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Periodic and chaotic dynamics of a sliding driven oscillator with dry friction
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Abstract

We have performed a numerical study of the dynamics of a harmonically forced sliding oscillator with two degrees of freedom and dry
friction. The study of the four-dimensional dynamical system corresponding to the two non-linear motion equations can be reduced, in this case,
to the study of a three-dimensional Poincaré map. The behaviour of the system has been investigated calculating bifurcation diagrams, time
series, periodic and chaotic attractors and basins of attraction. Furthermore, a systematic study of the stability of periodic solutions and their
bifurcations has been carried out applying the Floquet theory. The results show rich dynamics being very sensitive to the changes in forcing
amplitudes (control parameter), where periodic and chaotic states alternatively appear. It is shown how the system exhibits different types
of bifurcational phenomena (saddle-node, symmetry-breaking, period-doubling cascades and intermittent transitions to chaos) into relatively
narrow intervals of the control parameter. Moreover, a collection of chaotic attractors was computed to show the evolution of the chaotic
regime. Finally, basins of attraction were calculated. In all the cases studied, the basins exhibit fractal structure boundaries and, when more of
two attractors are coexisting, we have found Wada basin boundaries.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The vibrational behaviour of mechanical systems with dry
friction play an important role both in problems of mechanical
engineering as well as from a theoretical viewpoint. From the
point of view of practical applications, many mechanical de-
vices governed by non-linear motion equations may exhibit, un-
der certain conditions, irregular changes in their motion (jumps,
multi-periodicity, etc.) [1]. Hence, the study of governing equa-
tions is of considerable practical value for designing and con-
trolling these devices. On the other hand, the non-linearities
of systems with dry friction are responsible for different types
of periodic, chaotic and bifurcational behaviours. Thus, these
systems may provide mathematical models with rich dynamics
enabling the application of non-linear dynamical systems and
chaos theory.

Many studies have been carried out on systems whose
dynamics include alternating static and kinetic states. They
have mainly focused on the stick–slip phenomenon [2], where
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the non-linearities enter in the motion equations by using
piecewise-smooth functions for the modelling of static and
dynamic friction forces [3]. When the mechanical systems are
permanently sliding, the dynamical friction forces generally
depend on the relative velocity of the bodies in contact by
means of the relationship Fr = −(vr/vr)f (vr) [1], where Fr
is the dynamical friction force, vr is the relative velocity and
f (vr) is a smooth function, which includes the normal load
and the kinetic friction coefficient �d =�d(vr). In this case, the
non-linear motion equations constitute a smooth vector field,
where different kinetic friction dependent velocity models
[4–7] can be used. Thus, bifurcation theory for smooth sys-
tem, as well as the classical Floquet theory, can be applied to
study the behaviour and the stability of steady-state response
of these systems.

In this work, we present a numerical study of a sliding
driven rigid body with two degrees of freedom, which has one
point of contact with a surface on which a dynamic dry friction
force is acting. The system exhibits oscillations in the perpen-
dicular direction to the slide (transversal oscillations) and it is
periodically forced in the direction in which it is sliding. This
system may be considered as a first very simple model of a
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sliding articulated trailer subjected to a harmonic traction. Also,
it may constitute a model of small sliding devices in mechani-
cal machines. On the hypothesis that systems with these char-
acteristics exhibit instabilities in the periodic oscillations and
chaotic dynamics, which can produce loss of control in articu-
lated vehicles or bad operations of these devices, the study of
the dynamics of this simple model can contribute to the under-
standing of certain behaviours, which should be avoided in real
mechanical systems.

2. Mechanical system, motion equations and stability of
periodic solutions

The mechanical system studied consists of a rectangular-
section rod of mass M and length L oscillating into an horizon-
tal plane (Fig. 1). The movement of the origin point O ′′ of the
X′′Y ′′Z′′ internal framework, fixed to one end of the rod, is re-
stricted to a straight line parallel to the X-axis. The other end of
the rod is supported by a conveyor belt through a small needle,
while the belt and the O ′X′Y ′Z′ frame fixed to it are moving
horizontally with a constant speed (vb). Under these conditions
the system carries out a two-dimensional sliding motion with
dry friction between the trip needle (point S) and the belt sur-
face. Finally, an external device is producing a periodic force
given by F = B cos(�t), which is driving the system in X
direction.

