). Although IL-10 was

slightly increased in the latter group, this difference was not statis-

tically significant compared to the Sal + ENDO-2 group

Hormones: 21-day timepoint

Basal concentrations of plasma ACTH (Fig. 3A) and corticosterone

(Fig. 3B) were similar in both the saline and ENDO-pretreated

groups. Four hours following injection of ENDO-2, there were signi-

ficant (P < 0.0001) ACTH responses to ENDO-2 in both saline and

ENDO-pretreated groups, the latter response being slightly but not

significantly greater. There were significant (P < 0.0001) corticoster-

one responses to ENDO-2 in both the saline and ENDO-pretreated

groups compared to their respective controls.

Cytokines: 21-day timepoint

Basal plasma concentrations of IFN-c (Fig. 4A) and IL-6 (Fig. 4B)

were similar in both the saline and ENDO-pretreated groups. There

were significant increases in plasma IFN-c and IL-6 in response to

ENDO-2 in the Sal + ENDO-2 group which were significantly

attenuated (P < 0.0001) in the group pretreated with ENDO

(ENDO + ENDO-2).

Basal TNF-a and IL-10 were not measured. There were no signifi-

cant differences in plasma TNF-a (Fig. 4C) and IL-10 (Fig. 4D) in ani-

mals pretreated with ENDO (ENDO + ENDO-2) compared to the

Sal + ENDO-2 group.

Discussion

We have previously observed a fully protective effect of ENDO on

inflammation when injected 3 weeks prior to induction of arthritis

in a rat model of adjuvant-induced arthritis. ENDO did not merely

delay the onset of inflammation but prevented development of dis-

ease. Adjuvant-induced arthritis, similar to rheumatoid arthritis, is a

disease whose pathology is integrally associated with elevated

secretion of pro-inflammatory cytokines such as IFN-c, IL-6 and
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Fig. 1. Plasma adrenocorticotrophic hormone (ACTH) (A) and corticosterone

(B) responses to ENDO-2 or saline injection 7 days after an initial ENDO or

saline challenge. Blood samples were collected 4 h following ENDO-2. Values

are the means ± SEM (n ¼ 9 rats per treatment group). *P < 0.0001 versus

Sal + Sal group; **P < 0.0001 versus Sal + ENDO-2 group.
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TNF-a (25, 31). In the present study, we have established that the

protective effects of ENDO are temporally associated with an alter-

ation in the balance of cytokine secretion, favouring the creation of

an anti-inflammatory cytokine milieu in the blood. We have also

observed that priming with ENDO can exert biphasic effects on HPA

axis activity prior to the onset of inflammation. These results dem-

onstrate that the anti-inflammatory effects of ENDO are associated

with long-term changes in the blood cytokine and hormonal milieu.

Acute exposure to endotoxins elicits a rapid, largely pro-inflam-

matory, response characterised by release of many cytokines inclu-

ding TNF-a, IL-1, IL-6 and IL-10 (32). This pattern is quite distinct

from the cytokine profile that we observed 7 days and 21 days fol-

lowing ENDO, in which the serum concentrations of TNF-a (at

7 days), also reported elsewhere [23], IFN-c and IL-6 are much

reduced in response to the second injection of endotoxin, whereas

concentrations of the strongly anti-inflammatory cytokine IL-10 are

essentially unchanged. Therefore, the serum cytokine balance alters

from an initial predominantly pro-inflammatory response to an

chronic anti-inflammatory milieu during the 3 weeks following ini-

tial exposure to ENDO. It has been proposed that activation of the

innate response by LPS can also trigger the adaptive response (33),

a mechanism now identified as acting through toll-like receptors

(34, 35). This linked signalling pathway may underlie the alterations

that we observed in cytokine responses to ENDO over a period of

days to weeks.

In addition to activating the immune system, endotoxins are also

potent stressors since they stimulate the HPA axis and SNS. There

have been several reports of protective (and also exacerbatory)

effects of stress on inflammation (36–39). Although the underlying

pathophysiological mechanisms are poorly well-understood, it is
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Fig. 2. Plasma interferon (IFN)-c (A), interleukin (IL)-6 (B), tumour necrosis factor (TNF)-a (C) and IL-10 (D) responses to ENDO-2 or saline injection 7 days after

an initial ENDO or saline challenge. Blood samples were collected at 1 h following ENDO-2 for TNF-a and IL-10 and at 4 h for IFN-c and IL-6. Values are the

means ± SEM (n ¼ 5–7 rats per treatment group). *P < 0.0001 versus Sal + Sal group; **P < 0.0001 versus Sal + ENDO-2 group.
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clear from these studies that acute stressors can influence the

onset and severity of inflammation, and that the effectiveness of

the stressor may depend on type, timing and intensity of the stres-

sor, and the nature of the disease. Selective effects of stress in ani-

mal models of inflammatory disease may also reflect differences in

underlying patterns of pro- and anti-inflammatory cytokine expres-

sion and secretion prior to onset of inflammation. It is also appar-

ent from the literature that the protective effects of stress are not

necessarily related to increased HPA axis activity and corticosterone

release (40, 41).