The geometrical characteristics of the system allow the use
of variables x and � as appropriated generalized coordinates to
formulate the dynamical problem. As it is shown in Fig. 1, x
indicates the position of point O ′′ in a fixed framework OXYZ
and � is the angular displacement of the rod. The equations
of motion of the system were calculated using the well-known
Lagrange’s equations

d

dt

�T

�q̇i

− �T

�qi

= Qqi
, q1 = x, q2 = �, (1)
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Fig. 1. Sketch of the mechanical system.

is the kinetic energy of the rod (I is the moment of inertia of the
rod with respect to the Z′′-axis), and Qx and Q� are the gener-
alized forces associated with x and � coordinates, respectively.

In this problem, the generalized forced can be expressed in
the form

Qx = B cos(�t) − 1

vrel.
(ẋ − vb − �̇L sin �)Fr, (3)

Q� = 1

vrel.
[(ẋ − vb) sin � − �̇L]LF r, (4)

where

vrel. =
√

(ẋ − vb − �̇L sin �)2 + (�̇L cos �)2 (5)

is the modulus of the relative speed between the contact point
S and the belt.

The term Fr in Eqs. (3) and (4) is the modulus of the dry
friction force applied in the point S by the belt. Assuming
that the mechanical behaviour of the system is determined by
the driven sliding, a friction force model characterized by a
linear dependence [5] of the relative speed will be used. Thus,
considering the classical dry friction law Fr = �kN , where N
is the magnitude of the force acting in the normal direction on
the sliding point S, the dynamic friction coefficient takes the
following form [6]:

�k(vrel.) = �0
k + �vrel., �0

k > 0, � > 0. (6)

According to the above scheme, the motion equations are

ẍ = 1

c1 − c2
2 sin2 �

[c2(I �̇
2

cos � + Q� sin �) + IQx], (7a)

�̈ = 1

c1 − c2
2 sin2 �

(c2
2�̇

2
sin � cos � + c2Qx sin � + MQ�),

(7b)

where c1 = MI and c2 = 1
2ML.

Using non-dimensional normalized time � = �t and the co-
ordinates

x0 = x

L
, x1 = ẋ, x2 = �, x3 = �̇, (8)

a second-order differential equations system (7a)–(7b) can be
written in the following non-dimensional dynamical system
form:

ẋ0 = x1, (9a)

ẋ1 = 1

�2(c1 − c2
2 sin2 x2)L

[c2(I�2x2
3 cos x2

+ Q′
x2

sin x2) + IQ′
x0

], (9b)

ẋ2 = x3, (9c)

ẋ3 = 1

�2(c1 − c2
2 sin2 x2)

(c2
2�

2x2
3 sin x2 cos x2

+ c2Q
′
x0

sin x2 + MQ′
x2

), (9d)
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where

Q′
x0

= − (�x1 − vb − �x3L sin x2)N

(
�0

k

v′
rel.

+ �

)

+ B sin �, (10a)

Q′
x2

= −(�x1 − vb − �x3L)N

(
�0

k

v′
rel.

+ �

)
L, (10b)

(
v′

rel. =
√

(�x1 − vb − �x3L sin x2)
2 + (�x3L cos x2)

2
)

are the generalized forces using non-dimensional time �.
It is firstly noted that the coordinate x0 does not appear in

the equations of motion of the mechanical system. Thus, the
dynamical system given by Eqs. (9a)–(9d) can be studied con-
sidering, on one hand, the three-dimensional dynamical system
given by Eqs. (9b)–(9d), and, on the other hand, Eq. (9a), which
can be integrated once the x1(�) function is known.

The system of equations (9b)–(9d) constitutes a non-
autonomous system, which can be written concisely in the
form

ẋ = F(x, t; s), (11)

where x ≡ (x1, x2, x3) is the state vector, s ≡ (M, L, vb, �0
k, �,

B, �) is a parameter vector and F ≡ (F1, F2, F3) is the peri-
odic vector field formed by the functions of the right-hand side
of Eqs. (9b)–(9d). Once the parameter values s = s0 and a set
of initial conditions (t0, x10 , x20 , x30) are fixed, it is possible to
associate the map f : R3 −→ R3 to the solution of the dynam-
ical system. The discrete sequence of points xn = f n(x0) (n =
1, 2, 3, . . . ; x0 ≡ (x10 , x20 , x30)), where f n means n-times it-
erated f map, can be obtained by sampling the orbit points at
time � = �0 + n��. Taking �� = T0, where T0 is the exter-
nal driving period (T0 = 2� in our case), the points of f map
are Poincaré sections of the solutions in �, x1, x2, x3 space [8].
Thus, after discarding the first iterations corresponding to the
transient solution of the non-autonomous system, a steady state
with period Tk =kT 0 (k-period solution, being k an integer) can
be represented by k points in R3. If one si parameter of s vec-
tor is varied and the dynamical system is integrated for each si
value, the periodic and chaotic behaviour of the system can be
studied by means of the evolution of xn Poincaré section into
BP = {(si, x) ∈ R1 × R3} space.

To study the stability of k-period solutions, the P = f k

Poincaré map was considered. Then, on iteration of a point xn

on orbit under this map, it is obtained as

xn = P(xn). (12)

Thus, k-period solutions of (12) correspond to the fixed points
of P map, and the stability analysis of these solutions can be
carried out by that of the corresponding fixed points.

As it is known [9], the stability of the fixed points of the
P map is determined by the examination of the eigenvalues of
the DxP |x=xn Jacobian matrix of P. To calculate this matrix,
a scheme based on Floquet Theory [9,10] is assumed. In this

framework, the Jacobian matrix at xn coincides with the mon-
odromy matrix of k-period orbit, which is denoted as

M(�k) = DxP |x=xn
, (13)

satisfying M(�) the so-called variational equation

Ṁ(�) = A(�)M(�) (14)

with the initial condition M(�0) = I (identity matrix). A(�) is
the Jacobian matrix of vector field, which can be written as

A(�) =

⎛
⎜⎜⎝

�F1

�x1

�F1

�x2

�F1

�x3
0 0 1

�F3

�x1

�F3

�x2

�F3

�x3

⎞
⎟⎟⎠ , (15)

where the partial derivatives can be calculated from Eqs.
(9b)–(9d).

Integrating numerically the differential equation system (14)
from �= �0 to �= �0 +Tk , with the initial condition M(�0)= I,
the matrix M(�k = �0 + Tk) is obtained. Eigenvalues (Floquet
multipliers) �i (i = 1, 2, 3) of this matrix provide information
on the stability of the periodic solutions. Furthermore, when the
system evolves into the BP space, the evolution of Floquet mul-
tipliers to abandon the unit circle of the complex plane allows
for the classification of different types [11] of bifurcations.

3. Numerical simulations and bifurcation diagrams

The dynamics of the system was studied using the fol-
lowing parameter vector: s ≡ (M = 1 kg, L = 0.25 m, vb =
0.01 m s−1, �0

k = 0.1, � = 0.1 kg s−1, B, � = 1 s−1), where the
forcing amplitude B was the parameter to be varied (control
parameter). Taking into account the �0

k and � values chosen,
it is assumed that a weak dry friction was acting on the me-
chanical system. Additionally, in our study the problem was
focused at relatively low forcing amplitudes. Thus, the control
parameter was varied into B ∈ [0, 15]N interval.

To obtain a preliminary illustration of the behaviour of the
system in the forcing range considered, the dynamical sys-
tem was integrated using a fourth-order Runge–Kutta algorithm
over grids of initial conditions for different values of the con-
trol parameter. In this way, a collection of steady solutions
was determined. Next, starting from a fixed value of the con-
trol parameter (B = 0.4, for instance), which belongs to an
interval where the dynamical system exhibit a very rich dy-
namics, different trajectories into BP space were computed by
slowly increasing and decreasing the B parameter. To ensure
that steady solutions are obtained, sufficiently long transients
were neglected for each B value considered.

Figs. 2 shows a survey of periodic and chaotic solutions
in bifurcation diagrams obtained by the projection of four-
dimensional trajectories onto B–x2 (Fig. 2(a)) and B.x3
(Fig. 2(b)) planes, (in the first case, the values of the angular
variable x2 have been reduced to the [−�, �] interval). It may
be observed that the general dynamics of the system is char-
acterized by the existence of periodic and chaotic attractors,
which alternatively appear into consecutive intervals of forcing
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Fig. 2. Overview of Poincaré section bifurcation diagrams, where periodic
and chaotic bands alternatively appear: (a) x2.B and (b) x3.B projections.

amplitudes. As B increases, the width of the intervals where the
periodic solutions lie increases. At the same time, the chaotic
behaviour suffers an evolution characterized by the tendency
of the chaotic attractors to be centred on x2 = � value, instead
of being spread into the [−�, �] interval. Moreover, typically
small periodic windows can be found inside the chaos bands.
By carefully examining the intervals where the solutions are
periodic, abundant bifurcational scenarios, such as saddle-
node bifurcations, intermittent transitions to chaos, symmetry-
breaking bifurcations and period-doubling cascades, were
detected. Symmetry-breaking bifurcations are typical in forced
dynamical systems where one or more variables (named x)
are invariant under (x −→ −x, ẋ −→ −ẋ, t −→ t + �/�)
transformation.