A single injection of ENDO at the dose which we employed indu-

ces rapid ACTH and corticosterone responses which may be sus-

tained for up to 8 h (24, 42). However, in complete contrast to this

acute response, we observed that 7 days following ENDO, the HPA

axis was hypo-responsive to a second ENDO challenge. At this same

timepoint, responses of the major pro-inflammatory cytokines IL-6,

TNF-a and IFN-c to ENDO-2 were attenuated whereas robust secre-

tion of the major anti-inflammatory cytokine IL-10 was sustained.

It is well-established that glucocorticoids inhibit secretion of IL-6,

TNF-a and IFN-c (43), and stimulate secretion of IL-10 (44) but, in

our model, the alteration in the balance of blood cytokines at the

day 7 time point is unlikely to be linked to HPA axis activity

because plasma corticosterone was decreased by approximately

70%. Conversely, the rebound in HPA axis activity 21 days follow-

ing pretreatment with ENDO may underlie the decreased responses

of IL-6 and IFN-c to ENDO-2 at this later timepoint. This is the first

observation of long-term biphasic HPA axis activity following an

injection of ENDO. Previous work in this field has found that HPA

axis and plasma TNF-a responses to LPS (serotype E. coli 055:B5)

are attenuated at 1 and 4 weeks following initial E. coli LPS priming

in Sprague-Dawley rats (45). Although the 1-week data are consis-

tent with our own, the attenuated responses at 4 weeks are oppos-

ite to those which we observed at 21 days. This raises the

possibility that long-term HPA axis and cytokine responses to previ-

ous endotoxin exposure are either time-sensitive, dependent on the

source of LPS, or may be strain-specific. The dose of LPS used to

challenge LPS-primed rats may also be critical (46).

Attenuated cytokine and HPA axis responses to ENDO-2 which

we observed on day 7 may represent the phenomenon of endotoxin

tolerance (24, 47, 48). However, the robust responses of TNF-a,

ACTH and corticosterone to ENDO-2 that we observed on day 21

are not consistent with currently understood kinetics and mecha-

nisms of endotoxin tolerance where blunted responses of cytokines

and HPA axis activity from 5–28 days have been reported (49–53).

In addition, we did not observe an up-regulation in IL-10, which

has been reported in endotoxin tolerance (54). All of these studies

used LPS from the same source and it is plausible that our use of

endotoxin from two separate sources may explain these discrepan-

cies. We are unaware of any other studies that have investigated

this combination of separate types of LPS on this range of hor-

mones and cytokines. Also of interest, when we administered adju-

vant to rats 7 days following ENDO, we found that this had no

significant effect on hindpaw inflammation (unpublished observa-

tions) although a fully protective effect of ENDO on hindpaw

inflammation was observed when ENDO was injected 21 days prior

to adjuvant. Therefore the attenuated HPA axis and cytokine

responses observed on day 7, which may be an example of endo-

toxin tolerance, had no protective effect on onset of inflammation.

Conversely, the altered cytokine and hormone balance observed in

response to ENDO-2 on day 21, which is quite atypical of endotoxin

tolerance, may represent a genuine underlying anti-inflammatory

mechanism protecting against arthritis.

Finally, although our data do not permit conclusions to be drawn

with respect to the critical contribution of any one component in

the protective effect of ENDO on adjuvant-induced arthritis, we

speculate that it is the sustained drive in IL-10 secretion, coupled

with robust HPA axis activity at 21 days, which constitutes a potent

anti-inflammatory combination. TNF-a and IFN-c secretion, and Th1

cell proliferation, all of which contribute to the inflammatory pro-
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cesses in rheumatoid arthritis, are suppressed by IL-10 (55, 56).

Further experimental approaches in this animal model to address

this issue might include priming with ENDO followed by immuno-

neutralisation of IL-10 and ⁄ or intervention with glucocorticoid

antagonists prior to induction of arthritis. Although such experi-

ments will be complex, they may shed valuable light on factors

involved in the development of rheumatoid arthritis. There is com-

pelling evidence for an inter-regulatory network of cytokines in

rheumatoid arthritis which favours secretion of pro-inflammatory

(IL-6, TNF-a and IFN-c) and anti-inflammatory (IL-10) cytokines in a

balance weighted towards a pro-inflammatory Th1-type milieu (57).

The ability of ENDO to reverse this bias in adjuvant-induced arthri-

tis and protect against onset of inflammation, as also recently

reported in juvenile atopic asthma (58), may provide new insights

into the influence of stress or bacterial infection on cytokine and

hormonal patterns of secretion underlying the development of

chronic inflammatory disease in man.
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