To determine the stability of motion, the evolution of peri-
odic attractors was studied in terms of the variation of Floquet
multipliers, when the control parameter was varied. The local
bifurcations, where solutions lose the stability, were character-
ized by simultaneously integrating the dynamical system and

the nine differential equations contained in the variational ma-
trix equation (14). For each B value, at the beginning of inte-
gration of the last Tk-period cycle, after � = NT k (N integer)
simulated time has passed, the initial condition M(�) = I was
imposed to the differential equations system. Thus, to finish the
integration period, at �+Tk , the monodromy matrix M(�+Tk)

of the orbit was obtained (also the Poincaré section). Finally, by
using a Raphson–Newton algorithm, the �i (i=1, 2, 3) Floquet
multipliers were calculated solving the characteristic equation
det[M(�0 + Tk) − �I] = 0.

4. Periodic behaviour. Stability and symmetries

An analysis of the successive periodic intervals in bifur-
cation diagrams permits to detect various types of periodic
behaviour, which evolve in different ways when the control
parameter is changed. To organize the description of the
different dynamics of the system we will distinguish between
low forcing amplitudes (B�0.55) and mean-large forcing
amplitudes (0.85�B�15).

4.1. Low forcing amplitudes

At low B value the system exhibits a varied periodic and bi-
furcational behaviour mainly based on the coexistence of solu-
tions from B�0.36 to B�0.55 (Fig. 3). Thus, at B = 0.4, the
bifurcation diagram shows eight branches corresponding to six
coexisting solutions. Two of them are associated to x1 = x1(�),
x2 = 0, x3 = 0 and x1 = x1(�), x2 = �, x3 = 0 solutions, when

Fig. 3. Bifurcation diagram showing the evolution of the two period-1 n and p
mutually symmetric solutions, and the two period-2 li2, mi

2 (i=1, 2) solutions.
Period-1 orbits are originated in both SNn and SNp saddle-node bifurcations,
pass through symmetry-breaking bifurcations (SBn and SBp) and, finally,
both orbit pairs (n1, n2) and (p1, p2) created after BS bifurcations undergo
period doubling bifurcations (PD) and cascades to chaos. The two period-2
orbits evolve from chaos and are destroyed in both SNl , SNm saddle-node
bifurcations.
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Fig. 4. Projections of the trajectories of coexisting solutions at B = 0.4 showing: (a) and (b) the symmetry with respect to the origin onto x2.x3 projections
and (c) and (d) the symmetry with respect to x1 = vb plane onto x1.x3 projections.

the transversal oscillations are absent. The other six branches
correspond to four orbits: two of period-1 (called n and p) and
another two of period-2 (named l2 and m2). To indicate the two
iterations in the Poincaré section of period-2 orbits, symbols
li2 and mi

2, (i = 1, 2) are used (Fig. 3). Examining Fig. 3 in
B increasing sense, it may be observed how n and p solutions
are created and they later undergo two identical bifurcational
processes that lead to the creation of one large chaotic attrac-
tor. Meanwhile, l2 and m2 coexisting solutions appear from
chaotic attractors and they evolve until being destroyed. The
symmetries of the system are manifested, on one hand, by the

coexistence of symmetrical solutions and, on the other hand,
by the existence of symmetrical orbits with respect to itself. A
first type of symmetry, corresponding to symmetrical motions
of the mechanical system with respect to OXY plane (Fig. 1),
is manifested by: (i) the coexistence of n and p orbits, with
the mutually symmetrical projections with respect to the ori-
gin onto x2.x3 coordinate plane of the phase space (Fig. 4(a))
and (ii) the l2 and m2 period-2 orbits, which exhibit symmetri-
cal projections with respect to (�/2, 0) and (−�/2, 0) points in
that same plane (Fig. 4(b)). A second type of symmetry maybe
observed projecting the coexisting orbits onto x1–x3 coordinate
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Fig. 5. The real parts of the Floquet multipliers as a function of B for n and
p solutions. The values of B where the orbits become unstable are detected
when one of the multipliers reaches the values 1 (saddle-nodes SNn,p and
symmetry breaking SBn,p) and −1 (period-doubling cascade).

plane of the phase space. After using different values of vb pa-
rameter to compute the orbits, symmetrical projections by re-
flection with respect to the x1 = vb straight line are observed.
In Figs. 4(c) and (d), this type of symmetry between each
(n, p) and (l2, m2) pairs of orbits can be seen. The existence of
this symmetry indicates that the angular velocity in the transver-
sal oscillations remains unchanged below a change of the sign
of relative velocity of the O ′′ point (Fig. 1) with respect to the
O ′X′Y ′Z′ frame. In this sense, it can be considered a kine-
matic symmetry with respect to the transversal O ′Y ′Z′ plane
(see Fig. 1). With regard to the symmetry of each orbit, by
examining the projections of n and p orbits (Figs. 4(a), (c)) it
can be seen how these orbits are symmetrical with respect to
(�/2, 0) and (−�/2, 0) points, respectively. On the other hand,
m2 and l2 period-2 orbits have symmetrical x2.x3 projections
with respect to (0, 0) and (�, 0) points, respectively.

Orbits p and n are created by means of two saddle-node bi-
furcations (SNn and SNp in Fig. 3) situated close to the border
of the chaos band. To identify these bifurcations, the Floquet
multipliers were computed following p and n branches while
decreasing the B parameter. At B = 0.4, one of the multipliers
is a very small real number (�1 ∼ 10−6) and the other ones are
conjugated complex numbers. As shown in Fig. 5, when B de-
creases the real part of complex multipliers reaches a minimum
value and, immediately, it increases until B = 0.373300 . . . ,
where three multipliers are lying over the real axis. Next, one
of them, which is denoted as �2, increases toward a value of
1 and reaching the unit circle at B = 0.373278 . . . . Therefore,
the saddle-node bifurcations SNn and SNp are located at this
B value.

Following the evolution of p and n solutions when B is in-
creased from B = 0.4, the three multipliers are real numbers
beyond B =0.4327 . . . . Next, �2 increases while the other two
multipliers (�1, �3) keep smaller values. At B = 0.4776 . . . ,
�2 is crossing the unit circle (Fig. 5) and n and p orbits

Fig. 6. Projections of trajectories illustrating the symmetry-breaking in the n
orbit. At B = 0.455, (a) x2.x3 and (b) x1.x3 projections are symmetric with
respect to the points (�/2, 0) and (vb, 0), respectively. At B = 0.48, two n1
and n2 coexisting orbits created in the bifurcation have mutually symmetric
projections with respect to both mentioned points.

become unstable via both symmetry-breaking pitchfork bifur-
cations (SBn and SBp in Fig. 3, respectively). After bifurca-
tions, two new solutions are created in each branch (n1 and n2
from SBn and p1 and p2 from SBp). Numerical results show
how in both simultaneous pitchfork bifurcations, the symme-
try with respect to x1 = vb, x2 = �/2, x3 = 0 point is broken,
and the two orbits of pairs (n1, n2) and (p1, p2) are mutu-
ally symmetric with respect to that point (Figs. 6(a) and (b)).



866 F. Bellido, J.B. Ramírez-Malo / International Journal of Non-Linear Mechanics 41 (2006) 860–871

Fig. 7. Detail of bifurcation diagram showing the sequence of period-doubling
(PDl ), symmetry-breaking (SBl ) and saddle-node (SNl ) bifurcations in the
period-2 li2 (i = 1, 2) orbit.

Following the n1 branch, after symmetry-breaking bifurcation,
the Floquet multipliers evolve as shown in Fig. 5. Thus, when
B increases two multipliers are negative and one of them de-
creases until B = 0.5273 . . . , where it reaches a value of −1.
At this B value, the four solutions n1, n2, p1 and p2 become
unstable, bifurcating by means of four period-doubling bifur-
cations, respectively, and four period-2 solutions are created.
The behaviour of the dominant multiplier (�2) into the interval
of existence of those solutions indicates that, in the bifurcation
point, it lies on the unit circle (�2=1), but it immediately moves
along the real axis until B = 0.53777 . . . , where it reaches the
unit circle again, this time at the negative side (�2 =−1). Then,
the second period-doubling bifurcation takes place in each
branch. As can be seen in Fig. 3, when B continues increasing,
typical cascades of period-doubling bifurcations (Feigenbaum
scenario) are formed until, finally, a large chaotic attractor
appears.

The two period-2 coexisting orbits l2 and m2 evolve identi-
cally into the same interval of existence. In Figs. 7 and 8, x2.B
bifurcation diagram and the evolution of the Floquet multi-
pliers corresponding to the l2 orbit are shown, respectively.
When B increases a bifurcational sequence inverse to that dis-
played in the evolution of n and p orbits is observed. Thus,
at B = 0.388611 . . . , one of the multipliers (�3) is lying over
the unit circle in the negative side of the real axis indicating
a period-doubling bifurcation (PDl in Fig. 8), while the other
two multipliers are very small real numbers (�1, �2 ∼ 10−9).
When B increases, |�3| decreases until it reaches values in the
range of 10−9. At this point, �2 begins to increase quickly
until at B = 0.394290 . . . , it crosses the unit circle at the pos-
itive side of the real axis. In this way, a symmetry-breaking
bifurcation (SBl) takes place. Finally, as it is shown in Fig. 8,
�2 evolves until it reaches again the value 1 (saddle-node
bifurcation SNl) at B = 0.41956 . . . , and then, the orbit is
destroyed.

......... .... .....
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Fig. 8. Evolution of the Floquet multipliers calculated following the bifurcation
diagram of the li2 (i = 1, 2) orbit (Fig. 7). At bifurcation points PDl , SBl

and SNl , one of the multipliers is crossing the unit circle.

Fig. 9. Bifurcation diagram showing three consecutive intervals of periodicity,
alternating with chaotic band, where the system exhibits: (I) only intermittent
transitions to chaos; (II) intermittency, symmetry-breaking and intermittency,
and (III) intermittency, symmetry-breaking and period-doubling cascade to
chaos.

4.2. Mean-large forcing amplitudes

At B�1.75 the system exhibits several types of periodic
behaviours which evolve in different ways. Thus, in Fig. 9
three successive intervals (labelled as I, II and III) are shown,
where periodic solutions behave of three distinct way when the
control parameter is varied. In spite of the existence of dif-
ferent dynamics, the three intervals have one common charac-
teristic: orbits undergo intermittent transitions on the left limit
of periodic intervals. To exemplify this phenomenon the at-
tention will be focused on the interval III of Fig. 9. Starting



F. Bellido, J.B. Ramírez-Malo / International Journal of Non-Linear Mechanics 41 (2006) 860–871 867

Fig. 10. Time series of the variable x3 calculated at B = 5.739000 . . ., near
intermittent transition. Chaotic bursts alternating with laminar phases are
shown.

from B > 5.739080. . . . , after a chaotic band, two branches,
corresponding to two coexisting period-1 orbits, can be clearly
distinguished. When B decreases from the lower limit (B =
5.739050. . . .) of the periodic interval, two coexisting orbits
are destroyed by both saddle-node bifurcations, taking place
an intermittent transition of type I [12]. The numerical re-
sults, at B = 5.739000. . . . , close to the limit of chaos band,
show the typical behaviour described in the literature [9,13].
Thus, a set of successive iterations of Poincaré map are visiting
small phase-space regions where the destroyed periodic solu-
tions were situated (laminar phase). The attractor spends a vari-
able stretch of time there, and after this, the iterations suddenly
burst out and go over the large chaotic attractor formed after
the two simultaneous bifurcations. Finally, the iterations return
to the old periodic attractor region and the process is repeated
again and again. In Fig. 10, the dynamics described above is
shown through the behaviour of x3.� time series. Following the
evolution of solutions into the interval III, increasing B values,
it is observed how they behave in the same way as n and p or-
bits, i.e. symmetry-breaking bifurcations and period-doubling
cascades take place before a large chaotic attractor appears.

In the lower limit of the interval II of Fig. 9, two coexisting
period-1 solutions are created in both intermittency transitions.
Fig. 11 shows the evolution of Floquet multipliers in this in-
terval. In the neighbourhood of the left limit of the interval,
the three Floquet multipliers are real numbers and, when B de-
creases, one of them increases very quickly toward 1, indicating
the proximity of the saddle-node bifurcation associated to type
I intermittency [9]. Next, a symmetry-breaking pitchfork bifur-
cation can be detected in each branch at B = 5.259 . . . . After
these bifurcations, one of the multipliers (�3) moves along the
negative part of the real axis toward the unit circle, predicting
a period-doubling bifurcation as happened in n and p branches
(Fig. 5), and also in solutions into the interval III. Neverthe-
less, the situation changes with respect to these cases, since �3
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Fig. 11. Evolution of the Floquet multipliers calculated following the bifurca-
tion diagram into the interval II (Fig. 9). After symmetry-breaking one mul-
tiplier decreases toward the value −1, but returns without reaching the unit
circle and the period-doubling bifurcation does not occur. Two saddle-node
bifurcations associated to both intermittent transitions to chaos are detected
at the limits of the interval.

Fig. 12. Magnification of one of the branches of the bifurcation diagram
showing, at large B values, a complex bifurcational behaviour, previous to
the creation of a large chaotic attractor.

multiplier approaches the unit circle until reaching the mini-
mum value �3=−0.9175 . . . at B=5.611 . . . , without reaching
the value −1. Thus, when B increases, it returns immediately
toward high values and the period-doubling bifurcation does
not occur, as usually happens after symmetry-breaking bifur-
cation. If the Floquet multipliers are interpreted as indicators
of the stability of the orbits, then the fact observed can be de-
scribed as the tendency of the system to lose the stability after
symmetry-breaking. However, as can be seen, the sequence:
symmetry-breaking, period-doubling cascade and chaos does
not always occur. In this case, as happened in the lower limit
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of the interval, the dynamics of the system turns chaotic in the
upper limit of the interval through intermittent transitions of
type I. In Fig. 11, it can be seen how the behaviour of Floquet
multipliers is the same in the neighbourhood of both limits of
the interval II. Into the preceding interval (called I), a relatively
simple behaviour can be observed. Thus, two period-1 coexist-
ing orbits evolve without any bifurcation taking place between
the two successive intermittent transitions, where the orbits are
created and destroyed, respectively.

At larger B values, the evolution of periodic attractors usually
follows the pattern: intermittent transition, symmetry-breaking
and period-doubling cascade to chaos. Nevertheless, different
and more complicated behaviours can be found in the route to
the formation of the large chaotic attractor located between two
successive periodic intervals. For instance, in Fig. 12 it is seen
how, when B increases, typical cascades are not produced, and
when period-8 orbits have been created after the third period-
doubling bifurcations, the solutions return again to be four-
periodic through reverse period-doubling bifurcations. From

Fig. 13. Collection of chaotic attractors showing, at first, an increase in the structure complexity: (a) B = 0.2, (b) B = 1.5 and (c) B = 9.58, and later, (d) the
coexistence chaos–chaos of two simple attractors (B = 12).

these solutions, typical period-doubling cascades lead to the
creation of two small coexisting chaotic attractors. When B con-
tinues to increase, reverse period-doubling sequences create co-
existing period-2 orbits, which undergo intermittent transitions
and, thus, give rise to the formation a large chaotic attractor.

5. Collection of chaotic attractors

As it was seen in the overview of bifurcation diagrams shown
in Fig. 2, large chaotic attractors are systematically appearing
when the B control parameter is varied. To obtain a qualitative
information about changes undergone in the chaotic dynamics,
a large number of attractors were calculated, and to get clearer
three-dimensional pictures, the variable x2 ∈ [−�, �] had been
transformed to x′

2 ∈ [0, 2�]. In the following some of these
attractors are described.

At lower B values, the structure of chaotic attractors is
characterized by tight stripes spreading in the (0, 2�) interval
of the x′

2 variable (Fig. 13(a)), and changing into loops in the
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Fig. 14. Projection of the chaotic attractor at B =9.58 onto x1.x3 coordinate
plane.

neighbourhood of (x1, x
′
2, x3) ≡ (0, �, 0) phase-space point.

As B increases, the dynamics of the attractors correspond-
ing to the successive chaotic bands undergoes a continuous
evolution characterized by an increasingly more complicated
dynamics centred on the (0, �, 0) point (Fig. 13(b)). As a re-
sult, the points situated in the neighbourhood of the x′

2 = 0
plane are rarely visited. This process is maintained until the
chaotic band situated into B ∈ (9.568 . . . , 9.771 . . .) interval,
where big attractors exist (Fig. 13(c)) . After the following pe-
riodic interval, the chaotic dynamics changes drastically and,
at B�11.913 . . . , the complex structure of the attractors of the
preceding chaotic bands disappears, and is replaced by simple
structures where the attractors acquire the shape of thin stripes.
Nevertheless, in this new situation, two chaotic attractors are
coexisting and, therefore, it can be established that, at large
forcing amplitudes, the chaotic behaviour of the system is
characterized by coexistence chaos–chaos. As an example, two
coexisting chaotic attractors calculated for B = 12 are shown
(Fig. 13(d)).

Symmetries of the three-dimensional chaotic attractors are
revealed by analysing the projections onto the coordinate
planes. Thus, the characteristics symmetries with respect to
the origin and x3-axis (reflection) are, respectively, observed
in x′

2.x3 and x1.x3 projections (Fig. 14). Likewise, symmetry
by reflection with respect to x1-axis may be observed in x1.x3
plane.

6. Basins of attraction

As usual in many dynamical systems, phase space of the
system studied is arranged by the coexistence of two or more
attractors, since each collection of initial conditions whose

Fig. 15. Cross section at x1 = 0 plane of the basins of attraction computed
at B = 0.4. The basins Bn (grey), Bp (white), Bl2 (black) and Bm2 (dark
grey) corresponding to four coexisting orbits are shown.

trajectories go to one determined attractor defines a set of points
(basin of attraction) associated to that attractor. The structure
of phase space induced by the basins of attraction may become
complicated when several basins exist, and moreover, when the
boundaries between them are fractal structures [14,15] instead
of smooth curves. In this case, basins of attraction were com-
puted by exhaustively solving the dynamical system using ini-
tial conditions on a 1255 × 1255 grid, and fractal boundaries
were found throughout.

In Fig. 15 a cross section (x1 = 0 plane) of the three-
dimensional phase space is shown, at B = 0.4. Four basins
found: Bn (light grey), Bp (white), Bl2 (black) and Bm2 (dark
grey) corresponding, respectively, to the four-periodic attrac-
tors coexisting at that value of the B parameter. It can be seen
how the arrangement of the basins exhibits the characteristic
symmetry of the system with respect to the origin of coordi-
nates and with respect to the (0, ±�, 0) point. On the other
hand, the fractal structure of the boundaries of the basins is
clearly observed. When a small zone of the basin is again
computed using higher resolution (Fig. 16), an examination
of the fractal boundaries indicates that they are formed by
points belonging to the four basins of attraction. Following
Kennedy and Yorke [16], it can be established that each point
that is on the boundary of one region is on the boundary
of all (Wada property), and therefore, the boundaries of the
basins in Fig. 15 are Wada basin boundaries. This indicates
that initial conditions in the neighbourhood of boundaries
produce a dynamical behaviour difficult to predict [17], since
the system can be conduced to any of the four coexisting
orbits.
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Fig. 16. Detail of Fig. 15, where the Wada basin boundaries can be clearly
seen.

Fig. 17. Basins of attraction belonging to two coexisting period-1 orbits into
the interval I (Fig. 9). Fractal structures can be observed in spite of the
simplicity of the dynamics in that interval.

It had been shown that, at mean-large B values, periodic in-
tervals exist where only two solutions are coexisting and where
the bifurcation scenario is relatively simple in comparison with
the situation observed at low B values. Nevertheless, the struc-
ture of the phase space does not evolve to become simpler in the

sense of observing big basins with smooth boundaries. Thus,
Fig. 17 shows the two basins (at x1 = 0 plane) B+ and B−,
calculated for B = 3, into the interval called I. These basins
of attraction correspond, respectively, to both coexisting orbits
(x2 > 0 and x2 < 0) which evolve without any bifurcation, ex-
cept intermittent transitions to chaos. In this case, basins are
formed by a great amount of pieces with fractal boundaries be-
tween them. This structure becomes more pronounced around
x2 = 0 and x2 = � planes, as happened in the basins computed
for B = 0.4 (see Fig. 15). Therefore, it seems that the fractality
and a characteristic arrangement of the basins constitute a hall-
mark of the system, independently the quantity of coexisting
solutions.

7. Summary

We have presented a numerical study of three-dimensional
dynamical system obtained from the mechanical problem con-
cerning a sliding rigid body, periodically forced and subjected
to dry friction. This system, which can be considered a simple
model of a sliding device or an articulated sliding vehicle under-
going lateral oscillations, has a varied periodic and chaotic dy-
namics which is very sensitive to the forcing amplitude values.
It was found that the system behaves according to a pattern char-
acterized by alternating periodic and chaotic states. Diverse bi-
furcational episodes were detected when the system evolves by
variation of forcing amplitude values. Thus, sequence of bifur-
cations: saddle-node, symmetry-breaking and period-doubling
(cascades) are typically found at low forcing amplitude values.
In other cases, it may be observed sequences formed by inter-
mittent transition to chaos and symmetry-breaking bifurcation
accompanied either by other intermittent transition to chaos or
Feigenbaum route to chaos (period-doubling cascade). Like-
wise, more complex sequences were found. The bifurcations
have been characterized by systematic calculations of the Flo-
quet multipliers when the dynamics of the system changes. In
this respect, we can remark that the Floquet multipliers evolve
into different intervals of periodicity following a characteristic
pattern (see, Figs. 5 and 11).

The evolution of the chaotic behaviour of the system has
been described, after calculating a collection of chaotic attrac-
tors varying the value of the forcing amplitude. Certain regu-
larity has been found in the appearance of the chaotic motion,
and also in how the attractors become tangled when the control
parameter increases. Another interesting aspect is the sudden
change observed in the chaotic motion when the forcing ampli-
tude reaches a certain value, after which, the attractors take the
shape of tight pieces and the coexistence chaos–chaos appears.

Finally, the basins of attraction computed for several con-
trol parameter values exhibit, as a general rule, layered fractal
structures in their boundaries. At low forcing amplitude val-
ues, where more than two solutions are coexisting, fractal lay-
ered structures are Wada basin boundaries, which can produce
a certain unpredictability to know the final output of the sys-
tem. At mean values of the control parameter, the fractality is
maintained and again fractal structures can be observed in basin
boundaries.
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